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Using a statistical mechanical treatment, we study RNA folding
energy landscapes. We first validate the theory by showing that,
for the RNA molecules we tested having only secondary structures,
this treatment (i) predicts about the same native structures as the
Zuker method, and (ii) qualitatively predicts the melting curve
peaks and shoulders seen in experiments. We then predict ther-
modynamic folding intermediates. For one hairpin sequence, un-
folding is a simple unzipping process. But for another sequence,
unfolding is more complex. It involves multiple stable intermedi-
ates and a rezipping into a completely non-native conformation
before unfolding. The principle that emerges, for which there is
growing experimental support, is that although protein folding
tends to involve highly cooperative two-state thermodynamic
transitions, without detectable intermediates, the folding of RNA
secondary structures may involve rugged landscapes, often with
more complex intermediate states.

At the center of computational biology is the folding problem for
proteins or RNA molecules: to predict the conformation

having the global minimum energy from the monomer sequence.
This problem is not yet solved. But even when it is solved, it will only
give us a small fraction of the information we would like to have
about biomolecule folding. We would also like to know how the
folding process takes place, what are the folding routes, the folding
thermodynamics and cooperativity, intermediate states, transition
states, and conformational transitions. To understand these prop-
erties requires knowledge of more than just the single native
conformation. It requires the full energy landscape (1–5): the free
energies of all of the chain conformations as a function of the
microscopic degrees of freedom of the molecule.

There are two practical reasons that it is important to know
energy landscapes. First, knowledge of landscapes will be of
benefit in designing faster and more robust computer methods
for predicting native structures (6, 7). Second, a goal of com-
putational biology is not just to predict native structures, per se,
but to predict function. Ligand binding to proteins and RNA
molecules, and catalytic mechanisms, are often more dependent
on the conformations that are fluctuations away from the native
structure than on the native conformation itself (8). To predict
the fluctuations, we need energy landscapes.

Recent theoretical and experimental advances are beginning
to go beyond native structures to shed light on full RNA folding
energy landscapes (9–19). But so far, such landscapes have not
yet been predictable from monomer sequences. There is one
class of biomolecule conformations—RNA secondary struc-
tures—for which folding algorithms are fairly successful. A
popular method for predicting the native secondary structures of
RNA molecules has been developed by Zuker and others
(20–25). In this paper, we describe a method for going beyond
the prediction of such single points on landscapes. Our method
predicts the full energy landscape for RNA secondary structures
as a function of monomer sequence.

Predicting realistic energy landscapes for both proteins and
RNA has been challenging because of severe computational
limitations. All-atom simulations sample conformational space
too sparsely (by hundreds of orders of magnitude) to character-
ize the full landscape. The other main approach has been lattice
toy models (1–3) and other simplified treatments (26, 27), which
can characterize the energy landscape completely, but only by

sacrificing both atomic detail and the ability to treat realistically
long sequences. Lattice models that have been used to explore
complete energy landscapes are usually limited to chain lengths
of ;16–20 monomers in two dimensions. These folding land-
scapes so far have been mainly fictional, in the sense that they
apply only to toy models and not to real monomer sequences
such as lysozyme or ribonuclease.

We report here an approach, based on a polymer theory
method that has recently been described in detail elsewhere (28,
29), in which we can retain a relatively high degree of realism and
at the same time completely characterize the full energy land-
scape for RNA secondary structures having chain lengths up to
at least 100–200 bases.

Overview of the Model. The details of the model are given elsewhere
(28, 29). But the basic idea is simple. RNA secondary structures
involve stretches of helix, where two single-stranded chains run
antiparallel to each other, separated by loops, bulges, and turns of
various kinds and lengths, which we call intervening regions.
Structures may involve any degree of branching. We aim to
compute the partition function, which is the sum of Boltzmann
factors over all possible ways and branching patterns in which the
chain can be arranged into helices and intervening regions. Each
Boltzmann factor accounts for the base pairing and stacking free
energies for that particular configuration. The partition function is
obtained by a matrix multiplication method, of the type that is used
with the one-dimensional Ising model (30) or with the Zimm-Bragg
theory of helix-coil transitions (31). The full chain partition func-
tion, Q(T), for a given set of intrachain contacts is a product of
partition functions for short stretches of the chain (29):

Q 5 O
c

vce2EcykT,

where the sum is over all possible arrangements of contacts c, vc
is the count of the number of conformations having a given
arrangement of contacts, and the Boltzmann factor accounts for
all of the contact interactions for the given set of contacts. The
central idea is that vc is computed as a product of partition
functions of component loops and helices (28):

Ur S~N!YS~N21! ... Uc,

where Ur 5 row(1, 1, 1, 1), Uc 5 col(1, 1, 1, 1), Y is a 4 3 4 matrix
containing zeros and ones that insures that one stretch of chain
has the right configuration of ‘‘outlet’’ (say, type m 5 1, 2, 3, 4)
to couple to the ‘‘inlet’’ of the next stretch of chain (say, type n 5
1, 2, 3, 4). S is a 4 3 4 matrix that counts conformations having
a coupling of type ‘‘nm ’’ (28).

These piecewise partition function matrices, S and Y, are
computed in advance by lattice model enumerations. This ap-
proach does not rely on simplifying assumptions that are tradi-
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tionally made about chain entropies (for example, that loop
entropies are additive, or that loops are random flights that can
be treated by Jacobsen-Stockmayer statistics, for example). Tests
against exact enumerations show that the polymer theory cap-
tures the partition function with high accuracy (28, 29).

To use the method to predict experimental results requires a
model for the energetics of base pairing interactions. We use the
‘‘Turner rules’’ for the enthalpies and entropies of the base
stacking interactions in double helices (including noncanonical
pairs) (32). We assume the stacking enthalpies and entropies are
temperature-independent, and we assume pairing energies are
zero when nucleotides are not stacked.

The model otherwise has only one parameter. Our method
requires counts of the conformations under the many different
possible constraints that could arise from all of the possible
base-pairing arrangements. We obtain those counts from square
lattice simulations. But the lattice model is two-dimensional and
has only one degree of freedom per monomer whereas real
polynucleotides are three-dimensional and have seven contin-
uum dihedral degrees of freedom per monomer. However, Fig.
1 shows that a single multiplicative factor, m, which is indepen-
dent of chain length, converts the loop conformation counts

obtained from the lattice simulations to those obtained from
experimental measurements of RNA loop entropies.

Tests of the Theoretical Method. There are some basic tests an
energy landscape model should pass. First, it must at least be
a good folding algorithm; it should predict the point of global
minimum, the native structure, on the energy landscape. In this
regard, for the RNA molecules we tested, which are given in
Fig. 2, our model has about the same level of accuracy as
existing methods for predicting native RNA secondary struc-
tures (33, 34).

Second, an energy landscape model must predict more than
just native structures; it must capture the rest of the space of
conformations and their thermodynamic weights and must be
able to predict denaturation thermodynamics. Fig. 2 shows the
predictions for the denaturation profiles of six small RNA
molecules that have no tertiary structures for which the
melting thermodynamics are known (33–35). Some of the data
shown are from heat capacities, which give a more direct test
of the theory, and the rest are from absorbance measurements,
which are related but not identical to the heat capacity curves
we have computed. We include them because there are
otherwise so few direct heat capacity measurements available
and because the absorbance measurements tend to ref lect the
same general peaks and shoulders as would be seen in heat
capacity measurements. We did not attempt to model tRNAs
here for two reasons. (i) tRNAs contain pseudoknots, which
are not treated in the current implementation of the theory.
(ii) tRNAs have modified bases, for which there are no Turner
rule energy parameters.

The theoretical predictions are not good enough to be within
the experimental errors of the measurements, but they do appear
to give qualitatively the peaks and shoulders. We think this
model is a reasonable first approximation, on the following
grounds. First, nucleic acid interactions depend strongly on salt
concentration, but the only energies available to us, the Turner
rules, came from measurements in 1 M salt. This may account
for the overstability predicted by the model in most cases.
Second, all of the quantities used in this model have been
obtained by independent experiments, so no nonphysical pa-
rameter is used to fit the theory to the data. As with many
statistical mechanical models, the relevant quantity for deter-
mining model errors is kT, where T 5 300K, so errors of 10–20
degrees in melting points are small on this scale. The qualitative
features of the denaturation profiles appear to be better pre-
dicted here than from more parameterized models (36). Third,
because the model is physical, it is clear how to improve it: we
could include tertiary contacts if appropriate energy parameters
were available, include coaxial base stacking (37, 38) and
terminal unpaired nucleotide and terminal mismatch energies,
and perhaps include electrostatics. The present treatment illus-
trates both the successes of this level of approximation and the
limitations.

Energy Landscapes and the Folding Pathways. The main purpose of
a model such as this is to relate microscopic conformations to
macroscopic properties, such as the melting thermodynamics.
In this section, we describe the structures that are predicted for
a series of equilibrium melting experiments. No experiments
are yet available to test this, as far as we know. We describe the
results in terms of energy landscapes. Because a full high
dimensional energy landscape is neither visualizable nor illu-
minating, Fig. 3 shows instead a ‘‘reduced’’ energy landscape,
the free energy F(n,nn) 5 2kTlnQ(n,nn,T), where Q(n,nn,T)
is the partition function, the count of all of the conformations
that contain n native contacts and nn non-native contacts.
F(n,nn) can be treated as a projection of the full landscape on
the (n,nn) plane, assuming all of the other degrees of freedom

Fig. 1. The loop closure probability P (y axis) for different loop lengths (x
axis): experimental results (E) and two-dimensional lattice results (F). Exper-
iments are from hairpin loop initiation parameters (32) using ln(P) 5 2DGykT,
where DG is the closure free energy. We assume DG is dominated by the loss
of conformational entropy. The two-dimensional lattice results are from exact
computer enumerations, where P is the ratio of conformation counts for the
closed and open conformations. This factor that is needed to convert the
lattice conformation count to the experimental data is approximately inde-
pendent of chain length. For a self-avoiding chain on a two-dimensional
lattice, there are three possible bond angles, which closely resemble three
rotational isomeric states for each of the seven dihedral angle degrees of
freedom per nucleotide. This simple relationship (one bond angle to seven
angles) suggests the existence of a constant scaling factor m to scale up the
conformational count for realistic molecules. The numerical value of m cannot
be directly determined from the scaling in Fig. 1, because m is defined for
‘‘loops’’ that do not contain any intra-loop contacts, whereas a loop measured
in the experiment can contain unstacked (unstable) base–base contacts. We
treat m as a global constant for all loops because different loops, although
possibly containing different details in geometry, share the same scaling
relationship in chain conformational statistics, no matter how large the loop
is and where the loop appears.

Chen and Dill PNAS u January 18, 2000 u vol. 97 u no. 2 u 647

BI
O

PH
YS

IC
S



are in thermal equilibrium and hence can be averaged out. A
contact is called ‘‘native’’ if that particular hydrogen-bonded
base pair exists in the native structure, and ‘‘non-native’’
otherwise.

The main purpose of this particular kind of plot is to explore
a question that is motivated by a longstanding issue in protein
folding. The question is whether folding intermediates are
‘‘on-pathway’’ or ‘‘off-pathway.’’ This question can be asked of

either the kinetics or of the thermodynamics. Here we focus on
the thermodynamics. The distinction is as follows. For kinetics,
we would need to define a reaction coordinate. We would then
ask for the time sequence of conformations that follow a jump
either to folding or unfolding conditions.

For thermodynamics, we would only need to define an order
parameter, not a reaction coordinate. An order parameter is just
some structural or energetic measure of the ‘‘nativeness’’ of the
protein. An order parameter need not also include a measure of
‘‘kinetic closeness’’ of one conformation from another that is
necessary for a reaction coordinate. We focus on a series of
equilibrium experiments, each performed at a different temper-
ature. At each temperature, we compute the equilibrium en-
semble of conformations, and whatever average structural prop-
erty is of interest. In the present work, we have not considered
reaction coordinates or any other aspect of kinetics. An assump-
tion is often made that the kinetics time series of conformations
would closely mimic the equilibrium series (39), but we do not
take up that question here.

We define an on-pathway intermediate as a stable state having
few non-native contacts. In contrast, an off-pathway intermedi-
ate can have many non-native contacts, but will have few native
contacts.

Landscapes provide insights into cooperativity in biomolecule
folding. The shape of the landscape can be characterized by the
minima, which correspond to stable intermediates, and the
maxima or barriers dividing them. As T changes, the shape of the
landscape changes because of the competition between enthalpy
and entropy.

We find stable intermediate states for both the mutant a
operon mRNA 59-nucleotide fragment shown in Figs. 2c and
3A and the Escherichia coli 23S rRNA 59-nt fragment shown
in Figs. 2d and 3B. But the landscapes of the two molecules
(Fig. 3 A and B) are clearly different. The intermediates of the
mutant a operon mRNA fragment are on-pathway in the sense
that the folding process involves the sequential formation of
the native helices, as a function of temperature. No non-native
helices are formed. The thermodynamic ‘‘pathway’’ is indi-
cated by partial degrees of ‘‘unzipping’’ of the native helices
from the middle (see Fig. 3A). The cooperativity can be
described by a ‘‘stuck zipper’’ model, where the zipping gets
stuck in states X and Y (defined in Fig. 3A), and there is little
population of other partially zipped states. Because state X
and state Y are separated by a free energy barrier, the
transitions between the stuck states are ‘‘two-state,’’ resem-
bling first-order phase transitions such as boiling and freezing
in macroscopic systems.

On the other hand, the E. coli 23S rRNA fragment shows a
much more complex transition than is predicted for the a
mRNA fragment (see Fig. 3B). For example, at T 5 30°C, two
almost equally stable conformations (N and Z) coexist. The
unfolding of N involves two routes: one set of intermediates is
on-pathway and the other is off-pathway. Fig. 3B shows that
heating the native RNA leads not just to a partial unzipping
(the on-path intermediate), but also to a highly helical state
having even more contacts than the native structure but
involving weaker interactions. Off-pathway intermediates have
been previously predicted in other RNA models (40), where a
‘‘molten’’ phase was found to exist before the main unfolding
occurs.

Experiments show complex folding cooperativity in RNA
tertiary structures. Mg21 appears to stabilize tertiary structures
(41, 42). Folding pathways have been found to involve multiple
cooperative (two-state) or noncooperative transitions, depend-
ing on the salt concentrations (43–47).

Density of States. Fig. 4 shows the predicted density of states
g(E), which is the number of conformations at each energy

Fig. 2. Predicted (continuous lines) and experimental differential melting
curves (dashed lines). a, b, c, and e show the results for a operon mRNA
fragment and the variants in 100 mM (a, b, and c) or 1,000 mM (e) KCl with 10
mM Mops (33): G16-A72 (a); G363U (b); AA443CC, UU553GG (c); and
G16-U127 (e), with added nucleotides at the 39 end: AU (a, b, and c). d and f
show denaturation profiles for E. coli 23S rRNA fragment G1051-C1109 in 1 M
KCl with 10 mM Mops (34) and E. coli 5S RNA in 1 M NaCl with 5 mM sodium
phosphate and 1 mM EDTA (35), respectively. a and f are from calorimetric
experiments, and b, c, and e are from UV absorbance experiments. Because our
model energies are from Turner’s rules, taken in 1 M NaCl, our model should
in general overestimate the melting temperatures (Tm) for experiments in
lower salt conditions. Because our model accounts only for the secondary
structures, peaks in the experimental curves for the disruption of the tertiary
structure (35) ( f) were removed. The denaturation curve shows the heat
capacity as a function of temperature. The heat capacity C(T) is obtained from
the partition function Q(T) by using C(T) 5 yT[kT2(yT)lnQ(T)]. The com-
puter time scales with the chain length L as L4. For each temperature, the
calculation of Q(T) and C(T) took 3 sec on an Intel Pentium Pro 200 computer
for the 59-mer sequences (a–d), 30 sec for the 100-mer sequence, and 54-sec
for the 120-mer sequence ( f). We chose m 5 e22 to give a best fit to the
experimental curve in c, and used this value for all other calculations. Small
variations in m (e.g., m 5 e22.5) cause only minor changes of the positions and
shapes of the main and satellite peaks, but larger changes in m lead to
significant changes of the melting curves. Although the theory gives good
predictions, given the simple approach, it is conceivable that the theory may
differ with the experimental denaturation profiles in some details. Improve-
ments can come from accounting for tertiary interactions, treating unpaired
terminal nucleotides, and other refinements in the theory.
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A

B

Fig. 3. The energy landscapes F(n,nn) vs. Temperature T (in °C) for (A) mutant a mRNA fragment (Fig. 2c) and (B) E. coli 23S rRNA fragment (Fig. 2d). F(n,nn)
is the free energy for a state with n native contacts and nn non-native contacts, where the native and non-native contacts are defined according to the native
structure N. The free energies (in kcalymol) are relative to the native states. Under native conditions, the number of non-native contacts need not equal zero,
because loops can bump into the chain in ways that involve no stable contact. Stable states are valleys, highlighted by the symbols on the energy landscapes.
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level. The power of the present theoretical method is that it can
give the density of states over the whole landscape, a quantity
that is not readily obtainable by sampling and trajectory-based
simulations, such as Monte Carlo or molecular dynamics. Even
the rarest of states can be explored; Fig. 3 shows the proba-
bilities of states over a range of more than 100 orders of
magnitude in population.

The density of states reveals information about the shape of
the energy landscape. The left side of Fig. 4 describes the
lowest energy states. Because g(E) is small on the left, it
indicates that there are very few low-energy states. The right
side indicates that there are very many high energy states;
these are the denatured conformations. Taken together, it
implies a general funnel-shaped landscape. At a more subtle
level, if the left side of the figure were to be concave upwards,
it would imply that the native state would be separated by an
energy ‘‘gap’’ from the denatured states. Such a concave shape
would indicate a paucity of low energy ‘‘trap’’ conformations
and that the native energy well is much deeper than other

energy wells. But if anything, Fig. 4 is slightly concave down-
wards on the left side, implying many low energy non-native
states, which indicates that these RNA folding energy land-
scapes are quite bumpy and rugged.

In this regard, the model predicts that RNA folding may be
quite different than protein folding. Proteins tend to have energy
gaps, and a single native state that is much more stable than
alternative conformations. Here, the prediction is that RNA
molecules, at least those having predominantly secondary struc-
tures, may have many low energy states and bumpy landscapes.
This appears to be consistent with experiments (9, 11, 15, 16, 42)
and indicates that kinetics and metastability may play a greater
role in the properties of RNAs than for proteins (1–5). Perhaps
evolution has not optimized RNA secondary structures to fold
uniquely, to be very stable, or to fold quickly.

Higgs has also predicted multiple low energy states for some
RNA sequences (48, 49). His density of states, however, is not
comparable to ours, because it counts only secondary structures,
rather than conformations. His observation of a Gaussian func-
tion is therefore not in conflict with our non-Gaussian density of
states. Some protein models also predict non-Gaussian densities
of states (50). Our g(E) shown in Fig. 4 is remarkably linear.
Because 1yT 5 SyE 5 klng(E)yE, the slope of our density
of states curve gives the temperature of the main melting
transition. For example, for the mutant a operon mRNA 59-nt
fragment, the slope is 0.68 molykcal, corresponding to a tran-
sition temperature (k slope)21 2 273 . 65 (°C).

We have described a method for predicting energy land-
scapes for RNA molecules. It predicts that RNA secondary
structures have a wide variety of cooperative behaviors, in-
cluding one-state and two-state transitions, stable intermedi-
ate states, some of which are on-path (monotonically becoming
more native-like) and some of which are off-path (dominated
by non-native contacts). Our approach is presently limited to
the prediction of equilibrium folding for the secondary struc-
tures of RNAs and of single-stranded DNA molecules. But
because it treats increasingly complex chain conformations by
a systematic hierarchy of equations, the present approach may
ultimately be useful also for more complex tertiary structures
in proteins and RNAs.
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