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ABSTRACT

The web program GeMprospector (URL: http://
cgi-www.daimi.au.dk/cgi-chili/GeMprospector/main)
allows users to automatically design large sets of
cross-species genetic marker candidates targeting
either legumes or grasses. The user uploads a col-
lection of ESTs from one or more legume or grass
species, and they are compared with a database of
clusters of homologousEST andgenomic sequences
from other legumes or grasses, respectively. Multiple
sequence alignments between submitted ESTs and
their homologues in the appropriate database form
the basis of automated PCR primer design in
conserved exons such that each primer set amplifies
an intron. The only user input is a collection of ESTs,
not necessarily from more than one species, and
GeMprospector can boost the potential of such an
EST collection by combining it with a large database
to produce cross-species genetic marker candidates
for legumes or grasses.

INTRODUCTION

Comparative genetics allows the transfer of genetic informa-
tion from one species to another. In legumes (Fabaceae),
comparative genetics holds the promise to transfer information
from well-studied genetic models, such as Lotus japonicus
and Medicago truncatula, to some of the agriculturally very
important, but genetically understudied legumes among the
18 000 species in this family (e.g. peas, beans, lentils, soy-
beans, peanuts). The family of grasses (Poaceae, also known
as Gramineae) contains 10 000 species including rice, wheat,
barley, maize and forage grasses; it is the only family of plants

more important to humans than legumes. For grasses, the
primary source of genetic information is rice.

Genetic markers, DNA polymorphisms between genomes
of two mapping parents, are the work-horse of this information
transfer by synteny. In order to detect polymorphisms at loci
which can be placed at unique positions on the genetic maps of
several related species, a polymorphism identification strategy
which focuses on introns of highly conserved genes has been
proposed [e.g. by Lyons et al. (1)].

We have built an automated bioinformatics pipeline for the
identification of cross-species genetic marker candidates, as
defined by sets of primer pairs for PCR amplification of
introns, which we have used extensively to find family specific
marker candidates in the legume and grass families (2). This
paper presents a tool which lets the user compare his own
legume or grass EST sequence data with the two respective
databases built by our pipeline in order to find novel cross-
species genetic marker candidates.

GeMprospector users should cite this paper and
GeMprospector’s URL (http://cgi-www.daimi.au.dk/cgi-chili/
GeMprospector/main) in order to refer the program.

MATERIALS AND METHODS

The database holds gene indices (3), rice coding sequences and
Arabidopsis peptides (4) from The Institute of Genomic
Research, genomic Lotus sequences from The National Center
for Biotechnology Information (NCBI) and genomic
Medicago sequences from www.medicago.org. We use the
Blast program package from NCBI (5) for sequence compar-
isons with the cut-off E-value 10�7 for sequence homology.
PriFi (6), (http://nar.oxfordjournals.org/cgi/content/full/33/
suppl_2/w516) is used for primer design; Clustalw is used
to perform multiple alignments (with permission from the
European Bioinformatics Institute website: http://www.ebi.
ac.uk/clustalw/).
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RESULTS

The preprocessing underlying GeMprospector

GeMprospector aims at identifying regions of sequence con-
servation across several related species that include at least
one intron, and then design primers such that the segment
containing the intron is amplified (Figure 1). This maximizes
the chance that

� The primers work for most species in the clade, including
those for which no sequence information is available.

� The PCR product contains a polymorphism making the
locus a potential genetic marker.

For our grass application of the pipeline we use genomic
sequences from Oryza sativa (rice) and gene indices
from Oryza sativa, Sorghum bicolor and Hordeum vulgare
(barley). In the legume application, genomic sequences
from L.japonicus and M.truncatula are used, but since these
genomes are not completely sequenced yet, Arabidopsis
thaliana is also included as a reference species. Gene index
collections derive from L.japonicus, M.truncatula, Glycine
max, Phaseolus vulgaris and Arachis spp. The pipeline follows
steps i–iv listed below.

(i) Markers are maximally useful if they define a unique
genetic position. Since the currently available Lotus
and Medicago genome sequences are incomplete, we
cannot rule out that a given legume sequence has several
copies in these two plants. To get a copy number estimate
from a complete plant genome, legume gene indices are
compared with the Arabidopsis proteome, and predicted
single-copy gene indices from all species are indexed
according to their best Arabidopsis hit. For grasses,
all indices are blasted against the rice genome and
single-copy sequences are kept, indexed by their rice
homologue.

(ii) Relevant gene indices are compared against their gen-
omes in order to identify sequences with introns (Lotus
and Medicago in the legume application, rice in the grass
application). Gene indices are intron-tagged at the cor-
responding positions. For legumes, these sequences are
again indexed according to their best Arabidopsis hit.

(iii) Each group of homologous sequences (in case of the
legumes, sequences with the same Arabidopsis index)
is called a pot. This bisected multitude of pots is the

underlying database of GeMprospector; some are legume
pots, some are for grasses. Each pot contains one
sequence with inserted intron tags plus one or several
gene index sequences from the other species, all homo-
logous to the same Arabidopsis or rice sequence.

(iv) Finally, our specially designed software PriFi (6) is
batch-run on all pots, first creating multiple alignments
and then suggesting primers which fulfill the require-
ments in terms of conservation, intron length, melting
temperature, etc. Forcing the primers to span an intron
increases the chance of a polymorphic amplicon due
to the lower selection pressure on introns—and hence
increases the chance that the primers and amplicon
constitute a genetic marker.

The legume version of the pipeline is diagrammed
in Figure 2. Only some of the multiple sequence alignments
yield marker candidates (marked by circles in Figure 2). The
remaining alignments did not allow the design of valid primer
pairs. Given new sequence information, these ‘dormant’
alignments may well become ‘activated’ and yield further
marker candidates.

Here we present the tool GeMprospector. GeMprospector
acts against the backdrop of this preassembled database. The
user submits a set of ESTs (legume or grass) in Fasta format,
and these ESTs undergo the same analysis as each of the above
mentioned gene index collections, as shown in Figure 3. The
submitted ESTs are drawn in blue; they are compared with the
Arabidopsis proteome/rice genome, respectively, and non-
rejected sequences are merged with the appropriate database
sequences and subjected to PriFi. If the new sequences add
sufficient information to some of the ‘dormant’ alignments, for
example by raising the conservation score, valid primer pairs
can now be produced and hence new marker candidates are
found (marked by circles), each incorporating one of the
uploaded sequences and data from the underlying database.
Primers and associated information are reported to the user.
In other words, the GeMprospector tool allows new ESTs
from one species to drive the design of genetic markers for
many species.

The web interface

The main page of the GeMprospector website is very
simple. The user must upload a Fasta file of ESTs (or choose
the available demo file), click either the legume or grass
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Figure 1. Aligning an intron-containing genomic sequence with several homologous gene indices and designing primers in conserved regions.
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database, and start the analysis. There is also a link to the tool
documentation (‘About this tool’).

After submitting the sequences, the user is taken to a
new page which dynamically reports the current step of the
process, automatically reloading at suitably increasing
intervals depending on the job size. When the analysis is
complete, a summary tells the number of novel marker
candidates found and offers links to view and download the
results (Figure 4).

Viewing results

Clicking ‘View’ takes the user to a tabular view of the results
(Figure 6). The column headers of the table are ID of the
marker candidates, best Arabidopsis/rice homolog, forward
and reverse primers, PriFi score, and annotation of the
Arabidopsis/rice homologue. By clicking (some of) the head-
ers, the user can sort the table based on various criteria, e.g. the
PriFi score (expected quality) of the primer pair. In the results
table, the score serves as a link to a report with detailed

Figure 3. Running GeMprospector with new legume ESTs. Two dormant alignments give rise to new candidate markers because of the uploaded ESTs.

Figure 2. The legume version of the pipeline underlying GeMprospector. See text.
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information about the corresponding primers. The report may
hold up to three alternative primer suggestions. Below is an
example [for details on PriFi primer reports, see (6)]:

PriFi report. Suggested primers after

analysis of this file: /tmp/tmpGpcEm9.dir.

chili/GryderM/At3g52860.1

¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
Primer set 1 (296-331/461-489)

Fw 50-TGTGTTATGGCTTTGGARGCTGCTTTGCTTCCCTG
Rv 50-CTTTTGTTGGYTTATCCTCACGTTGCAG

Tm ¼ 69.9 / 64.9

Primer lengths: 35/28

Avg. #sequences in primer alignments: 3.0/3.0

Estimated product length: 1687

Primer/intron distances: 56 / 68

A/T’s among last 8 bp of 30-end: 3/3

Ambiguities: 1/1

Fw ambiguity positions: 18

Rv ambiguity positions: 11

99.2: High-Tm bonus

5.0: Fw primer length

1.5: Rv primer length

49.4:bonusfor#sequencesinprimeralignments

3.0: Fw has G/C terminal in 30-end
3.0: Rv has G/C terminal in 30-end

60.0: Good product length

�2.7: Primer/intron distance(s)

outside 70-150 bp

�22.0: 2 ambiguities

Score: 196

The ID string of each marker candidate serves as a link to a
display of the multiple sequence alignment underlying the

marker candidate, including the position of the suggested
primers and intron(s). The alignment is shown both as
multi-colored sequences of letters and gaps, as a multi-color
line sketch for quickly overviewing conserved regions
(highlighted in olive-green) and primer placements, and as
a ClustalW alignment (Figure 5).

The results can also be downloaded as a zipped file con-
taining the same information as the results table.

Running time

The running time of GeMprospector depends on the combined
length of the uploaded sequences, and on how many markers
are found. For the demonstration file containing five legume
sequences of 3 kilobases combined length, the complete
analysis takes �40 s. Running GeMprospector on our unpub-
lished collection of 1081 Arachis hypogaea EST clusters
(total 0.6 megabases, file size 641 KB) took 5 min against
the legume database. For the full set of 9484 P. vulgaris
gene indices (total 6.3 megabases, file size 7.2 MB) against
the legume database, the analysis was completed in 46 min.
Finally, we also compared a set of 7205 gene indices from
maize (total 5.5 megabases, file size 6.1 MB) against the grass
database which took 1 h and 19 min (see Table 1). Currently, to
limit the work load on our server for the benefit of other users,
there is a file size maximum of 10 MB.

DISCUSSION

GeMprospector is a specialized tool for the design of cross-
species marker candidates using user-submitted sequence data
originating either from the legume family or the grass family;
as the user data are merged with a database of groups of
intra-homologous sequences, submitted ESTs from only one
species can still produce cross-species marker candidates.
When mapped, such cross-species markers will allow informa-
tion transfer through syntenic relationships between important
crop- and model-plants.

Any new primer pair proposed by GeMprospector will
have a very high probability of amplifying an intron in the
species of the submitted sequences. The primer pair is also
likely to amplify introns of any other species within the clade
of sequence representation. Furthermore the primer pair will
be an educated guess in order to amplify introns in species
which are outside of the clade of the represented sequence.
For example, we have currently designed 459 cross-species
marker candidates in legumes; so far, 76 of these have been
tested resulting in the successful development of 56 markers in
the ‘in-group’ bean and 43 in the ‘out-group’ peanut (2).

We have chosen the legume and grass families because
of the availability of genomic sequences from the well-studied
rice, Lotus japonicus and Medicago truncatula, and because
of the enormous importance of these families to humans (7).
In principle, non-legume or -grass ESTs might also align,
but they are likely prohibitively different from the database
gene indices to allow multiple sequence alignments of
sufficient quality to pass through PriFi’s primer design
requirements.

Our focus here is on family-wide anchor primer design, i.e.
primers with potential to amplify sequences from distantly
related members of the same plant family. Longer primersFigure 4. Screen shot displaying the analysis progress and summary.
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(66)}\hskip 8pt}ð66Þ are expected to be less sensitive to any
mismatches between primer and target which are likely to
occur in this setup, and therefore, with the current settings
GeMprospector suggests primers with accepted lengths
between 18 and 35 nt. For our legume database, the average
primer length is 29.5 nt; for the grasses, it is 28.7 nt.

We are planning a future GeMprospector version whose
databases include maize and wheat, species for which large
EST collections also exist. This will certainly lead to any
additional markers, but with a potentially more narrow
application. We imagine a comprehensive tool which lets

the user pick individual species from a given set and combine
their sequences with his own uploaded set in a ‘user-designed’
database, targeting the results to the user’s specific needs.

GeMprospector allows maximal information gain from
new legume/grass EST sequence collections when designing
candidate cross-species genetic markers. Results of an analysis
are only accessible to the submitting user.
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