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ABSTRACT

Variable order Markov models and variable order
Bayesian trees have been proposed for the recog-
nition of transcription factor binding sites, and it
could be demonstrated that they outperform tradi-
tional models, such as position weight matrices,
Markov models and Bayesian trees. We develop a
web server for the recognition of DNA binding sites
based on variable order Markov models and variable
order Bayesian trees offering the following func-
tionality: (i) given datasets with annotated binding
sites and genomic background sequences, variable
order Markov models and variable order Bayesian
trees can be trained; (ii) given a set of trained
models, putative DNA binding sites can be predicted
in a given set of genomic sequences and (iii)
given a dataset with annotated binding sites and
a dataset with genomic background sequences,
cross-validation experiments for different model
combinations with different parameter settings can
be performed. Several of the offered services are
computationally demanding, such as genome-wide
predictions of DNA binding sites in mammalian
genomes or sets of 104-fold cross-validation experi-
ments for different model combinations based on
problem-specific data sets. In order to execute these
jobs, and in order to serve multiple users at the
same time, the web server is attached to a Linux
cluster with 150 processors. VOMBAT is available
at http://pdw-24.ipk-gatersleben.de:8080/VOMBAT/.

INTRODUCTION

One important and interesting problem in genome research is
the prediction of transcription factor binding sites (TFBSs).
Binding of transcription factors to their DNA binding sites
in the regulatory region of a gene is a prerequisite for its
activation or repression. The combinatorial presence of

TFBSs controls gene regulation at least partially, and the pre-
diction of TFBSs is of importance for unraveling the under-
lying molecular mechanisms.

Wet-lab experiments allow the identification of TFBSs,
but these experiments are expensive and time consuming.
Computational methods, which are often less accurate but
easy to conduct with available resources, are a welcome
complementation to wet-lab experiments. Many TFBS pre-
diction algorithms employ statistical models for scoring a
given sequence as TFBS or non-TFBS. For these algorithms,
the chosen family of statistical models is of importance for
the performance of prediction.

The family of Markov models (1–3) is chosen in many
TFBS prediction algorithms as well as for a variety of other
classification problems. Well-known examples are the posi-
tion weight matrix (PWM) model (4), which is an inhomoge-
neous Markov model of order 0, and the weight array matrix
(WAM) model (5), which is an inhomogeneous Markov
model of order 1. From a statistical point of view, Markov
models employ assumptions about the statistical indepen-
dence of nucleotides at different positions of the binding site.

The strongest independence assumption is realized by the
PWM model, where each position is assumed to be statisti-
cally independent of all other positions. As indicated e.g. in
(6), it is an open question whether this strong independence
assumption is reasonable in view of recent results indicating
the presence of statistical dependences between positions
(7,8). Markov models of higher order take into account statis-
tical dependences from previous positions, called the context,
where the length of the context is equal to the order of the
Markov model.

Despite the often unjustified independence assumption,
PWM models are often found to outperform Markov models
of higher order in the prediction of TFBSs. This is probably
caused by the rather limited amount of training data available
from experimentally verified TFBSs. As the number of model
parameters grows exponentially with the order of the Markov
model, Markov models of higher order tend to be over-fitted,
resulting in poor performance.

One possibility to circumvent this problem is provided
by variable order Markov models, which do not require the
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contexts to be of a fixed length, but allow contexts with vari-
able lengths (9–12). The power of variable order Markov
models stems from the freedom to include only those contexts
into the model for which there are strong statistical
dependences.

Another possibility to capture statistical dependences
between non-adjacent positions without the burden of
increasing the number of model parameters exponentially
are provided by Bayesian trees (BTs) (13–16). In BTs the
contexts are not restricted to the previous positions within
the binding site, and it could be demonstrated that BTs
outperform PWM models and WAM models in the prediction
of splice sites (17,18) and TFBSs (6,19).

As an extension of variable order Markov models and BTs,
we introduce variable order BTs (19). The VOMBAT web
server is designed to train variable order Markov models
and variable order BTs on user-supplied data and to apply
the resulting models to the prediction of TFBSs. In addition,
the VOMBAT web server provides a cross-validation plat-
form, allowing advanced users to compare different model
combinations with different parameter settings on problem-
specific datasets. The VOMBAT web server is primarily
designed for the prediction of TFBSs, but applicable to
other types of fixed-length motifs as well.

ALGORITHM

The prediction of TFBSs is based on one statistical model for
TFBSs and one for non-TFBS sequences constituting the
background. Each statistical model assigns a probability
P(x1 � � � xL) to a given DNA sequence x1 � � � xL of L nucleo-
tides. For any value of M, 1 < M < L, P(x1 � � � xL) can be
decomposed according to

Pðx1 � � � xLÞ ¼ P0ðx1 � � � xMÞ
YL

l¼Mþ1

Plðxl j x1 � � � xl�1Þ:

Markov models of order M assume that the conditional
probabilities Pl(xl j x1 � � � xl�1) do not depend on all previous
nucleotides x1 � � � xl�1, but only on theM previous nucleotides
xl�M � � � xl�1, which are called the context of position l.
Hence, a Markov model of order M is defined by

Pðx1 � � � xLÞ ¼ P0ðx1 � � � xMÞ
YL

l¼Mþ1

Plðxl j xl�M � � � xl�1Þ:

If the conditional probabilities Pl(xl j xl�M � � � xl�1) are ident-
ical at all positions, the Markov model is called homo-
geneous, otherwise it is called inhomogeneous.

In contrast to a Markov model of order 1, where the con-
ditional probabilities at position l depend only on the previous
nucleotide xl�1, a BT allows that the conditional probabilities
at position l may depend on the nucleotide xPa(l) at a possibly
non-adjacent position Pa(l), which is called the parent of
position l. In a BT, arbitrarily remote positions may be cho-
sen as parents as long as no cycles between positions are
induced. This implies that there is one position, called the
root position, which must not depend on any other position,
and that the statistical dependences of a BT may be graphi-
cally represented by a rooted tree, where the positions
are represented by nodes and the statistical dependences are

represented by edges (13–16). The probability distribution
defined by a BT with root position r decomposes as

Pðx1 � � � xLÞ ¼ PrðxrÞ
Y

l 6¼r

Plðxl j xPaðlÞÞ:

In the VOMBAT web server, the so-called motif model
Pmotif (used for modeling TFBSs) and the so-called back-
ground model Pbg (used for modeling background DNA
sequences) can be chosen by the user. An inhomogeneous
Markov model or a BT should be chosen if statistical
dependences are assumed to vary from position to position
within the sequence. This is typically the case for TFBSs or
other motifs. A homogeneous Markov model should be cho-
sen if statistical dependences are assumed to be the same at
all positions within the sequence. This is a reasonable
assumption for background sequences. The appropriate
order of a Markov model depends on the expected range
of statistical dependences and on the amount of available
training data.

For Markov models of fixed order, the number of model
parameters grows exponentially with the order, resulting in
a sharp transition from under-fitted to over-fitted models.
Variable order Markov models were developed to circumvent
this sharp transition (9–12). The idea of variable order
Markov models is to shorten the context in those cases
where extending the context does not yield ‘enough’ statisti-
cal dependences. Mathematically this is formulated by
measuring to which degree the conditional probabilities
change when extending or reducing the context.

The Kullback–Leibler divergence (20) is used as a measure
of change of the conditional probability distributions. It
measures the degree of dissimilarity of the conditional proba-
bility distribution given the extended context and the con-
ditional probability distribution given the reduced context.
The Kullback–Leibler divergence is always non-negative,
but small positive values of the Kullback–Leibler divergence
do not indicate significant statistical dependences. The thresh-
old above which the Kullback–Leibler divergences are con-
sidered important can be set by an external parameter, c,
called pruning constant.

For c ¼ 0, any extension of the context is considered
important, and the resulting variable order Markov model
becomes a traditional Markov model of order M. For
c ! 1, any extensions of the context is considered unimpor-
tant, and the resulting variable order Markov model becomes
a traditional Markov model of order 0, i.e. a PWM model. As
c grows from 0 to 1, more and more contexts are considered
unimportant, and the resulting variable order Markov models
become smaller and smaller, interpolating between a Markov
model of order M and a PWM model. More detail and other
aspects can be found in (19).

The parameters of the conditional probabilities are esti-
mated from user-supplied training data. VOMBAT uses a
maximum likelihood estimator with optional pseudo counts,
which can be specified by the user, for smoothing the con-
ditional probability distributions and to compensate for zero
occurrences of nucleotides and contexts. The motif model
Pmotif is learned from a user-supplied training set of TFBSs,
and the background model Pbg is learned from a user-
supplied training set of background sequences.
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After training Pmotif and Pbg, VOMBAT can be used to
compute genome-wide predictions of the learned motif in a
set of user-supplied sequences. For each position of a
sliding window of length L, the log-likelihood ratio of the
oligonucleotide y1 � � � yL occurring at that position is com-
puted, and y1 � � � yL is predicted as TFBS if the log-likelihood
ratio is greater than a given threshold T, i.e. if

log2
Pmotifðy1 � � � yLÞ
Pbgðy1 � � � yLÞ

> T:

Specific knowledge, such as the number of TFBSs expected
in the genome, can be taken into account to adjust the thresh-
old T to achieve TFBS predictions with the desired balance
of sensitivity and specificity.

For advanced users, VOMBAT allows a cross-validation
of the prediction accuracy of a user-defined combination of
Pmotif and Pbg based on a user-supplied set of TFBSs and
a user-supplied set of background sequences. From each of
the datasets, 10% of the sequences are randomly excluded,
and the models Pmotif and Pbg are trained on the remaining
90%. Subsequently, both models are used for the prediction
of the withheld data, and the sensitivity given a user-defined
value of the specificity is computed. This procedure is
repeated k times, where k can be specified by the user, and
the mean sensitivity and its standard error are reported.

VOMBAT is based on a variant of the three-tier architec-
ture, where the presentation layer, the management layer and
the execution framework are logically separated and phy-
sically located on different servers. The web front-end of
VOMBAT is based on standard technologies like JavaServer
Faces for the web forms and Servlets for displaying images
and providing downloads of results. The user-supplied
parameters and input files are stored in a mySQL-database.
This database is queried by the execution framework. If the
execution framework detects a job to be executed, it requests
the necessary parameters and input files and submits the cor-
responding job to the scheduler of the attached Linux cluster.
After the job is finished, the results are written to the database
and can be displayed by the web front-end, which loads
numerical results, model descriptions and images from the
result-tables of the mySQL-database.

INPUT AND OUTPUT

Imagine a user interested in a genome-wide prediction of
binding sites of the transcription factor SP1 in GC-poor
upstream regions of human RefSeq (21) genes. If the user
were interested in a prediction based on pre-trained PWM
models stored in the Transfac database (22), he could
use the TFBS prediction program MATCH� (3). If the
user were interested in a prediction based on variable order
Markov models or variable order BTs, he could use the
VOMBAT web server.

The two main functions of the VOMBAT web server are
training variable order Markov models or variable order
BTs based on user-supplied sequences and predicting putative
TFBSs based on user-supplied variable order Markov models
or variable order BTs. The training function allows the user
to choose an optimal combination of a motif model and a

background model and train these models on problem-
specific datasets. For example, the user might choose a vari-
able order BT as motif model and a variable order Markov
model of order 5 as background model, he might choose
that subset of SP1 binding sites available from Transfac
that are located in GC-poor promoters as motif dataset, and
he might choose a representative set of GC-poor promoter
regions as background dataset.

Training a model

For training a model from user-supplied input data, the user
first selects ‘Train a model from data’ from the selection
of tasks. The subsequently displayed form requests the
necessary parameters. The user can enter a comment on the
model to be trained in order to make it easier to identify
the corresponding results in a list of all results. The rest of
the parameters defines the type of model to be trained as
well as the pruning constant and the pseudo count. The
default value of the pseudo count is 1, and we recommend
the user to always specify a pseudo count greater than 0 to
compensate for zero occurrences.

The subsequent three parameters define the type of model
to be trained. The first parameter is the initial order of the
model. The second parameter defines if the model to be
trained is homogeneous or inhomogeneous. If the model is
defined to be inhomogeneous, the user can select between
a Markov model and a BT as a third parameter. Based
on (6,19) and based on systematic cross-validation analyses
of different model combinations applied to different sets of
TFBSs and background sequences, we generally recommend
to use a BT as motif model and a homogeneous Markov
model with an initial order of at least 3 as background model.

The following two parameters are data specific. The user-
supplied input file to train an inhomogeneous model must
consist of aligned sequences of identical length, separated
by line breaks. For homogeneous models the length of the
sequences may differ. The VOMBAT web server is designed
for, but not restricted to, the prediction of motifs in DNA
sequences. Hence, it is possible to specify the alphabet of
the sequences. In case of DNA sequences the alphabet is
‘ACGT.’ As a last option the user may select a checkbox
that determines if a graphical representation of the trained
model shall be displayed as Supplementary Data.

If the job of training a model could be successfully submit-
ted to the scheduler of the attached Linux cluster, the subse-
quently displayed page reports ‘Jobs success,’ and VOMBAT
gives the user the possibility to go either to the list of tasks
for starting another job or to the job overview.

The job overview displays a table of all jobs with the
following columns: the time at which the job was started,
the comment that was entered by the user, the type of the
job (‘Train’, ‘Classify’, ‘CrossVal’), the current state of the
job, a button for the already available results and a button to
stop a running job. The possible states of a job are ‘START’
for jobs still waiting for execution, ‘RUNNING’ for jobs
currently running on the Linux cluster, ‘STOP’ for jobs
marked to be stopped, ‘STOPPED’ for stopped jobs and
‘FINISHED’ for successfully executed jobs. If the state of a
job is ‘FINISHED,’ the user can click on the button ‘View
results. . .’ in the same row to inspect the results of this job.
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The results of training a model are a link to an XML
representation of the trained model, which can be saved
and used as input for one of the other tasks presented in the
following. If the user selected to obtain a graphical repres-
entation of the trained model, this representation is also
displayed as a series of images, which may be saved using
the corresponding browser command.

Predicting putative transcription factor binding sites

After a motif model and a background model have been
trained and saved, they can be combined to predict putative
TFBSs in a user-supplied set of input sequences. For this pur-
pose, the user selects ‘Classify data’ from the list of tasks. The
first input field of the subsequently displayed form, which is
shown in Figure 1, allows to enter a user-defined comment
on the job. Next, the user uploads two files containing the
XML representations of the desired motif and background
models, which have been trained using the ‘Train a model
from data’ task described above. The classification threshold
must be specified, and the file containing the set of sequences
in which the motif is to be predicted must be uploaded.

After a classification job has been started, the user can
monitor the current state of the job in the job overview of
VOMBAT. If the job is finished, the predictions can be
inspected by clicking on the corresponding ‘View results. . .’
button. The subsequently displayed result page is presented
in Figure 2. The HTML file contains a textual description
of the putative motifs, which contains for each predicted
motif its position, its sequence, its probabilities returned by
the two models, and the corresponding log-likelihood ratio.
Additionally, a profile of the log-likelihoods and the log-
likelihood ratio is plotted for each sequence of the input
file. The chosen classification threshold is also plotted as a
reference for the log-likelihood ratio, allowing the user to
judge the influence of the classification threshold on the
prediction results at a glance.

Cross-validation

As an auxiliary function for advanced users, VOMBAT pro-
vides a platform for cross-validation analyses of different

combinations of user-defined models based on problem-
specific data. Selecting ‘Cross validation’ from the list of
tasks brings up the cross-validation input form. The first
input field allows to enter a user-defined comment on the
cross-validation job. Next, the number of iterations of
the cross-validation job can be entered. A higher number of
iterations produces more reliable results. On the other hand,
the cross-validation job becomes more time-consuming.

Two files containing XML representations of the motif
model and the background model must be uploaded by the
user. These files can be obtained by a standard training on
the datasets to be used for cross-validation.

Next, the user must specify the desired specificity for
which the mean sensitivity is to be computed. The last
option in the form allows to plot a histogram of the log-
likelihood ratios for the motif sequences and background
sequences, which allows further analyses of the cross-
validation results, such as judging the effect of a shifted
threshold or inspecting the separation of the samples of
both classes.

The cross-validation results are also listed in the job over-
view. The presented results are the mean (and standard error)
of the sensitivity for the fixed specificity entered in the
cross-validation form, the mean (and standard error) of the
maximum correlation coefficient, and the corresponding
thresholds and optionally the histogram of the log-likelihood
ratios as shown in Figure 3.

The following prototypical example illustrates how the
three functions of VOMBAT may be utilized for the predic-
tion of putative TFBSs. Recall the user interested in a
genome-wide prediction of SP1 binding sites. Typically, the
user has no a priori knowledge of which model combination
and which model parameters could provide an accurate pre-
diction of these binding sites in GC-poor upstream regions.
Hence, he would start a series of different cross-validation
experiments for different model combinations and different
parameter settings using the cross-validation function of
VOMBAT.

After having established an optimal model combination
(including optimal parameters) for his specificity require-
ments and based on his problem-specific datasets, e.g.

Figure 1. The form requesting the parameters for a TFBS prediction.

Figure 2. The results of a TFBS prediction. The list of putative TFBSs are
displayed as a link to ‘sites.html,’ and the profiles for the sequences are
plotted.
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based on already annotated SP1 binding sites from Transfac
as motif dataset and representative GC-poor upstream regions
as background dataset, he would then use these models to
run the training and prediction functions of VOMBAT as
outlined above.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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