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ABSTRACT

We present a new version of Babelomics, a com-
plete suite of web tools for functional analysis of
genome-scale experiments, with new and improved
tools. New functionally relevant terms have been
included such as CisRed motifs or bioentities
obtained by text-mining procedures. An improved
indexing has considerably speeded up several of
the modules. An improved version of the FatiScan
method for studying the coordinate behaviour of
groups of functionally related genes is presented,
along with a similar tool, the Gene Set Enrichment
Analysis. Babelomics is now more oriented to test
systems biology inspired hypotheses. Babelomics
can be found at http://www.babelomics.org.

INTRODUCTION

Genes do not operate alone in the cell, but in a sophisticated
network of interactions that we only recently start to envisage
(1–3). It is a long recognized fact that co-expressing genes tend
to be playing some common roles in the cell (4,5) and recently
there are evidences that functionally related genes map close
in the genome, even in higher eukaryotes (6,7). Complex traits,
including diseases are starting to be considered from a systems
biology perspective (8). Because of this, there is a clear neces-
sity for methods and tools which can help to understand
genome-scale experiments (microarrays, proteomics and the
like) from a systems biology perspective. The proper inter-
pretation of the experiments require functional annotation, but
this annotation must be done in a systems biology context, in
which the collective properties of groups of genes are taken

into account. With the popularisation of DNA microarray
technologies a number of methods arise to compare the enrich-
ment in functional terms shown in groups of genes defined in
the experiments. Programs such as ontoexpress (9) or FatiGO
(10) are representatives of a family of methods designed for
this purpose (11). A problem related to the management of
genome-scale data followed by the inspection of thousands of
functional terms is that a large number of associations will
appear simply by chance (12,13). The multiple testing problem
(14) was addressed for the first time by FatiGO (10) although
now is a standard among these type of tools (11).

The extensive availability of functional annotations of a
reasonable quality, specially facilitated by the universal adop-
tion of the Gene Ontology (GO) (15) controlled vocabulary
and other related initiatives such as KEGG (16), Interpro (17)
and the like has improved enormously the accuracy of the
above mentioned procedures of functional annotation. But
beyond this, the extensive annotation permits to take concep-
tually different approaches to the analysis of genome-scale
experiments more based on systems biology criteria. Thus,
instead first selecting important genes (according to some
criteria such as differential expression and the like) and
then analysing them in terms of their biological roles, some
authors proposed to directly analyse the behaviour of blocks of
functionally related genes. The Gene Set Enrichment Analysis
(GSEA) (18,19), the FatiScan (13) or the global test (20)
constitute examples of this type of approach.

Suites such as Babelomics (21) or onto-tools (22), which
gathers in an integrated environment different possibilities for
functional annotation, will be more and more demanded in
the future as the necessity of a more detailed interpretation of
genome-scale experiments becomes more obvious.

Babelomics, named after the tale ‘The Babel library’ (23),
a masterpiece by the famous Argentinean writer Jorge Luı́s
Borges, has been running for more than one year and
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individual parts of it, such as the FatiGO tool (10), have been
running for >3 years.

BIOLOGICAL INFORMATION USED FOR
FUNCTIONAL ANNOTATION

Curated repositories

Different repositories of functionally relevant biological
information are available and can be used for the functional
annotation of genome-scale experiments. In this new release of
Babelomics we have collected information from different
repositories for several model organisms (Homo sapiens,
Mus musculus, Rattus norvegicus, Drosophila melanogaster,
Caenorhabditis elegans, Saccharomyces cerevisiae and Ara-
bidopsis thaliana), which has been cross-referenced using
Ensembl (24) identifiers. The repositories used are as follows:

(i) GO is, probably, the most successful among the initia-
tives for the standardization of the nomenclature of
biological processes, molecular functions and sub-
cellular location, its three main ontologies (15). GO
represents the biological knowledge as a tree (more
precisely as a directed acyclic graph, DAG, in which
a node can have more that one parent). Upper nodes
represent more general concepts and as the DAG is
traversed towards deeper levels, the definitions are
more and more precise (e.g. cell cycle > regulation
of cell cycle > positive regulation of cell cycle and
so on) Since genes are annotated at different levels
it is common to use the inclusive analysis (11,25)
instead of using directly the annotation of the genes
at the deepest level possible. In the inclusive analysis a
level of abstraction is chosen and genes annotated at
deeper levels are assigned to this level. This increments
the efficiency of the test because there are less terms to
test and more genes per term, but the selection of
the level is arbitrary. We have implemented here the
Nested Inclusive Analysis (NIA), in which the test is
done recursively until the deepest level in which sig-
nificance is obtained and only this last level is reported.
In this way both variables: efficiency of the test and
highest precision in the term found are optimized.

(ii) InterPro (17) is a database of protein families, domains
and functional sites in which identifiable features
(motifs) found in known proteins can be applied to
guess about the possible functionality of unknown
protein sequences.

(iii) The SwissProt (26) database contains for each entry a
field called keywords which contain a controlled voca-
bulary of words, many of them (although not all) with
functional meaning.

(iv) KEGG pathways (16) is a collection of manually drawn
pathway maps representing our knowledge on the
molecular interaction and reaction networks for Meta-
bolism, Genetic Information Processing, Environmental
Information Processing, Cellular Processes and Human
Diseases (http://www.genome.jp/kegg/kegg2.html).

(v) Transcription factor (TF)-binding sites predicted using
Transfac�. TFs are assigned to genes if the correspond-
ing predicted TF-binding site (TFBS) for that TF if

found in the 10 kb 50 region of the gene. Search is
carried out by the Match program (27), using only high
quality matrices and with a cut-off to minimize false
positives, from the Transfac database (28). TFBSs are
only available for human and mouse.

(vi) CisRed (29) is a database for conserved regulatory
elements predicted in promoter regions using multiple
discovery methods applied to sequence sets that include
corresponding sequence regions from vertebrates. Motif
significance is estimated by comparison to randomized
sequence sets that are adaptively derived from target
sequence sets. In theory, all the Transfac� predictions
should be a subset of these regulatory elements, but in
practice the overlap is not complete. For this reason
we still keep the Transfac� predictions. In addition,
CisRed tables are only available for humans.

(vii) Gene expression in tissues: Two repositories containing
information of gene expression in different tissues have
been used:

(a) SAGE Tag libraries from the Cancer Genome
Anatomy Project. A total of 279 human libraries
that belong to 29 different tissues and 190 mouse
libraries from 26 tissues have been used. The data
were taken from http://cgap.nci.nih.gov/SAGE.

(b) Genomics Institute of the Novartis Foundation data.
A total of 79 human tissues and 61 mouse tissues with
normal histology were downloaded from http://
wombat.gnf.org/index.html and used here.

Generation of annotations from the biomedical
literature

The curated repositories above mentioned contain valuable
information but a large amount of biomedical knowledge is
still communicated in the old fashioned way of research pub-
lications. This information can only be extracted from the text
with text-mining methods. Modern text-mining technology
is still far away from ‘understanding’ human language (30)
but some important advances have been made to extract
some factual information with sufficient reliability from the
scientific literature to be useful.

For the analysis of the biomedical literature precise identi-
fication of key entities of interest, such as genes, proteins,
chemical compounds and disease names is crucial to index
and retrieve relevant documents. As the biomedical language
and vocabulary is of great complexity and changes constantly
the identification of entities, commonly known as named entity
recognition, is a cumbersome task.

For the detection of genes, proteins and diseases a combina-
tion of dictionaries (e.g. EntrezGene or UniProt for genes and
proteins and UMLS for diseases), heuristics based on hand
crafted rules and statistical measures are used. Chemical com-
pounds are extracted based on morphological criteria (using
knowledge about chemical nomenclature) and dictionaries of
common names for chemicals.

Here, relationships between different biomedical entities
that are calculated based on co-occurrences in sentences
(a co-occurrence is when two entities appear in the same
sentence) were used. The calculation is based on how unlikely
it is to observe a certain level of co-occurrences to happen
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by chance (31). The more unlikely the observed event, the
stronger the relation between the entities is valued by the
system. Using this approximation, gene association networks
can be created, not specifying the precise relationships
between the genes but organizing the literature in a way
that makes exploration a lot easier.

The data used here were taken from the almaKnowledge-
Server (http://aks.bioalma.com).

ENSEMBL INDEX

In order to maintain this huge system of gene annotations an
universal index has been adopted. A total of 179 tables of
different biological annotations and gene identifiers for
seven organisms have been linked to their Ensembl IDs.
Although the use of an universal cross-reference has many
advantages this is not free of problems. Any gene not
annotated in Ensembl will be lost in the analysis. This, obvi-
ously will affect to a very small amount of genes and should
not affect to any general functional conclusion obtained by
analysing a large and significant number of genes.

STRATEGIES FOR ANNOTATION OF
GENOME-SCALE EXPERIMENTS

Typical genome-scale experiments are annotated in two
steps. Firstly, genes of interest are selected (because they
co-express in a cluster or they are significantly over- or
under-expressed when two classes of experiments are com-
pared and so on) and then the enrichment of any type of
biologically relevant label in these genes is compared with
the corresponding distribution of the label in the background
(typically the rest of genes). There are different available
tools, such as FatiGO (10) and others (11), that use GO
terms (15) or different functional labels, such as KEGG path-
ways, SwissProt keywords and the like, available in packages
such as the Babelomics suite (21). From a systems biology
perspective, this way of annotating the experiments is far
from being efficient. This has led several groups to propose
a different approach based on directly selecting blocks
of functionally related genes (13,19,20). The rationale of
these new approaches relies on the fact that the final aim
in a typical genome-scale experiment is finding a molecular
explanation for a given macroscopic observation (e.g. which
pathways are affected by the deprivation of glucose in a cell).
In the two-steps approach described previously, genes with
different behaviour are firstly selected, usually ignoring the
fact that these genes are acting cooperatively in the cell and
consequently their behaviours must be coupled to some
extent. To achieve this, very stringent thresholds to reduce
the false positives ratio in the results are usually imposed.
Then, the lists so obtained are compared with the background
as described above. This procedure causes a tremendous loss
of information because a large number of false negatives are
sacrificed in order to preserve a low ratio of false positives,
and the nosier the data are, the worse this effect is. Systems
biology oriented methods can use lists of genes arranged
by any biological criteria (e.g. differential expression when
comparing cases and healthy controls) and search for the
distribution of blocks of functionally related genes across

it. If a particular function is defining the arrangement it
will cumulate towards the extremes of the arrangement.
A nice example is the study of differential gene expression
between diabetics cases and normal controls, where no one
single gene was found to be differentially expressed (because
of the noise of the system), but pathways such as oxidative
phosphorilation were found to be significantly repressed in
the diabetic cases (13,18).

GENE-BY-GENE SELECTION FOLLOWED BY
FUNCTIONAL ANNOTATION

Babelomics implements different procedures for the func-
tional annotation of sets of pre-selected of genes, based on
any experimental measure. Since GEPAS (32–34) is connec-
ted to Babelomics it is straightforward to analyse relevant
genes, which have been selected by differential expression,
or because they are part of a class predictor, or they co-express
in clusters and so on. As mentioned above, different biological
labels have been used for testing functional enrichment
when comparing the distribution of such labels between
gene datasets of interest and their corresponding references
or backgrounds. The following tools are available:

� FatiGO+. This tool constitutes the evolution of FatiGO
(10). In addition to GO terms it can test simultaneously
for KEGG pathways, Interpro motifs, SwissProt keywords,
TFBSs and CisRed motifs. The distribution of any combi-
nation (or all) of the terms between two groups of genes can
be simultaneously tested by means of a Fisher exact test.
All the P-values are adjusted by FDR. It can also be used to
test genes defined by chromosomal positions (thus integrat-
ing the functionality of the old GenomeGO module (34)
which has now been discontinued). The functionality of the
old modules FatiWise and TransFat (34) have been com-
pletely included here and, consequently both modules have
been discontinued. For the case of GO terms, the NIA has
been implemented. So, GO terms are automatically tested
from level 3 to depth 9 and only the deepest significant term
is reported for each branch.

� FatiGO. This tool has been in use for more than three years
and has been described elsewhere (10,21,25). Owing to its
popularity still remain as an independent module although
much of its functionality is integrated in FatiGO+. FatiGO
implements NIA too.

� Tissues Mining Tool (TMT). This tool compares the pre-
tabulated expression values of two lists of genes in a set of
tissues (see above) and report the tisues in which the
differences in expression of the genes of both lists are
more extreme by using a t-test. The resultant P-values
are adjusted by FDR. For details see (21).

� MARMITE (My Accurate Resource for Mining TExts). This
is the equivalent to FatiGO+ using as biological informa-
tion precomputed gene-bioentity co-occurrences obtained
using the text-mining software almaKnowledgeServer
(see above). MARMITE reports significant differences in
the distribution of the scores gene-bioentity between the
two lists compared using for this a Kolmogorov–Smirnov
test. The module uses data of co-occurrences among human
gene names (HUGO ids) and three bioentity categories:
disease-associated words, chemical products and word
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roots. As in the rest of tests of the modules of Babelomics,
P-values are adjusted by FDR.

DIRECT ANNOTATION OF BLOCKS OF
FUNCTIONALLY RELATED GENES

Babelomics implements two methods for functional annota-
tion of genome-scale experiments which are based on the
study of the behaviour of blocks of genes: FatiScan (13)
and GSEA (19).

� GSEA test the coordinated over- or under-expression of sets
of genes using a Kolmogorov–Smirnov test over a weighted
summation. This allows to detect asymmetrical distribu-
tions of sets of genes (defined because they share some
functional property) cumulated in the highest or lowest
values of an arrangement of genes according its differential
expression when two experimental conditions are compared
(18,19). Significance is obtained by means of the permuta-
tion of the dataset of gene expression values. In the imple-
mentation presented here, more biological terms than in the
original distribution (http://www.broad.mit.edu/gsea/index.
html) can be used (GO, KEGG pathways, SwissProt key-
words, Interpro motifs can be tested for seven organisms—
see above—while TFBSs and CisRed motifs can be tested
only for human).

� FatiScan implements a segmentation test which checks for
asymmetrical distributions of biological labels associated
to genes ranked in a list (13,21). Unique in this type of
approaches, this test only needs the list of ordered genes
and not the original data which generated the sorting. This
means that can be applied to the study of the relationship of
biological labels to any type of experiment whose outcome
is an sorted list of genes. Since Babelomics is linked to
GEPAS, genes sorted by differential expression between
two experimental conditions can be studied, but also
genes correlated to a clinical variable (such as the level
of a metabolite) or even to survival (33,34). Moreover,
other lists of genes ranked by any other experimental or
theoretical criteria can be studied (e.g. genes arranged by
physico-chemical properties, mutability, structural para-
meters and so on) in order to understand whether there
is some biological feature (among the labels used) which
is related to the experimental parameter studied.

CONCLUSIONS

Obtaining, for example, a list of genes differentially expressed
between two experimental conditions is only half the way
to the proper interpretation of a genome-scale experiment.
The functional annotation of these genes is a key step that
many times is not performed just because the lack of the
appropriate tool. Babelomics can be considered one of
the largest and most complete resources for the functional
annotation of genome-scale experiments. It contains tools
unique in its functionality. Moreover, the tight connection
of Babelomics to the GEPAS package (32–34) makes of it
an invaluable resource for the analysis of microarray data.

An effort for innovating the tools and the subjacent
philosophy of the package, with the aim of providing the

possibility of addressing the problem of the annotation
from a systems biology perspective, has been made. Thus,
a new tool that makes use of annotations extracted from
Pubmed abstracts by means of text-mining procedures
(the MARMITE) has been included. Moreover, in addition
to modules for functional annotation of pre-selected sets of
genes, such as FatiGO+, MARMITE or TMT, Babelomics
includes a completely renewed version of FatiScan and
the GSEA. These last modules allows finding blocks of
functionally related genes with a coordinated behaviour in a
genome-scale experiment.
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