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ABSTRACT

Predicting domains of proteins is an important
and challenging problem in computational biology
because of its significant role in understanding the
complexity of proteomes. Although many template-
based prediction servers have been developed,
ab initio methods should be designed and further
improved to be the complementarity of the template-
based methods. In this paper, we present a novel
domain prediction system KemaDom by ensembling
three kernel machines with the local context infor-
mation among neighboring amino acids. KemaDom,
an alternative ab initio predictor, can achieve high
performance in predicting the number of domains
in proteins. It is freely accessible at http://www.iipl.
fudan.edu.cn/lschen/kemadom.htm and http://www.
iipl.fudan.edu.cn/~lschen/kemadom.htm.

INTRODUCTION

Domains are the structural, functional and evolutionary
units of proteins. Most multidomain proteins are formed by
duplication, divergence and recombination of domains in
the history of evolution (1). Thus domains are a key to under-
stand the evolution of proteomes and their complexities. It is
therefore of great importance to predict domains in proteins.
The importance of this task has been emphasized by the
CASP 6 (http://predictioncenter.org/) and the CAFASP 4
(http://www.cs.bgu.ac.il/dfischer/CAFASP4/ and http://
www.cs.bgu.ac.il/~dfischer/CAFASP4/) protein structure
prediction experiments. However, predicting domains from
sequence remains an open problem.

Previous works exhibit great successes in domain pre-
diction. Most of them are online web servers which can be

publicly accessed from Internet. All these methods can be
classified into two classes: template-based methods (scoring
the sequence against domain templates or secondary structure
elements) and ab initio methods (non-template methods). The
template-based methods include Robetta-Ginzu (2), http://
ekhidna.biocenter.helsinki.fi:9801/sqgraph/pairsdb,ADDA
(3); http://bioinf.cs.ucl.ac.uk/dompred/DomPredform.html,
Dompred-Domssea (4); Dopro (5); http://www.ebi.ac.uk/
InterProScan, InterProScan (6); and http://www.bio.ifi.lmu.
de/SSEP/, SSEP-Domain (7). And the ab initio methods
include http://biozon.org/tools/domain/, Biozon(8); CHOPnet
(9); Armadillo (http://armadillo.blueprint.org/; http://www.
ics.uci.edu/baldig/dompro.html), DOMpro (10); http://bioinf.
cs.ucl.ac.uk/dompred/DomPredform.html, Dompred-DPS
(11); http://globplot.embl.de/, Globplot (12); and http://
bioinformatics.cribi.unipd.it/cgi-bin/primex_client.cgi, Mateo
(13). Additionally, http://meta-dp.cse.buffalo.edu/ Meta-DP
(14) is an integrated domain prediction server which ensem-
bles various template-based and ab initio methods with a
‘majority voting’ strategy.

Template-based methods become less effective when a
potential domain shares low similarity with the identified
domains. Thus, with the availability of domain databases
such as CATH (15), SCOP (16) and FSSP-Dali Domain
Dictionary (17), the effective ab initiomethods using machine
learning techniques have been developed (8–10). These
methods using different artificial neural networks with vari-
ous features have made important contributions to this task.
Biozon (8) is a hybrid learning system for domain prediction
and adopts a feed-forward network using back-propagation
algorithm. In this system, the input units consist of sequence
termination, correlation, contact profile, class and amino acid
entropy, secondary structure, and physio-chemical properties.
CHOPnet (9) also uses a three-layer feed-forward neural
network but with different features, including secondary
structure, solvent accessibility, HSSP conservation weight,
the profile of six critical residues {P, H, D, Y, V, C},
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secondary structure difference and flexibility of a five-residue
segment. These features are proved to be important to the
performance of the network. DOMpro (10) applies the 1D-
recursive neural network that leverages evolutionary profiles,
predicted secondary structure and relative solvent access-
ibility. It is ranked among the top ab initio domain predictors
in the CAFASP 4 evaluation.

Since the most important step of the ab initio methods for
domain prediction is to discriminate boundary residues from
domain residues, the prediction can be viewed as a two-class
classification problem. As to the classifier, support vector
machine (SVM), a classical kernel machine, not only is
well-founded theoretically, but also has satisfactory abilities
of generalization and avoiding over-fitting (18). Encouraged
by the successful applications of SVM in computational biol-
ogy, including remote protein homology detection (19,20),
secondary structure prediction (21,22), and the like, we devel-
oped a novel predictor, KemaDom abbreviated from ‘kernel
machine for domain prediction’, by ensembling three SVM
classifiers, KemaSelf, KemaNeiOne and KemaNeiTwo, with
different feature subspaces. The SVM classifiers with dif-
ferent feature subspaces improve the diversity of the result.
It makes the ensemble work though SVM is a stable classifier
and simply ensembling this kind of classifier with same fea-
tures is not a good choice. The empirical study has shown that
KemaDom has good performance in practice for predicting
domains in proteins.

MATERIALS AND METHODS

Training and testing data

Liu et al. (9) have curated a dataset from multiple sources
and Cheng et al. (10) have curated another dataset from
CATH (15) to avoid the data conflict. In this paper, the latter
is used to develop and test the algorithm. In this dataset,
a total of 354 multi-domain chains and 963 single-domain
chains are retrieved. Among these chains, no pair of
sequences share sequence similarity above 25% in a global
alignment of length 250. The sequences and the information
of secondary structure and solvent accessibility can be
obtained from Cheng’s website (http://contact.ics.uci.edu/
download.html).

In the prediction procedure, we focus on discriminating
boundary residues from domain residues. Thus, multi-domain
chains are used for training and testing, and single-domain
chains are only for testing against the model trained by multi-
domain chains. Additionally, a blind set from CAFASP 4 is
used as the testing set.

Feature extraction

Feature extraction for training and testing is crucial to the
model. In our method, we obtain amino acid entropy and
physio-chemical properties according to the profile of
amino acids. Amino acid entropy measuring the conservation
of an alignment can be computed by information entropy.
Ferran et al. clustered the 20 residues into 6 classes accord-
ing to similarity scores of their physio-chemical property
(23). One measurement for physio-chemical property is class
entropy defined in Ref. (8). Alternatively, we only choose
the value of the representative residue from each class to

denote physio-chemical property. The six residues are
{D, H, C, P, Y, V} because they are most different between
domain residues and boundary residues (9). The difference
of average profile of critical residues and the difference of
average profile of six physio-chemical classes between
boundary residues and domain residue (Figure 1) indicate
that the latter is more proper as feature units. Secondary
structure and relative solvent accessibility can be predicted
by widely accepted tools.

According to the above analysis, three sub-models with
different input units are designed (Table 1). For KemaSelf,
32 U are extracted as the inputs: 6 U represent physio-
chemical information, 1 U represents amino acid entropy,
5 · 3 U are secondary structure of five-residue segment
(a center resiude, two left neighborhoods and two right
neighborhoods), 5 · 2 U represent solvent accessibility of
the segment. For KemaNeiOne (or KemaNeiTwo), 26 U are
extracted as the inputs: 2 · 3 U denote secondary structure of
the residues with distance d ¼ 1 (or d ¼ 2) from the center
residue, 2 · 2 U encode solvent accessibility of those resi-
dues, 2 U are amino acid entropy, 2 · 6 U denote physio-
chemical properties and the last 2 U allow the exceeding of
the N-terminus or C-terminus of the chain.

The model and post-processing

Figure 2 shows the architecture of KemaDom which
integrates three binary classification sub-models, KemaSelf,
KemaNeiOne and KemaNeiTwo. SVM with probability
estimates is used to work out the probability of a residue
belonging to boundary residue class, PKemaSelf, PKemaNeiOne

and PKemaNeiTwo. The free online tool, libsvm (http://www.
csie.ntu.edu.tw/cjlin/libsvmtools/ http://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/), is modified for domain prediction pur-
pose. Among the classical kernels, the radial basic function
(RBF) is adopted because of its superior performance in
generalization ability and convergence speed (18). After the
kernel selection, the parameters C and g are determined as
C ¼ 4 and g ¼ 2, separately.

A residue can be assigned into boundary residue class
with the probability P ¼ max{PKemaSelf, PKemaNeiOne,
PKemaNeiTwo} and non-boundary residue class with 1 � P.
As we know, the output of the learning model is quite
noisy. So we smooth the result by averaging the probabilities
of three consecutive residues. To reduce the influence of false
signals, we regard that any two boundary residues with dis-
tance d � 10 belong to the same domain boundary region.
This assumption is reasonable because the reliable domain
boundaries can be accepted within 20 residues of the true
domain boundary annotated in the CATH database (4,9–11).
In addition, boundary residues with no neighboring boundary
residues or with the distance <10 from the start position of
a chain are ignored while computing the number of domains.

RESULTS AND DISCUSSION

In this section, we test our model and compare its per-
formance with other methods. The measurements of sensitiv-
ity (SN) and specificity (SP) are the same with the classical
one used in CASP 6 and CAFASP 4. The overall accuracy
Acc is the number of correctly predicted chains over the
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total number of chains. Eightfold cross validation is used to
measure the performance.

To provide a baseline to compare the result of KemaDom,
we run the random control prediction algorithm as in Ref. (9)

on the same dataset. First, the dataset is randomly divided
into eight subsets. Then, the number of domains for proteins
in each subset are predicted according to the composition
of domain numbers in remaining subsets. We repeat this
test 100 times and average over the results.

Performance of KemaDom and its sub-models

The results are shown in Table 2, where 1D denotes single-
domain chains and 2D denotes two-domain chains. KemaSelf

Figure 1. Comparison between average profile of critical residues (a) and the average profile of six physio-chemical classes (b).

Table 1. Features of the sub-models

Model Unit position Description

KemaSelf 1–5 Secondary structure and solvent accessibility
of a center residue;

6–11 Physio-chemical properties of a center
residue;

12–31 Secondary structure and solvent accessibility
of residues with 0 < d � 2;

32 Amino acid entropy of a center residue;
KemaNeiOne 1–6 Secondary structure of the residues with

d ¼ 1;
7–10 Solvent accessibility of the residues with

d ¼ 1;
11–22 Physio-chemical properties of the residues

with d ¼ 1;
23–24 Amino acid entropy of the neighboring

residues with d ¼ 1;
25–26 Labels to denote the exceeding of the

N-terminus or C-terminus of the chain.
KemaNeiTwo 1–6 Secondary structure of the left residues

with d ¼ 2;
7–10 Solvent accessibility of the left residues with

d ¼ 2;
11–22 Physio-chemical properties of the left

residues with d ¼ 2;
23–24 Amino acid entropy of the neighboring

residues with d ¼ 2;
25–26 Labels to denote the exceeding of the

N-terminus or C-terminus of the chain.

Figure 2. The architecture of KemaDom for domain prediction.
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achieves 3% higher Acc, 13% (14%) higher 2D SN and 11%
(13%) higher 2D SP than KemaNeiOne (KemaNeiTwo).
KemaNeiOne has 1% higher 2D SN and 2% higher 2D SP
than KemaNeiTwo. This implies that the 1-neighboring
residue information contribute more to identifying boundary
residues than the 2-neighboring residue information does.
After combining these three sub-models, KemaDom improves
Acc up to 76%. And the sensitivity and specificity for
single-domain chains are 88 and 83%, respectively. Those
for two-domain chains increase to 41 and 57%, separately.
In contrary, random control prediction method correctly pre-
dicts only 74% single-domain chains and 26% two-domain
chains. These results show that the neighboring residue
information can be used to improve the domain prediction and
KemaDom is more effective than random control prediction
method.

We also use an individual SVM with a combined feature
map of three sub-models to predict domains. The results
show that this strategy fails in prediction because only two
two-domain chains are correctly predicted and others are all
inferred to be single-domain chains. Although no well-
established theory of this ensemble technique with different
features has been given, the subspace ensemble for super-
vised learning has been successfully applied in bioinfomatics
with a satisfactory result (24).

While predicting domain boundary position, KemaDom
only correctly predicts 15% of the two-domain chains and
12% of the multi-domain chains; they are both lower than
those of DOMpro, 25 and 20%, respectively. It should be
pointed out that the reliable domain boundaries are accept-
able within 20 residues of the true domain boundary anno-
tated in CATH and predicting domain boundary locations is
more difficult than predicting domain numbers.

Objectively, in order to evaluate the performance of
KemaDom, we also test KemaDom against CAFASP 4
dataset, in which there are 41 single-domain chains and 17
two-domain chains. In these chains, KemaDom shows 95%
1D SN, 77% 1D SP, 24% 2D SN and 57% 2D SP. The Acc
is 74% and the average overlap score of the two-domain
chains is 64.18.

Performance comparison with other predictors

The performance of available ab initio systems can be taken
from the previous publications and the website of CAFASP 4
(Table 3). It is easy to see that predicting two-domain
or multi-domain chains is more difficult than predicting
single-domain chains. The 2D SN varies from 12% (Mateo)
to 59% (DOMpro), and the 2D SP ranges from 15%
(Mateo) to 60% (Globplot) while the Acc lies between 17%
(Biozon) and 76% (KemaDom). Moreover, the selection of

training and testing datasets influences the performance of
the predictors significantly.

Compared with DOMpro, KemaDom achieves 19% higher
2D SP and 7% higher Acc on the CATH dataset though it
has 18% lower 2D SN. Similarly, on CAFASP 4 dataset,
KemaDom has 11% lower 2D SN but 7% higher 2D SP
than DOMpro. Obviously, KemaDom achieves a good Acc
because of its high 1D SN. On this point, we can not conclude
that our method is better or worse than the other methods
because the knowledge is still not sufficient for discriminat-
ing the boundary residues exactly.

WEB SERVER: KemaDom

The web server can be accessed from http://www.iipl.fudan.
edu.cn/lschen/kemadom.htm. and http://www.iipl.fudan.edu.
cn/~lschen/kemadom.htm. This system is mainly composed
of two subsystems, the background system and the interface
system.

The background system is implemented by Perl including
package BioPerl and CGI script. The whole processing flow-
chart of this system can be summarized as the following
steps: (i) a remote user submits a target sequence to the
server; (ii) a PSSM profile for the sequence is generated by
PSI-blast (25) against the non-redundant (nr) database; and
(iii) secondary structure prediction and solvent accessibility
prediction are performed by SSpro (26) and ACCpro (27),
respectively; (iv) a Perl script generates the feature vectors
for all the residues of the input sequence; (v) boundary resi-
dues prediction is executed with the feature vectors against
the trained model. (vi) post-processing is done for the raw
output; and (vii) KemaDom sends the result to the user.

The interface system is written with HTML language.
KemaDom provides a friendly interface (Figure 3). Users
should submit sequences with the format which BioPerl
(Bio::SeqIO) can recognize. Also, the email address and the
customized job name are required in submission. The only
constraint is that protein sequence to be predicted should
contain >30 residues.

CONCLUSION

In this paper, we have presented a novel domain prediction
server, KemaDom, modeling the local context information.

Table 2. Performance of KemaDom and sub-models

Model/Sub-model 1D SN 1D SP 2D SN 2D SP Acc

KemaDom 0.88 0.83 0.41 0.57 0.76
KemaSelf 0.89 0.81 0.36 0.55 0.74
KemaNeiOne 0.90 0.79 0.23 0.44 0.71
KemaNeiTwo 0.90 0.79 0.22 0.42 0.71
Baseline 0.74 0.72 0.26 0.23 0.60

Table 3. Performance of ab initio predictorsa

Predictor name 1D SN 1D SP 2D SN 2D SP Acc Dataset

KemaDom 0.88 0.83 0.41 0.57 0.76 (10)
DOMpro 0.76 0.85 0.59 0.38 0.69 (10)
CHOPnetb 0.42–0.73 N/A 0.40–0.59 N/A 0.69 (9)
KemaDom 0.95 0.77 0.24 0.57 0.74 CAFASP 4
DOMpro 0.85 0.76 0.35 0.50 0.70 CAFASP 4
Biozon 0.10 10.00 0.35 0.19 0.17 CAFASP 4
Globplot 0.83 0.71 0.18 0.60 0.64 CAFASP 4
Dompred-DPS 0.68 0.78 0.47 0.50 0.62 CAFASP 4
Mateo 0.51 0.78 0.12 0.15 0.40 CAFASP 4

aThe values taken from the previous publications and thewebsite of CAFASP 4.
bThe performance of CHOPnet is tested against multiple datasets with cross
validation of networks; SP values are not shown in their paper and are denoted
by N/A in this table.
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As a domain prediction server, it is powerful and easy to use.
This method is a good option for domain prediction compared
with the existing methods.
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