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ABSTRACT

Identification ofMHC-binding peptides is a prerequis-
ite in rational design of T-cell based peptide vaccines.
During the past decade a number of computational
approaches have been introduced for the prediction
of MHC-binding peptides, efficiently reducing the
number of candidate binders that need to be experi-
mentally verified. Here the SVMHC server for predic-
tion of both MHC class I and class II binding peptides
is presented. SVMHC offers fast analysis of a wide
rangeofallelesandprediction resultsaregiven insev-
eral comprehensive formats. The server can be used
to find the most likely binders in a protein sequence
and to investigate the effects of single nucleotide
polymorphisms in terms of MHC-peptide binding.
The SVMHC server is accessible at http://www-bs.
informatik.uni-tuebingen.de/SVMHC/.

INTRODUCTION

The immune system provides an effective line of defense
against invading pathogens and cancer. The adaptive part of
the immune system, which is responsible for specific recogni-
tion of antigen and immunological memory, is highly
dependent on the activation of T-cells. T-cells only recognize
antigenic peptides bound to major histocompatibility (MHC)
molecules on the surface of other cells. This makes
MHC-peptide binding a prerequisite for T-cell activation.
There are two major classes of MHC molecules. MHC
class I molecules typically bind peptides that are 9 amino
acids long and originate from intracellular proteins. Intracel-
lular proteins are continuously degraded into smaller peptides
that are displayed on the cells surface by MHC molecules,
giving a kind of fingerprint of the cellular proteome. This
mechanism ensures that virally infected cells or cancer cells
can be detected, since virus or cancer-specific MHC-peptide
complexes are displayed on the cell surface. Cytotoxic
T-cells (CD8+) of the immune system can recognize such

abnormal cells and eliminate them. MHC class II molecules,
on the other hand, bind peptides originating from extracellu-
lar antigens. These peptides are usually longer compared with
MHC class I peptides (15–25 amino acids), however the main
part of the MHC-peptide interactions is given by a binding
core of 9 amino acids. MHC class II molecules are mainly
presented on antigen presenting cells (APCs) and activate
helper T-cells (CD4+). In recent years, MHC-binding pep-
tides have proven useful for immunotherapeutic purposes
in studies concerning both different cancer types (1,2) and
HIV infection (3). The aim of these approaches is to use
antigen-specific peptides in order to activate the immune
system. The first step here is to find a set of MHC-binding
peptides given an antigen of interest. One challenge here
is the extreme variability of the MHC molecules with
many hundred allelic variants. However, typically only one
in 100–200 potential peptides actually binds to a certain
MHC allele (4). This has motivated computational
approaches for modeling MHC allele-specific peptide prefer-
ences. Such methods can reduce the number of peptides that
have to be verified experimentally.

The first prediction methods utilized simple sequence motif
searches for identifying potential MHC class I binding pep-
tides (5,6). These methods have since been refined into
position-specific scoring matrix (PSSM) approaches (7–13).
One drawback of these methods is that they assume an inde-
pendent contribution of each amino acid in the peptides to the
overall binding affinity, neglecting the effects of neighbour-
ing residues. An obvious case where this might be a problem,
is when two compete for the same space in a binding pocket.
Several machine learning methods have been introduced that
aim to model the MHC-peptide interaction in a non-linear
fashion (14–18), potentially overcoming the limitation of
PSSM-based methods. The above mentioned methods are
all sequence-based, but a number of structure-based methods
have also been presented (19–22).

Prediction of MHC class II peptides is more challenging,
owing to the additional alignment needed to identify the bind-
ing core within the longer peptides. Once the sequences have
been correctly aligned, the computational problem is very
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similar to that of the class I case. Methods for MHC class II
prediction include genetic algorithms coupled with neural
networks (23) and Gibbs sampling (24), as well as the con-
struction of PSSMs using virtual binding pockets (25). The
predicted MHC class II binding cores are often extended at
both ends to obtain an effective T-cell epitope.

Here, the SVMHC server for prediction of MHC class I
and class II binding peptides is presented. In contrast to
most other prediction servers, SVMHC offers several com-
prehensive results formats, easy access to data from protein
databases and refinement of initial predictions. Furthermore,
SVMHC enables analysis of the effects of single nucleotide
polymorphisms (SNPs) in terms of MHC-peptide binding.
A number of new prediction models for human and mouse
MHC class I molecules have been added. Furthermore,
MHC class II prediction can be done utilizing the matrices
published by Sturniolo et al. (25).

THE SVMHC PREDICTION SERVER

Prediction models

A support vector machine (SVM) approach is used for the
prediction of MHC class I binding peptides. This approach
has been described in detail in a previous publication (17)
and is only briefly outlined here. MHC-binding peptides of
different lengths were extracted from the MHCPEP (26)
and SYFPEITHI (8) databases. The main difference between
these two data sources is that MHCPEP contains both natur-
ally processed and synthetic peptides, whereas SYFPEITHI
exclusively contains naturally processed peptides. In order
to construct the prediction models, each peptide was repres-
ented using binary sparse encoding. Different kernels and a
grid search strategy were then employed to find optimal
SVM parameters. Approximately 20 known binders are
needed in order to construct prediction models with sign-
ificant accuracy. For most alleles prediction models could
only be generated for peptides with a length of nine amino
acids due to the amount of data available. However, in some

cases prediction models were also constructed for peptides
with a length of eight or ten amino acids. In comparative
studies against the prediction methods BIMAS (9) and
SYFPEITHI (8), SVMHC showed improved performance
for most MHC alleles (17). Prediction models are now
available for 26 different human MHC alleles based on
data from MHCPEP. Prediction models based on data from
SYFPEITHI are available for 19 human and 5 murine
MHC alleles.

Prediction of MHC class II binding peptides is based on
the matrices published by Sturniolo et al. (25). By sequence
similarity studies, they defined modular pockets in the
MHC molecule involved in peptide interaction. These pock-
ets are independent of the rest of the binding cleft and a
limited number of pockets can be combined into virtual
binding matrices for a wide range of MHC class II alleles.
These matrices are also a part of the TEPITOPE prediction
software and they have been used to identify candidate
binding peptides for both HIV (3) and Tuberculosis (27)
vaccines. Prediction is available for 51 different MHC class II
alleles.

Whole protein prediction

The input required for analysis by SVMHC is a protein
sequence and a specification of one or more MHC alleles.
The protein sequence can either be directly pasted into the
web interface or accessed directly by entering a database
ID from the NCBI RefSeq (28) or Swiss-Prot (29) databases.
Prediction is carried out for all possible peptides of the pro-
tein using a sliding window. Several different output formats
are given in order to facilitate further analysis. The default
output format is a list of putative binders, where the best bin-
der is found at the top. A summary table is also generated for
all peptides of a certain length. The summary table shows the
results ordered according to peptide start position in the pro-
tein (see Figure 1 for an example).

Binders are highlighted, which enables fast identification
of peptides likely to bind several MHC alleles, so called
promiscuous epitopes. These are especially interesting for

Figure 1. A summary table produced by SVMHC showing peptide start position, sequence and allele-specific score. PredictedMHC binders are highlighted in red,
enabling fast identification of peptides binding to several different MHC alleles.
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vaccine design since they cover a wider range of the popula-
tion. A graphical overview is also given to further facilitate
the identification of promiscuous epitopes (see Figure 2).

The initial prediction results can then be further refined by
removing or adding alleles of interest. The complete predic-
tion results can also be downloaded in tab-separated format,
enabling further analysis in any spreadsheet-based program
(e.g. Microsoft Excel).

Analyzing the effects of SNPs

Several studies have pointed out the importance of SNPs
in terms of MHC-binding peptides (30–32). SVMHC allows
for the analysis of SNPs in terms of MHC-peptide binding.
For this analysis a protein sequence and a specified mutation
(e.g. A23P, meaning that alanine in position 23 of the protein
is changed to a proline) is required. All relevant peptides,
with and without the mutation, are then generated and pre-
dicted by SVMHC. The results are presented in a comparat-
ive manner, highlighting the effects of the amino acid
substitution. A good example for this type of analysis is the
well-known HLA-A*03-restricted epitope RLRPGGKKK
originating from the HIV matrix protein p17 (30,31). Studies
have identified polymorphisms within this peptide, where
the exchange of the lysine in position nine to a threonine,
cause viral escape (31) (meaning that the mutated peptides
are not recognized by the immune system). The whole p17
protein with the specified K27T mutation (corresponding to

the mutation in position nine of the peptide of interest) was
analyzed by SVMHC, see Figure 3.

The mutation substantially reduces the predicted MHC
affinity of the peptide. SNPs can also influence amino acids
of the peptide, which are less involved in MHC binding
and rather important for T-cell recognition. Binders and non-
binders are highlighted in green and red, respectively, in the
result table (if at least one peptides is predicted as a binder).
Furthermore, a blue highlighting is given if the difference
between two peptides is >0.5. The dynamic coloring makes
it easy to identify SNPs that are interesting for further
analysis.

CONCLUSION

We present an updated and extended version of the SVMHC
server for predicting MHC-binding epitopes. SVMHC com-
bines high prediction accuracy with a wide range of both,
MHC class I and MHC class II alleles. Compared with
other prediction tools, it also provides a number of different
output formats ranging from summary graphical views to
detailed comparison tables. All data can also be exported
for external analysis. Another singular feature of SVMHC
is the ability to analyze the effects of SNPs on MHC epitopes.
This type of analysis is interesting for viral epitopes (predic-
tion of immune escape) and the analysis of minor histocom-
patibility antigens (miHAgs). SVMHC is updated regularly

Figure 2. A graphical view of the predicted MHC-binding peptides. Predicted binding peptides are colored red, except for the first amino acid that is colored blue.
This view enables a fast scan, even of long proteins, in order to identify promiscuous epitopes and epitope-rich regions.

Figure 3. Prediction results for analyzing the effect of the K27Tmutation in the HIVmatrix protein p17. From these results it can be seen that the peptide binding is
substantially reduced, a possible explanation for immune escape. Predicted binders are highlighted green and if the difference in the predicted score between two
binders is <0.5, the score difference is highlighted blue.
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and as new MHC-binding data becomes available it will be
integrated into SVMHC. This ensures continual improvement
of both prediction accuracy and allele coverage.
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