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ABSTRACT

The recent availability of high-densityhumangenome
tiling arrays enables biologists to conduct ChIP–
chip experiments to locate the in vivo-binding sites
of transcription factors in the human genome and
explore the regulatory mechanisms. Once genomic
regions enriched by transcription factor ChIP–chip
are located, genome-scale downstream analyses
are crucial but difficult for biologists without strong
bioinformatics support. We designed and implemen-
ted the first web server to streamline the ChIP–chip
downstream analyses. Given genome-scale ChIP
regions, the cis-regulatory element annotation sys-
tem (CEAS) retrieves repeat-masked genomic
sequences, calculatesGCcontent, plots evolutionary
conservation, maps nearby genes and identifies
enriched transcription factor-binding motifs.
Biologists canutilizeCEAS to retrieveuseful informa-
tion for ChIP–chip validation, assemble important
knowledge to include in their publication and gener-
ate novel hypotheses (e.g. transcription factor co-
operative partner) for further study. CEAS helps the
adoption of ChIP–chip in mammalian systems and
provides insights towards a more comprehensive
understanding of transcriptional regulatory mecha-
nisms. The URL of the server is http://ceas.cbi.pku.
edu.cn.

INTRODUCTION

Chromatin immunoprecipitation coupled with DNA micro-
arrays (ChIP–chip) has become a popular technique to iden-
tify genome-wide in vivo protein–DNA interactions. With the
recent availability of commercial human genome tiling
microarrays, many laboratories are starting to combine these

two technologies to detect cis-regulatory elements in the
human genome.

Despite the importance of ChIP–chip, there is still a
shortage of convenient tools developed to streamline the
downstream analyses with the capability of processing
genome-scale ChIP regions. So far all the ChIP–chip papers
in mammalian systems are published as a direct result of
powerful bioinformatics support (1–6), which may not be
available for smaller labs. Therefore, web servers that can per-
form comprehensive analyses of hundreds or thousands of
ChIP regions are not only valuable to biologists, but also use-
ful for promoting the adoption of this powerful technology.

We present a comprehensive cis-regulatory element
annotation system (CEAS) web server that integrates useful
tools for sequence analysis and annotation of ChIP regions
in the human genome. CEAS results not only help biologists
analyze and validate their ChIP regions, but also can be
directly included in their manuscript or Supplementary Data.

WEB APPLICATION

CEAS is composed of three parts: (i) a front-end web-based
user interface for input data submission, input data validation
and job scheduling; (ii) an annotation engine for sequence
analysis and annotations; and (iii) a reporting system for
output generation and Email notification to the user.

User input

CEAS accepts an input file with ChIP regions in either UCSC
BEDformat (http://genome.ucsc.edu/goldenPath/help/custom
Track.html#BED) or Sanger GFF format (http://www.
sanger.ac.uk/Software/formats/GFF/). The standard BED
files have three required fields: chrom for the chromosome
name, chromStart for the starting position of a ChIP region
on the chromosome and chromEnd for the ending position
of the ChIP region on the chromosome. The chromosome
coordinates of the ChIP regions should follow the human
genome assembly version Build 35 (Hg17). Coordinates
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based on earlier genome assembly can be converted to Hg17
using the Batch Coordinate Conversion at UCSC genome
browser (7). A unique identifier for every ChIP region,
ordinarily an optional fouth field in BED files, is also required
by CEAS.

Because sequence analysis and annotation for genome-
scale ChIP regions are time consuming, CEAS requires the
user to supply an Email address. After submission, the server
will put each job submission on queue and Email the user
once the computation is finished. Alternatively, if the user
inputs ‘guest’ instead of an Email address, the server will
return a confirmation page which will be redirected to a result
page when the annotation is finished. The output files will be
stored on the server for 3 days to ensure that the user has
enough time to browse and download the results.

Sequence retrieval

Although several websites can retrieve repeat-masked
sequence for a particular genomic region, none can handle
hundreds to thousands of ChIP regions simultaneously. Fur-
thermore, current retrieval websites mask only RepeatMasker
repeats (http://repeatmasker.org) and tandem repeats with
period of 12 or less (8). Tandem repeats with period of
>12 could greatly affect the qPCR primer design for ChIP
region validation and sequence motif finding within the
ChIP regions. CEAS automatically retrieves the genomic
sequences of all the ChIP regions with all RepeatMasker
repeats and all tandem repeats masked, and presents them
in FASTA format for user download.

Conservation plot

Comparative genomics has been widely used to identify
cis-regulatory elements in higher eukaryotes (9), and thus
biologists are often interested in knowing the level of conser-
vation of the ChIP regions. CEAS uses the high-quality phast-
Cons (10) information from the UCSC GoldenPath genome
resource, which assigns a conservation score based on a
phylogenetic hidden Markov model to virtually every nucle-
otide in the human genome. CEAS generates a thumbnail
phastCons conservation plot for each ChIP region, allowing
biologists to skim through hundreds of ChIP regions in a sin-
gle pdf file. In addition, the server extends both ends of each
ChIP region to 3 kb, calculates an average phastCons score
for each position and generates an average conservation
plot. This final conservation plot can give biologists an idea
of how conserved their ChIP regions are (in the middle of
the plot) compared to the genomic background (at both
ends of the plot).

Nearby gene mapping

For each ChIP region, CEAS reports the nearest RefSeq
genes in both upstream and downstream directions on both
strands unless no gene is found within 300 kb. When a
ChIP region lies within a gene, CEAS reports whether it is
in the 50-untranslated region (50-UTR), 30-UTR, a coding
exon or an intron. For each ChIP region, CEAS provides its
length, GC content and a link to UCSC genome browser. The
server also gives a summary statistic for GC content and gene
mapping of all the ChIP regions, including the percentages of

ChIP regions that reside in proximal promoters (1 kb
upstream from RefSeq 50 start), immediate downstream (1
kb from RefSeq 30 end), 50-UTRs, 30-UTRs, coding exons,
introns and enhancers (>1 kb from RefSeq). This rough
estimate of the ChIP region distribution helps biologists
understand the specific binding behavior of their transcription
factor.

Motif finding and enrichment analysis

CEAS finds enriched sequence motifs in the ChIP regions
that are putatively bound by the ChIP–chip transcription fac-
tor and its cooperative-binding partners. The current best de
novo motif finding methods for ChIP–chip includes MEME
(11), AlignACE (12), Mascan (13) and their combinations
(14). For known motif-scanning methods, the best is TRANS-
FAC (15) or JASPAR (16) motif scan. Since the latter is less
time consuming and can be pre-computed, we decided to use
it. CEAS pre-collected all the motif matrices in the TRANS-
FAC (15) and JASPAR (16) databases, and filtered out motifs
from microbial genomes or constructed with <10 sites to get
�800 well-characterized eukaryotic motifs. For each motif,
CEAS pre-computed and stored all its hits (with information
on chromosome, position, strand and score) in the fully
repeat-masked human genomic sequence. The score of a
particular w-mer hit to a motif of width w is calculated as
follows:

scoreðw � merÞ ¼

log
pbðw � mer from motif Þ

pbðw � mer from Markov backgroundÞ

� �
‚

where the background is the 9th order nucleotide
Markov dependency estimated from the human genomic
sequence. A score cutoff of Max (5,0.9 · Motif Relative
Entropy) is used to call a motif a hit. The relative
entropy of a motif of width w is calculated asP

i¼A‚C‚G‚T

Pw
j¼1 mij log ðmij/piÞ‚where mij is the probability

of seeing nucleotide i at position j, and pi is the probability of
i in the human genome. Given user’s ChIP regions, CEAS
counts the number of hits for every motif both within the
ChIP region and in the whole genome. To be comprehensive,
CEAS chooses a relative less stringent criteria of >1.5-fold
change and binomial test P-value <1E�5 to report motifs
enriched in the ChIP regions. Reported motifs are ranked
by their P-values so biologists could refine the motif list
with a more stringent cutoff. With each reported motif,
CEAS provides its fold change, P-value, hit sequence in the
ChIP regions and sequence logo (17).

Example output

Without other jobs pending on the queue, it takes CEAS
�20 min to process an input with 1000 ChIP regions each
of length �600 bp. Once the computation is finished,
CEAS notifies the user by Email with a link to the result
page. The result Html page reports each of the CEAS analysis
results in different sections for user to view and download
(Figure 1).
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DISCUSSION

CEAS is the first web server that allows high-throughput and
comprehensive downstream analyses of human ChIP–chip
data. The sequence retrieval function helps biologists design
qPCR primers for validation and perform motif finding. The
conservation plot function explores the functional conserva-
tion of the ChIP–chip transcription factor which could poten-
tially be used to refine motif search. The nearby gene
mapping function predicts the genes regulated by the tran-
script factor-bound regions. The motif finding function pre-
dicts the putative binding motif of the ChIP–chip
transcription factor, which further validates the ChIP regions.
It also predicts the cooperative-binding partners of the tran-
scription factor. Many of the CEAS results can be directly
incorporated in the user’s ChIP–chip manuscript or
Supplementary Data.

ChIP–chip on genome tiling array is still in its infancy. We
are very lucky to work with the pioneers in this field, and
foresee the necessary analysis tools that other ChIP–chip
laboratories would need. As tiling arrays of other eukaryotic
genomes become available and more biologists adopt the
ChIP–chip technology, we envision CEAS to include more
organisms with more and friendlier functionalities such as
qPCR primer design for each ChIP region, motif scan for
user provided motifs or de novo motif discovery.
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