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ABSTRACT

KinDOCK is a new web server for the analysis of
ATP-binding sites of protein kinases. This character-
ization is based on the docking of ligands already
co-crystallized with other protein kinases. A struc-
tural library of protein kinase–ligand complexes has
been extracted from the Protein Data Bank (PDB).
This library can provide both potential ligands
and their putative binding orientation for a given
proteinkinase.Afterprotein–proteinstructural super-
position, the ligandsare transferred from the template
complexes to the target protein kinase. The resulting
complexes are evaluated using the program SCORE
to compute a theoretical affinity. They can be dynami-
cally visualized to allow a rapid mapping of important
steric clashes and potential substitutions relevant for
specificity and affinity. These characteristics allow a
quick characterization of protein kinase active sites
including conformation changes potentially required
to accommodate particular ligands. Additionally,
promising pharmacophores can be identified in
the focussed library. These features will help to ratio-
nalize or optimize virtual screening (VS) on larger
chemical compound libraries. The server and its
documentation are freely available at http://abcis.
cbs.cnrs.fr/kindock/.

INTRODUCTION

Structure-based methods are becoming increasingly important
in drug discovery. This is especially true in the case of protein
kinases, which are important therapeutic targets (1). While
targeting the ATP-binding site of protein kinases was initially
thought to be useless due to a lack of specificity, the first
crystal structure of a protein kinase in 1991 revealed unex-
pected structural features leading to brighter hopes for the

development of specific inhibitors (2). Since then, a number
of protein kinase structures have been solved, including many
inhibitor-bound proteins. A number of protein kinase inhi-
bitors are now in the clinic and several others in clinical trials
(1). Despite this progress, the gap between the number of
reported sequences and experimental structures continues to
increase (3), and we are far from determining the structure of
all the 518 protein kinases identified in the human genome.
Furthermore, a larger gap exists in the case of proteins com-
plexed with their known ligands. At the same time, recurrent
substructures are observed among the known ligands of
a given protein family (or superfamily) as observed in the
case of protein kinases (4). This observation, however has
yet to be sufficiently exploited in docking by similarity.

Structure comparisons have been widely used to identify
protein similarities and to derive functional or structural
information (3). Automatic procedures are now available to
provide three-dimensional models of good quality when the
sequence identity is above 30% (5). On the contrary, the mod-
elling of protein–ligand complexes remains a more difficult
and tedious task (5). Indeed, template searches generally focus
on sequence similarities rather than on the presence or not of a
ligand bound to the template. In the case of well-characterized
protein families, one template may provide the best protein
scaffold while a more distantly related template may provide a
valid ligand (e.g. ATP for protein kinases).

In parallel, virtual screening (VS) has successfully identified
small chemical compounds showing micromolar to nanomolar
affinities (6). While the use of VS had often been restricted to
the structures of crystallized proteins, it was recently shown
that some three-dimensional models can be accurate enough to
perform VS (7,8). However, VS is still a highly CPU-intensive
task and it needs an appropriate active site structure (e.g. cor-
responding to an active conformation). This conformation
might differ from one class of compounds to another due to
the ligand-induced fit phenomenon (8).

On the one hand, current comparative modelling can pro-
vide theoretical models of protein structures with significant
accuracy. On the other hand, VS has been developed to search
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rather large chemical libraries and to identify potential ligands.
Bridging both fields with new chemoinformatic tools could
provide new approaches to drug design. However, because of a
lack of appropriate tools (e.g. for local evaluation of protein
conformations), the interplay between macromolecular mod-
elling and ligand docking is not yet efficiently and automati-
cally performed.

We present here a new server, kinDOCK, which has been
developed to speed up these processes. It combines structural
comparisons, immediate transfer of known ligands from the
template structure into the target structure, visualization of the
deduced protein–ligand complexes and evaluation of protein–
ligand interactions. Using this server, the quality of a modelled
structure (especially the active site or the ligand binding sites)
as well as the conformation of a protein (active/open con-
formation, inactive/closed conformation) can be rapidly and
precisely evaluated. It is also possible to identify protein tem-
plates in complex with a given ligand in order to restrain the
active site modelling and take into account potential ligand
induced-fit. Generic ligands or putative inhibitors can also be
searched in our focused library prior to in vitro assays.
Because protein kinases are important therapeutic targets,
this server has been dedicated to the study of this class of
enzymes (8,9). Several examples described herein, illustrate
the various uses of kinDOCK in the new field of comparative
docking.

METHODS

First, a set of protein kinase structures solved in complex with a
ligand (e.g. ATP, inhibitors) was manually gathered from the
Protein Data Bank (PDB) (http://www.rcsb.org/pdb); (10) and
organized in a hierarchical database. A multiple-sequence
alignment of these kinases based on the Hanks alignment
(11) was manually refined using the alignment editor ViTO
(12). A hiddenMarkov model (HMM) profile was then derived
from this alignment. This profile can now be used to search
automatically the PDB for protein kinase complexes to update
our library. The bound protein kinase ligands were extracted
and rewritten in mol2 format using the program PRODRG
(http://davapc1.bioch.dundee.ac.uk/programs/prodrg/); (13).

The kinDOCK server needs, as an input data, either a coord-
inate file in PDB format or the four-letter PDB code of
the target structure. The sequence of the protein kinase struc-
ture submitted to the server is aligned to the kinase profile
using the program suite HMMER (http://hmmer.wustl.edu).
Then, the target structure is superposed on each of the protein
kinase complexes of our library according to the alignment.
The superposition is based on a subset of Ca carbons defining
the common binding site. The latter is composed of any
aligned amino acid that possesses an atom at less than
6 s from the ligand in the experimental complex. Then the
ligands are transferred into the target binding site. The binding
affinities of the new theoretical complexes are evaluated using
the program SCORE (14). The affinity score (pK) predicted by
SCORE (14) is �log(IC50) so the higher the score, the stron-
ger the predicted affinity. Beside the predicted affinity scores,
the sequence identity and the root mean square deviation
(RMSD) of the active site superposition are displayed.
Ranking the complexes according to these values or according
to the ligand or structure PDB codes is also possible. The

resulting complexes can be visualized directly using a java
applet, Jmol (http://jmol.sourceforge.net, see Figure 1). Dis-
tances and angles can also be computed and visualized in the
Jmol applet. The coordinates of the new complexes can be
downloaded in PDB format for further analysis as well as the
re-oriented ligands in MOL2 format for further analysis and
virtual screening.

Features and case studies

KinDOCK allows a rapid and straightforward building of
complexes using a three-dimensional structure (which may
be experimental or theoretical) of a given protein kinase
and a specialized library of protein kinase complexes. This
structural library contains 310 crystal structures of protein
kinase–ligand complexes representing currently 52 different
protein kinases and 196 different ligands despite some redun-
dancies for several compounds, such as ATP and its analogs
and staurosporine. Automatic updates will be set up to follow
the increasing number of complex structures solved.

KinDOCK performs the four following tasks: (i) the align-
ment of the sequence of the submitted protein kinase onto the
family profile, (ii) the superposition of its three-dimensional
structure on the protein kinase–ligands structures (according to
the alignment), (iii) the extraction of the ligand from each
complex and its transfer into the active site of the submitted
structure and then (iv) the evaluation of the protein–ligand
interactions. Herein, we called this approach ‘comparative
docking’ by analogy with comparative modelling of protein
structure. Currently, one comparative docking on the protein
kinase family lasts a few minutes.

The orientation of a given ligand has been shown to be
conserved among various protein kinases, especially for lig-
ands containing at least three cycles (4). Thanks to protein–
protein superposition, kinDOCK brings each ligand into the
target active site with an orientation similar to the one found in
the original ligand-kinase crystal structure. The deduced bind-
ing mode was expected to be more correct than one deduced by
classical docking (15). Visual surveys suggested that the lig-
and orientation in the complexes deduced by kinDOCK clo-
sely resembles the experimental one. Figure 2 illustrates the
case of staurosporine docked into PDB1STC from the 15 other
complexes of a protein kinase with this generic inhibitor.
Thanks to the redundancy of the complex library, an extensive
evaluation of the quality of the molecule orientation predicted
by kinDOCK was performed. For any compound found in at
least two structures, the RMSD between the molecule posed by
kinDOCK and the one in the PDB structure was computed.
Most poses deduced by kinDOCK are within 2 s from the
experimental one (heavy atom RMSD; Figure 3) meaning that
they are correct according to the standard threshold used
in virtual screening. Furthermore, this appeared to be true
whatever the sequence identity shared by the proteins
(down to 20%).

The java viewer, Jmol, allows a rapid visualization of the
protein–ligand contacts and a rapid survey of strong steric
clashes and favourable interactions (salt bridge, ring
stacking,. . .; see Figure 1). Alternatively, kinDOCK may also
reveal an inaccurate modelling of the active site or a conforma-
tional rearrangement preventing the ligand binding.
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Selection of active site conformations

As the set of complexes includes ATP-bound structures (and
also ATP analog complexes) and other known binders
(e.g. staurosporine, a generic inhibitor of protein kinases), the
structure of the ATP binding site of a protein kinase can be
probed. Indeed, kinDOCK can discriminate active and inactive
forms of the same protein kinase. This was particularly evident
for the crystal structures of the protein kinase PKB. KinDOCK
wasusedtoplaceATPintothecrystalstructuresofPKB,either in
its active conformation (PDB1O6L) or in its inactive conforma-
tion (PDB1GZN). Protein–ligand interactions were evaluated
using the scoring function SCORE (see Table 1). The best

predicted affinity of the active form of PKB for ATP was
nanomolar (pK¼9.5)while thepKwasnegative for the inactive
form. This prediction was refined by the evaluation of all the 24
PKB–ATP complexes that kinDOCK can possibly build (from
all knownprotein kinase–ATPcomplexes). Themeanpredicted
affinity of those computed PKB–ATP complexes are micromo-
lar (pK� 7.1). On the contrary, the scores for the inactive form
are all negative (mean pK��9.1), suggesting that ATP cannot
fit into this conformation.

In some protein kinases, the activation loop can adopt
the so-called ‘DFG-out’ conformation and this structural
rearrangement prevents the binding of most ligands, especially
ATP and ATP-competitive inhibitors. This conformation can
be stabilized by particular compounds binding deeply inside
the protein core. The server kinDOCK can rapidly highlight
such rearrangements and their implications in the ligand
entrance. This is exemplified with the three distinct confor-
mations of the protein kinase c-Kit. The latter has been
co-crystallized with ATP, PP1 an ATP-competitive inhibitor
(16) and STI-571 (also named imatinib mesylate or Gleevec) a

Figure 1. Example of kinDOCKoutput. The cAMP-dependent protein kinase (PDB1STC) has been submitted to kinDOCK. The results were sorted by ligand name
to highlight the scores and a binding mode obtained for staurosporine.

Figure 2. Example of superposition by kinDOCK. All stauroporines—protein
kinase complexes present in the PDB (16 in the current database; listed in
Figure 1) were used to transfer the common ligand into the cAMP-dependent
protein kinase (PDB1STC). The active site of cAMP-dependent protein kinase
is drawn as a black ribbon. The experimental orientation of staurosporine
(PDB1STC) is in blackwireframewhile the staurosporines dockedby similarity
are in grey wireframe.

Figure 3. RMSD between the ligand poses as deduced by kinDOCK and the
ligand in the template PDB structure.
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ligand inducing a ‘DFG-out’ conformation. The corresponding
structures have been submitted to kinDOCK and the affinity
for the three different ligands was predicted (see results for
human c-Kit in Table 2 and at http://abcis.cbs.cnrs.fr/
LIGBASE_SERV_WEB/PHP/kindock_ex2.php). The pre-
dicted affinity of the active form of this protein (PDB1PKG)
for ATP and PP1 is nanomolar while that for STI-571 is
negative. The opposite situation is observed for the structure
of c-Kit co-crystallized with STI-571 (PDB1T46) which
adopts a ‘DFG-out’ conformation. A third structure of the
c-Kit kinase which corresponds to an emtpy and inactive
form does not bind to any of these ligands according to
kinDOCK. This suggests that no unique structure can repre-
sent a protein kinase and that several conformations have to be
determined or modelled.

Poor scoring for a given type of ligand can also reveal
incorrectly modelled side-chains or loops. This might allow
the selection of optimal models prior to extensive VS in order
to improve its hit rate (8). In order to evaluate the capabilities
of kinDOCK to select the best model among a set of models for
a given protein kinase, we use the example of the well-
characterized CDK4 which has been, so far, recalcitrant to
crystallization (17). A comparative docking was performed
on the protein kinase CDK4 whose three-dimensional struc-
ture was modelled using various templates and the modelling
server @TOME (http://abcis.cbs.cnrs.fr/atome/) in a fully
automatic manner (see results at http://abcis.cbs.cnrs.fr/
LIGBASE_SERV_WEB/PHP/kindock_ex.php). KinDOCK
was used to discriminate three distinct models built from
two closely related templates: CDK2 and CDK6. CDK6
and CDK2 are roughly 60 and 40% identical to CDK4. How-
ever, only CDK2 crystallized in an active form (in presence of
ATP and cyclin A; PDB1QMZ) while both CDK2 and CDK6
can be observed in an inactive form (PDB1HCL and
PDB1BLX, respectively). Models deduced from inactive
forms failed to accommodate most ligands while the model
built from the active CDK2 structure nicely accommodates
ATP. To evaluate further the quality of these three models, we
took advantage of the knowledge of two crystal structures of a
mutated CDK2 with two known CDK4-specific inhibitors
(17). The best model also provides us predicted affinities
for these inhibitors (mean pK of �5.2, with the best model

versus �1.3 and �1.6 with those from the two inactive forms)
in agreement with the experimental ones (sub-micromolar
range). The evaluation, by kinDOCK, of the crystal structures
of the mutated CDK2 with these two inhibitors (PDB1GII and
PDB1GIJ) provided similar values (predicted pK for their own
ligand of �5.6 and 6.3, respectively). This result suggested
that kinDOCK can correctly evaluate the active site conforma-
tion of molecular models while providing relatively accurate
poses (see above) as well as relatively good estimates of
protein–ligand interactions.

Focused screening

As illustrated above, kinDOCK allows a rapid screening of a
small library of chemical compounds. Despite the partial loss
of chemical diversity, the proposed approach focuses on privi-
leged pharmacophores. The second advantage comes from the
accuracy of the poses (see above) that allows for a better
evaluation of protein–ligand interactions. This suggests that
good starting hits can be detected using kinDOCK.

Alternatively, the specificity of a given inhibitor for a set of
protein kinases can be evaluated by submitting each structure
to kinDOCK. This might reveal potential side effects of the
studied inhibitors (15,18). The question has also been recently
addressed by experimental means for several protein kinase
inhibitors (19). In the case of the pyrido[2,3-d]pyrimidine
derivatives, affinity assays on the molecule PP58, closely
related to the ligands PD166326 and PD173955 in our library
(Figure 4), allowed us to evaluate the performance of
kinDOCK. A good correlation between observed and
predicted affinities was observed for a set of six distinct protein
kinases (see Table 3). This result is in agreement with a
specific amino-acid substitution (methionine versus threonine
at the gatekeeper position) that distinguishes the two protein
kinases subsets, with micromolar (pK score �6) versus
nanomolar (pK score �9) affinities for the PP58 molecule.
Similar correlations were observed with another set of protein
kinases and two imidazol derivatives (data not shown). On the
contrary, in the case of hymenialdisine, a correlation could not
be found using kinDOCK, and no sequence variation in the
active site was detected. Similar results have been described
recently by others (15). Additional analyses will be necessary
to explain the distinct binding affinities for this very rigid
inhibitor. Similarly, some other parameters influencing bind-
ing energies cannot be evaluated directly by our approach (e.g.
ligand flexibility, water displacement, metal binding,. . .).

Conclusions and perspectives

Using kinDOCK, potential inhibitors can be rapidly identified
for a given protein kinase. This approach may also rapidly
reveal potential chemical substitutions to better fit the studied
active site. This information can be used to filter the chemical
libraries for virtual screening. The results presented herein, are

Table 1. Discrimination of active/inactive forms by kinDOCK

Best binder ATP analog

PKB active form (PDB1O6L) 9.5 9.5
PKB inactive form (PDB1GZN) 3.5 �3.2

The predicted affinity scores are given as�log(IC50) for the best ranked ligand
as well as the best ATP analog.

Table 2. Discrimination of distinct conformations of the c-Kit protein kinase

by kinDOCK

Best binder ATP analog STI-571 PP1

c-Kit active form (PDB1PKG) 10.6 8.7 �6.8 8.0
c-Kit inactive form (PDB1T45) 4.9 �9.0 1.1 2.4
c-Kit bound to STI-571 (PDB1T46) 9.3 �3.8 8.9 9.1

Thepredictedaffinity score of the bestATPanalog, STI-571andPP1are shown.
The affinity score deduced from experimental assays of c-Kit with STI-571 and
PP1 are respectively �7.0 and �7.2 (16).

Figure 4. Structures of the compound PD166326, PD173955 and their analog
PP58.
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promising, but more accurate affinity predictions could be
obtained from the combined use of several evaluation
programs.

As shown in the previous examples (described above), kin-
DOCK can discriminate active conformations from inactive
ones, and the server works equally well for theoretical models
and experimental structures. Using the server @TOME dedi-
cated to molecular modelling, different conformations of a
protein kinase can be automatically built and evaluated at a
global and structural level. Then, the ATP-binding site of the
various models can be evaluated at a local and functional level
using kinDOCK. This approach might provide distinct con-
formations according to the template used (e.g. using related
structures crystallized in ‘DFG-in’ or ‘DFG-out’ conforma-
tions). An alternative means for creating such variability in the
active site structure was recently proposed and shown to
improve VS results (20). In that work the diversity in the active
site conformations is obtained by molecular dynamic simula-
tions. In contrast, in the present work we use @TOME to
model several conformations of the same active site in
order to take into account the protein flexibility and a potential
ligand-induced fit. We believe that our approach is much faster
and will predict conformations more likely to be accessible, as
they are already observed in related structures. The server
kinDOCK will be connected with the modelling server
@TOME in order to provide a complete and fully automatic
pipeline for molecular modelling and focused screening based
on protein structure similarity.
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