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The ability of photosynthetic organisms to use CO2 for
photosynthesis depends in part on the properties of
Rubisco. Rubisco has a surprisingly poor affinity for CO2,
probably because it evolved in an atmosphere that had
very high CO2 levels compared with the present atmo-
sphere. In C3 plants the Km(CO2) of Rubisco ranges be-
tween 15 and 25 mm. In cyanobacteria Rubisco has an even
lower affinity for CO2, and the Km(CO2) can be greater than
200 mm. In comparison, the concentration of CO2 in water
in equilibrium with air is approximately 10 mm. From these
numbers it becomes apparent that Rubisco is operating at
no more than 30% of its capacity under standard atmo-
spheric conditions. This is one of the reasons that C3 plants
contain such large amounts of Rubisco. Exacerbating this
situation is the fact that O2 is a competitive substrate with
respect to CO2.

In the atmosphere, where the O2 level is 21% and the CO2

level is 0.035%, the competition by O2 accounts for as much
as 30% of the reactions catalyzed by Rubisco. A number of
photosynthetic organisms have developed ways to increase
the level of CO2 at the location of Rubisco in the plant. This
results in an increase in CO2 fixation and a decrease in the
deleterious oxygenation reaction. An excellent example of
a CO2-concentrating mechanism in higher plants is C4 pho-
tosynthesis, which has arisen independently in a number of
plant families. Aquatic photosynthetic organisms such as
the microalgae have also adapted to low CO2 levels by
concentrating CO2 internally. This Update will focus on
CO2-concentrating mechanisms in the microalgae. For
more detailed reviews of the CO2 concentration by algae,
the reader is referred to the special issue of the Canadian
Journal of Botany (1998, Vol. 76) and the article by Raven
(1997).

TYPES OF CO2-CONCENTRATING MECHANISMS AND
THE PROBLEM OF LEAKAGE OF ACCUMULATED CO2

C4 plants are the best-studied organisms that concentrate
CO2 to enhance the carboxylation reaction of Rubisco. They
have high levels of PEP carboxylase in leaf mesophyll cells,
whereas Rubisco is located primarily in the bundle-sheath

cells. CA within the mesophyll converts CO2 entering the
leaf into HCO3

2, which is the substrate for PEP carboxy-
lase. The advantages that PEP carboxylase has over
Rubisco are its high affinity for HCO3

2 and its insensitivity
to O2. At physiological CO2 levels and pH, the HCO3

2

concentration in the cytoplasm of mesophyll cells is about
50 mm, whereas the Km(HCO3

2) of PEP carboxylase is
estimated to be about 8 mm. Therefore, in contrast to
Rubisco, PEP carboxylase is saturated for HCO3

2 at ambi-
ent CO2 levels. To finish the CO2-concentrating effect of C4

metabolism, the C4 acid generated in the mesophyll cells is
then transported to the bundle-sheath cells and decarboxy-
lated, creating an elevated CO2 level specifically within
these cells.

The problem faced by all photosynthetic organisms that
concentrate CO2 is that it can easily diffuse through bio-
logical membranes. How can such a slippery substance be
accumulated? In C4 plants CO2 is concentrated in specific
bundle-sheath cells within the leaf. These are the only cells
containing significant amounts of Rubisco. Here the thick-
ened cell walls of the bundle sheath prevent the diffusion
of the CO2 generated by decarboxylation reactions. Mi-
croalgae face an additional problem in that they are com-
posed of only one or a few cells, all with ready access to the
environment; therefore, they must prevent the diffusion of
CO2 out of the cell while allowing the entry of other
nutrients.

Microalgae overcome the problem of CO2 diffusion by
accumulating HCO3

2. Being a charged species, HCO3
2

diffuses through membranes much more slowly than CO2.
However, because CO2 is the substrate required by
Rubisco, the accumulated HCO3

2 must be converted to
CO2 before Ci fixation takes place. This appears to be
accomplished by packaging Rubisco within the algal cell
and generating the CO2 at that location through the action
of a CA. A locally elevated CO2 environment is thereby
created in which CO2 can out-compete O2 at the active site
of Rubisco. This allows the CO2 to be used for photosyn-
thesis before it can diffuse out of the cell. Thus, microalgae
that concentrate CO2 package Rubisco in a very specific
location, have a means of concentrating HCO3

2, and have
a means of converting the accumulated HCO3

2 to CO2

rapidly at the location of Rubisco.1 This work was supported by National Science Foundation
grant no. IBN-9632087.
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THE LOCATION OF RUBISCO IN MICROALGAE

In higher plants Rubisco appears to act largely as a
soluble protein that is distributed throughout the chloro-
plast stroma. By analogy, one might expect eukaryotic
algae to have Rubisco throughout their chloroplast stroma
and cyanobacteria to contain Rubisco throughout their cy-
toplasm, but this is clearly not the case. In most microalgae
Rubisco is concentrated in a specific location: in carboxy-
somes in cyanobacteria and in the pyrenoid in algae (Fig. 1;
Table I). Recent studies support the hypothesis that
Rubisco localization is required for efficient acquisition of
environmental CO2.

Carboxysomes are electron-dense particles that are sur-
rounded by a protein shell. Evidence that they contain
large amounts of Rubisco is extensive. In fact, isolated
carboxysomes have been found to be composed mostly of
Rubisco (Price et al., 1992). Immunolocalization studies
using antibodies raised against Rubisco indicate that the
carboxysome is the primary location in cyanobacteria
(McKay et al., 1993). A mutation that causes a 30-amino
acid extension of the Rubisco small subunit leads to a
Rubisco that does not pack into the carboxysome, which
leaves the carboxysome empty (Schwarz et al., 1995). Mu-
tations in any of the genes affecting the assembly, function-
ing, or shape of the carboxysome result in cells that cannot
grow on air levels of CO2 (Price et al., 1998).

Rubisco is also packaged in microalgae, where it is the
major protein component of the pyrenoid. Pyrenoids have
been purified from both Eremosphera (Okada, 1992) and
Chlamydomonas reinhardtii (Kuchitsu et al., 1991), and in
both cases they consisted primarily of Rubisco. In addition,
C. reinhardtii cells with a mutation of the rbcL gene (Rubisco
large subunit) that leads to a truncation of the large subunit
of Rubisco have no pyrenoids (Rawat et al., 1996). Al-
though it is accepted that Rubisco is the major constituent
of the pyrenoid, there are conflicting findings regarding
what percentage of the cell’s Rubisco is in the pyrenoid. A
recent report by Borkhsenious et al. (1998) demonstrated
that in C. reinhardtii the amount of Rubisco in the stroma
varies with growth conditions.

In all published immunolocalization studies the pyre-
noid is densely labeled when an anti-Rubisco antibody is
used as the primary probe (Borkhsenious et al., 1998). An
example of this immunogold labeling is shown in Figure
1D. In these studies the amount of Rubisco in each subcel-
lular location was estimated by multiplying the density of
particles (particles per area) in that location by the average
volume of the pyrenoid (2.4 mm3) or the stroma (35.6 mm3)
(Lacoste-Royal and Gibbs, 1987). However, this still leaves
a fairly broad range of estimates for the amount of Rubisco
in the pyrenoid, from 50% to 99%. These differences could
be attributed to the growth regime used by the various

Figure 1. Carboxysomes and pyrenoids in dif-
ferent photosynthetic organisms. A, Electron mi-
crograph of the cyanobacteria Anabaena; B,
electron micrograph of the green alga C. rein-
hardtii; C, electron micrograph of the diatom
Amphora; D, Immunogold labeling of the pyre-
noid of C. reinhardtii with an anti-Rubisco anti-
body. Bars 5 0.5 mm. Cs, Carboxysome; Py,
pyrenoid.
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research groups. Borkhsenious et al. (1998) found that the
amount of Rubisco in the stroma varied with growth con-
ditions: about 50% of the Rubisco was localized to the
pyrenoid in C. reinhardtii cells grown on elevated CO2 (5%,
v/v). In contrast, they reported that when C. reinhardtii
cells were grown under low CO2 (ambient levels of CO2 are
considered low) more than 90% of the Rubisco was located
in the pyrenoid. These results are consistent with those of
Morita et al. (1997), who reported that 99% of the Rubisco
was located in the pyrenoid in cells grown with ambient
levels of CO2.

C. reinhardtii concentrates CO2 only when it is grown
under low-CO2 conditions. Because more than 90% of the
Rubisco is localized to the pyrenoid under low-CO2 condi-
tions, one question is whether pyrenoidal Rubisco is active
in CO2 fixation or whether the pyrenoid is a storage body.
In vitro measurements of Rubisco activity imply that the
enzyme in the pyrenoid must be active to account for the
levels of CO2 fixation observed in C. reinhardtii. A specific
localization of Rubisco to the pyrenoid is also compatible
with the view that organisms that have CO2-concentrating
mechanisms specifically package Rubisco. In lichens and
bryophytes there is a good correlation between the opera-
tion of a CO2-concentrating mechanism and the presence of
a pyrenoid (Smith and Griffiths, 1996). In cyanobacteria it
appears that the CO2 level is elevated within the carboxy-
some (Price et al., 1998), thus favoring carboxylation activ-
ity over the oxygenation activity of Rubisco. The pyrenoid
may serve a similar function in C. reinhardtii and other
microalgae.

THE ACCUMULATION OF HCO3
2

The physiological evidence for the existence of CO2 con-
centration in microalgae is 2-fold. First, algae are very
efficient at pulling Ci out of the environment. They are
much more efficient than would be expected, with cells
showing an apparent affinity for CO2 of about 1 mm versus
the Km(CO2) of Rubisco of about 20 mm. In some cases the
growth conditions of the alga influences the cell’s affinity
for CO2. Some species of algae, when grown on elevated
CO2 concentrations (10 times higher than ambient), are not
efficient in their acquisition of Ci (Matsuda et al., 1998).
However, if these same algae are grown on limiting CO2

they become very efficient in CO2 uptake and fixation. This
implies that there are inducible transport mechanisms, be-
cause the amount of Rubisco does not change during ad-
aptation from high- to low-CO2 conditions.

Second, the accumulation of Ci within the cell can be
measured directly. In the light, cyanobacteria can concen-

trate HCO3
2 within the cell more than 100-fold (Miller et

al., 1990). Eukaryotic algae are not as efficient but can
accumulate HCO3

2 at least 20-fold over ambient CO2 lev-
els. Ci transporters and CAs may enable the cells to accu-
mulate HCO3

2 within the cell. The exact identity of the Ci

transporters is still unknown, but recent work has identi-
fied some transporters that may play a significant role in
the accumulation of Ci (Okamura et al., 1997).

In cyanobacteria difficulty in obtaining CO2- and
HCO3

2-transport mutants has been proposed to indicate
the presence of multiple transporters for CO2 and HCO3

2.
There is physiological evidence for three types of transport-
ers: (a) a Na1-independent HCO3

2 transporter, (b) a Na1-
dependent HCO3

2 transporter, and (c) a CO2 transporter.
Na1-independent HCO3

2 transport under extreme Ci

limitation (Espie and Kandasamy, 1992) and a difference in
the magnitude of the requirement of Na1 for HCO3

2 trans-
port versus CO2 transport (Miller et al., 1990) have been
detected in Synechococcus PCC 7942. These data indicate the
presence of either a Na1/HCO3

2 symporter (Espie and
Kandasamy, 1994) or the regulation of pH through
Na1/H1 antiport mechanisms.

A mutant of Synechococcus PCC 7942, M42, has been
shown to have a reduced affinity for HCO3

2. The mutation
in M42 has been shown to be in the gene cluster cmpABCD,
which codes for a Na1-independent, high-affinity HCO3

2

transporter induced under low Ci (Okamura et al., 1997).
This is the first reported primary transporter for HCO3

2,
and belongs to the subfamily of ABC transporters also
known as traffic ATPases (Higgins, 1992). The presence of
an ABC-type transporter indicates that at high pH, when
HCO3

2 is taken up, ATP may be the energy source for Ci

uptake. A high-CO2-requiring mutant of Synechococcus
PCC 7942 has recently been characterized; it has a lesion in
the gene dc14 (Ronen-Tarazi et al., 1998), which encodes a
putative Na1-dependent HCO3

2 transporter. This trans-
porter may be responsible for the fast induction response to
low CO2 reported from Synechococcus PCC 7942 and Syn-
echocystis PCC 7002 (Sültemeyer et al., 1997).

Much less is known about the transport of Ci in microal-
gae. Extracellular Ci has to pass through at least two mem-
brane systems to reach the site of carboxylation, which
makes transport more complex than in cyanobacteria. At
least two types of Ci uptake can be observed in microalgae.
There is evidence for both direct transport of HCO3

2 and
CA-facilitated diffusion of CO2 across the membrane. The
two membranes that we will consider as possible sites of Ci

transport are the plasma membrane and the chloroplast
envelope.

Table I. Location of Rubisco in organisms with different types of photosynthesis

Photosynthesis Type
Ability to

Concentrate CO2?
Rubisco Location

C3 photosynthesis (higher plants) No Chloroplast stroma of most cells in leaf
C4 photosynthesis (higher plants) Yes Chloroplast stroma of bundle-sheath cells
Eukaryotic microalgae Yes Pyrenoid of the chloroplast
Cyanobacteria Yes Carboxysomes

CO2 Concentration by Microalgae 11



At the plasma membrane there is evidence for both
HCO3

2 uptake and CA-facilitated diffusion. In Scenedesmus
obliquus there is very good evidence that HCO3

2 is taken
up directly by the cell (Thielmann et al., 1990). These cells
can photosynthesize even when the pH is greater than 10
and HCO3

2 and CO3
22 are the major Ci species. Chlorella

saccharophila also appears to take up HCO3
2, although CO2

is its preferred Ci source (Williams et al., 1995).
The other major process by which microalgae take up Ci

is through the uptake of CO2. Many microalgae produce
large amounts of CA when grown on limiting CO2 (Raven,
1997). CA is a zinc metalloprotein, often located in the
periplasmic space of the cell, that catalyzes the intercon-
version of CO2 and HCO3

2 according to the following
formula:

CO2 1 H2O7 H2CO37 H1 1 HCO3
2

Genes encoding periplasmic CAs have been identified in
both Dunaliella salina and C. reinhardtii (Fujiwara et al.,
1990). CA1, the periplasmic CA, has been identified as one
of the prominent low-CO2-inducible proteins in C. rein-
hardtii. The ability of microalgal cells to use external
HCO3

2 for photosynthesis has been correlated with the
presence of periplasmic CA. The presence of external CA
inhibitors decreased the use of external Ci for photosyn-
thesis (Moroney et al., 1985). The periplasmic CA probably
increases the efficiency with which the cells can take in
external Ci. This includes both the supply of CO2 for
diffusion across the plasma membrane and the supply of
HCO3

2 for the plasma membrane’s HCO3
2-transport

system.
The chloroplast envelope is another possible location of

HCO3
2 accumulation (Beardall, 1981). Intact chloroplasts

isolated from C. reinhardtii and Dunaliella tertiolecta retain
the ability to accumulate HCO3

2 when grown on low CO2,
and have the ability to concentrate CO2. At low CO2, C.
reinhardtii induces the synthesis of LIP-36, a transport pro-
tein that is localized to the chloroplast envelope (Chen et
al., 1997). LIP-36 belongs to a family of transport proteins
that often act as exchangers (e.g. ATP for ADP transport-
ers). It is possible that LIP-36 plays a role in HCO3

2 accu-
mulation by the chloroplast, because chloroplasts with
LIP-36 accumulate HCO3

2 and those without LIP-36, iso-
lated from high-CO2-grown cells, do not. The fact that
LIP-36 is encoded by two separate genes (Chen et al., 1997)
has made it difficult to obtain mutants devoid of this
protein.

THE GENERATION OF CO2 AT THE
LOCATION OF RUBISCO

The generation of CO2 at the location of Rubisco is
accomplished through the action of a CA located at or near
Rubisco. In cyanobacteria a CA is localized to the carboxy-
some (Price et al., 1992). Carboxysomes purified from Syn-
echocystis species have significant CA activity. In Synecho-
cystis 6803, for which the complete genome has been
sequenced, only one CA gene has been identified. The role
of this CA is the dehydration of accumulated HCO3

2 to

form a localized, elevated concentration of CO2 in the
carboxysome. Loss of the carboxysomal CA through mu-
tation leads to a cell that cannot grow well on limiting
levels of CO2 (Fukuzawa et al., 1992). In addition, cells
missing the carboxysomal CA actually accumulate HCO3

2

to higher levels than wild-type cells, presumably because
the cell can no longer convert the HCO3

2 to CO2 for
photosynthesis. In these CA-deficient cells, the CO2-
concentrating mechanism is still operational, but the final
conversion of HCO3

2 to CO2 is too slow.
It is noteworthy that CA activity is not found in the

cytoplasm of cyanobacteria. Price and Badger (1989) dem-
onstrated that transforming Synechococcus species with a
human CA actually “short-circuits” HCO3

2 accumulation,
and this transformant requires high CO2 for growth. The
human CA was localized to the cytoplasm and converted
the accumulated HCO3

2 to CO2. The CO2 thus formed then
leaked from the cell and could not be used efficiently for
photosynthesis. From these studies it appears that the lo-
cation of the internal CA is as important as the packaging
of Rubisco.

In eukaryotic algae CA is often found inside the cell and
in the periplasmic space. It is now clear that C. reinhardtii
has at least five genes that encode CAs. Two of these genes,
Cah1 and Cah2, encode CAs that are directed to the
periplasmic space (Fujiwara et al., 1990). Two more genes
encode mitochondrial CAs (Eriksson et al., 1996). Recently,
a fifth gene, Cah3, was found to encode a chloroplast CA
(Karlsson et al., 1998). This CA has a leader sequence that
directs the protein into the lumen of the thylakoid mem-
brane. Pharmacological and genetic evidence indicates that
Cah3 is essential in generating an elevated CO2 concentra-
tion for Rubisco. It appears to play a role similar to that of
the carboxysomal CA of cyanobacteria. This thylakoid CA
is sensitive to sulfonamides, pharmaceuticals often used to
inhibit mammalian CAs. Treatment of C. reinhardtii with
sulfonamides that can enter the cell results in repression of
CO2 fixation (Moroney et al., 1985). Sulfonamides also
severely inhibit photosynthesis in many other algae at low
CO2 concentrations, indicating that this thylakoid CA may
be found in many algae. Furthermore, mutant strains of
Cah3 are unable to grow at low CO2, although the ability of
these strains to accumulate HCO3

2 is not impaired. The
thylakoid CA is thought to increase the concentration of
CO2 in the chloroplast by dehydration of the high concen-
tration of HCO3

2 the cell accumulates there.
Chloroplast CAs from higher plants are quite different

from the Cah3 protein of C. reinhardtii. Cah3 does not share
any sequence similarity with higher-plant chloroplast CAs.
The higher-plant enzymes are of the b-type and are found
in the chloroplast stroma (Badger and Price, 1994). In con-
trast, Cah3 is of the a-type and is found in the thylakoid
lumen (Karlsson et al., 1998). At this point no stromal CA
has been found in an algal species that actively concen-
trates CO2. It appears that a stromal CA might short-circuit
the active accumulation of HCO3

2. If CA were present in
the chloroplast stroma it might convert accumulated
HCO3

2 back to CO2, allowing it to leak out of the cell
before being fixed by Rubisco.
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A MODEL FOR CO2 CONCENTRATION

Even though the types of cells that possess CO2-
concentrating abilities are very different, they have certain
properties in common that allow them to use CO2 effi-
ciently. The first property is the ability to accumulate
HCO3

2 in some fashion. For most cyanobacteria and many
eukaryotic algae, HCO3

2 can be transported into the cell
directly. For other eukaryotic algae, particularly those that
live in acidic environments, where the concentration of
HCO3

2 is low, CO2 is the Ci species that enters the cell and
HCO3

2 is accumulated in the chloroplast. A second prop-
erty is that Rubisco is usually packaged in a very specific
way within the photosynthetic cell. Although it is possible
that not every microalgal cell that concentrates CO2 has a
carboxysome or a pyrenoid, most cyanobacteria have car-
boxysomes and most microalgae have pyrenoids. The third
property that appears to be common among these types of
cells is the presence of a CA near the location of Rubisco.
The CA supplies the Rubisco with CO2 from the pool of
HCO3

2. Loss of this CA through mutation or inhibition
greatly impairs the cell’s ability to use external Ci for
photosynthesis (Price et al., 1992; Karlsson et al., 1998).

A general model for CO2 concentration in cyanobacteria
is shown in Figure 2. Evidence for this model comes from
physiological experiments and mutant analysis (Table II).
In Figure 2 three different types of transporters are shown
at the plasma membrane. It is very likely that there are a
number of transporters important in HCO3

2 accumulation,
because no single mutation has totally inhibited it. Recent
work with the Cmp gene cluster of cyanobacteria has
shown that high-affinity HCO3

2-transporter activity is lost
if genes within this operon are deleted (Okamura et al.,
1997). The Cmp operon appears to encode an ABC trans-
porter with significant similarity to proteins known to
transport small anions such as NO3

2 (Ogawa et al., 1998;
Ohkawa et al., 1998). The fact that Cmp deletion mutants
still retain the ability to grow on low HCO3

2 concentra-
tions implies that other transporters remain to be identi-
fied. This is consistent with the multiple transport activities
detected in the physiological experiments.

The amount of energy required for HCO3
2 uptake is not

clear at present. Because ABC transporters require ATP, it
is reasonable to assume that some ATP is used in HCO3

2

uptake (Fig. 2). Ogawa et al. (1998) have provided support
for this contention by identifying a number of mutations
that encode subunits of a NAD(P)H dehydrogenase. Dele-
tions of these ndh genes lead to cells that require high CO2

for photoautotrophic growth. The explanation for these
mutants is that cyclic electron transport is disrupted in
these cells such that too little ATP is made to support
HCO3

2 transport. Mi et al. (1992) have also provided evi-
dence that cyclic electron transport around PSI is required
for HCO3

2 uptake.
Because Rubisco uses CO2 and not HCO3

2, the HCO3
2

accumulated by the cyanobacteria must be converted to
CO2 for fixation. As indicated in Table II, any disruption of
the proper localization of Rubisco to the carboxysome in
cyanobacteria leads to a cell that requires high CO2 for
photoautotrophic growth. One example of this is the loss of
carboxysomes through loss of the carboxysomal shell pro-
teins (Orús et al., 1995), in which case Rubisco is distrib-
uted in the cytoplasm. A similar situation occurs in the
mutant EK6, which contains a 30-amino acid extension of
the small subunit of Rubisco and has empty carboxysomes
(Schwarz et al., 1995). Even though the kinetics of this

Figure 2. A model for CO2 concentration in cyanobacteria. The font
sizes of CO2 and HCO3

2 indicate the relative concentrations of these
Ci species. PGA, 3-Phosphoglyceric acid.

Table II. High-CO2-requiring strains and constructs of cyanobacteria

Strain or Construct Mutant Phenotype Process Disrupted Explanation

M3 and D4a Lack of carboxysomes Rubisco packaging Carboxysomes fail to form; Rubisco is
located in cytoplasm

Strain with Rhodospirillum
rubrum Rubiscob

Rubisco in cytoplasm Rubisco packaging Bacterial Rubisco does not locate to
carboxysome

Extension of Rubisco small
subunitc

Empty carboxysomes Rubisco packaging Rubisco cannot package into carboxysome

Cmp deletionsd ABC transporter lost HCO3
2 accumulation High-affinity HCO3

2 transport lost
HCA II transformante CA in cytoplasm HCO3

2 accumulation Accumulated HCO3
2 leaks out as CO2

IcfA deletionf Loss of carboxysome CA CO2 generation HCO3
2 not converted to CO2 in

carboxysome
Numerous ndh deletionsg Loss of NADH dehydrogenase Energy mutations Cyclic electron flow is disrupted

a Orús et al. (1995). b Pierce et al. (1989). c Schwarz et al. (1995). d Okamura et al. (1997); Price et al. (1998). e Price and
Badger (1989). f Fukuzawa et al. (1992). g Ogawa et al. (1998); Price et al. (1998).
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Rubisco appear normal, this strain requires high concen-
trations of CO2 for normal growth. Again, the explanation
appears to be that without an elevated CO2 supply, the
Rubisco is not packaged correctly into the carboxysome
and ends up in the cytoplasm. Finally, the substitution of a
bacterial Rubisco in place of the normal enzyme (Pierce et
al., 1989) results in Rubisco free in the cytoplasm and in
cells that require high CO2 for growth.

The location of CA in cyanobacteria is also critical to the
operation of the CO2-concentrating mechanism. If the car-
boxysomal CA is inhibited or lost through mutation, the
cell loses its ability to grow on low CO2 concentrations.
Therefore, the CA indicated in the carboxysome in Figure 2
is essential for the CO2-concentrating mechanism, and its
packaging is as important as the packaging of Rubisco.

A model of CO2 concentration in eukaryotic algae is
shown in Figure 3. This system is less understood because
eukaryotic algae have more cellular compartments, are a
very diverse group of organisms, and there are a limited
number of systems in which molecular and genetic tools
are available. However, the overall scheme of CO2 concen-
tration retains many similarities to the cyanobacterial
model of active HCO3

2 accumulation, Rubisco packaging,
and HCO3

2 dehydration in the chloroplast. In Figure 3 we
have indicated both active uptake of HCO3

2 and diffusion
of CO2 across the plasma membrane, an uptake facilitated
by the periplasmic CA. Microalgae also package their
Rubisco in the pyrenoid, and deletion of the rbcL gene
results in a strain without a pyrenoid (Table III).

The generation of CO2 for Rubisco is also catalyzed by a
specific CA, Cah3. Mutations in the gene encoding this
chloroplastic CA require high CO2 for photoautotrophic

growth, and these mutants can be complemented by trans-
forming the strain with the wild-type gene (Funke et al.,
1997; Karlsson et al., 1998). In Figure 3 this CA is shown in
the pyrenoid near Rubisco, but its exact location in relation
to the pyrenoid has not been clearly established.

One important difference between algae, which concen-
trate CO2, and C3 plants, which do not, is the amount of CA
activity in the stroma of the chloroplasts. In C3 plants, there
is a highly active, b-type CA in the chloroplast stroma
(Badger and Price, 1994). In C. reinhardtii and other green
algae there is very little, if any, stromal CA activity. In fact,
the only chloroplast CA known is located in the thylakoid
lumen (Karlsson et al., 1998). If the chloroplast is analogous
to the cyanobacterial cytoplasm, a stromal CA might short-
circuit the CO2-concentrating mechanism. In cyanobacteria
the insertion of human CA in the cytoplasm defeated the
activity of the HCO3

2-accumulation system (Price and
Badger, 1989). One prediction of the model shown in Fig-
ure 3 is that the presence of a CA in the chloroplast stroma
might result in a cell that requires high CO2 for growth.

AREAS OF CURRENT INTEREST

From the discussion above it is clear that there are still
many unanswered questions about the mechanism by
which microalgae accumulate Ci. The first challenge is to
identify the other transport components of cyanobacteria
and microalgae. In cyanobacteria a combination of better
screening strategies for insertional mutants and the avail-
ability of the complete genome database for Synechocystis
PCC 6803 should facilitate identification of the other Ci

transporters and their mechanisms of operation. In mi-
croalgae the role of LIP-36 is being investigated. The recent
development of several positive selectable markers for in-
sertional mutagenesis in C. reinhardtii provides a powerful
tool that will aid these studies. Insertional mutagenesis
may be used not only for the identification of the Ci trans-
porter, but also for the identification of other components
involved in HCO3

2 accumulation, as well as the character-
ization of the roles played by these proteins.

A second important area of future interest is the role of
the carboxysome and pyrenoid in CO2 concentration. Car-
boxysomes are relatively well characterized in terms of
their constituents, the genes that encode the proteins in-
volved, and the effect of inactivation of these genes. How-
ever, the current evidence for the role of the pyrenoid in
CO2 concentration is circumstantial. The identification of
mutants with disrupted or aberrant pyrenoids would help
to clarify this issue.

A third area is the cost of CO2 concentration. There is
strong evidence for a light requirement in this process

Figure 3. A model for CO2 concentration in eukaryotic microalgae.
The font sizes of CO2 and HCO3

2 indicate the relative concentra-
tions of these Ci species. cCA, Chloroplastic CA; pCA, periplasmic
CA; PGA, 3-phosphoglyceric acid.

Table III. High-CO2-requiring strains and Rubisco mutants of C. reinhardtii

Strain or Construct Mutant Phenotype Process Disrupted Explanation

Chloroplast rbcL mutationsa Lack of pyrenoid Rubisco packaging Loss of Rubisco; no pyrenoids formed
pmp mutantb No HCO3

2 accumulation HCO3
2 accumulation Possible loss of transporter

ca-1 allelesc Loss of chloroplastic CA CO2 generation HCO3
2 not converted to CO2 in chloroplast

cia-5d Poor growth on low CO2 Regulatory mutants Does not adjust to low-CO2 conditions
a Spreitzer et al. (1985); Rawat et al. (1996). b Spalding et al. (1983). c Funke et al. (1997); Karlsson et al. (1998). d Moroney et al. (1989).
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(Raven, 1997). In cyanobacteria mutant analysis and anti-
body studies provide evidence for the energization of Ci

accumulation through the NAD(P)H-dependent PSI cyclic
electron flow (Mi et al., 1992). In microalgae the light
requirement for CO2 concentration may be attributable in
part to the acidification of the lumen, because that is the
location of Cah3 and, presumably, the site of the generation
of CO2 for Rubisco. As specific transport proteins are iden-
tified, the energy costs can be better estimated. It will be
interesting to compare the cost of this process with C3 and
C4 photosynthesis.

The regulation of the CO2-concentrating mechanism is
also an interesting challenge for future research. It is clear
that the synthesis of many of the components of the CO2-
concentrating mechanism increases under low-CO2 condi-
tions (Beardall et al., 1998). Current evidence indicates that
algal cells can “sense” the CO2 level in the environment
(Matsuda et al., 1998). The existence of mutants that fail to
respond to low CO2 (Table III) indicates that this signal
transduction pathway can be identified through insertional
mutagenesis studies. In addition, there are mutants of
Chlorella ellipsoidea that express the CO2-concentrating
mechanism constitutively (Matsuda et al., 1998). A differ-
ent approach has been taken by investigators who have
linked the promoter regions for genes that respond to
low-CO2 conditions to reporter genes in C. reinhardtii
(Eriksson et al., 1998). These chimeric genes respond to
CO2, and mutants have been found that fail to induce the
reporter gene.

Another important current research topic is how organ-
isms with a CO2-concentrating mechanism will respond to
increasing atmospheric CO2 levels. For example, how will
marine phytoplankton respond? If these organisms already
possess an active CO2-concentrating mechanism, then only
a small increase in photosynthesis would be expected. On
the other hand, if an algal species does not express the
CO2-concentrating mechanism under present atmospheric
conditions, the increase in CO2 might enhance its growth
and photosynthesis. It is known that most algae, including
coccoliths, diatoms, and cyanobacteria, have the ability to
concentrate CO2; however, little is known about whether
these organism express the CO2-concentrating mechanism
in their native environments.

In conclusion, although much progress has been made in
this field of study in the past few years, we are still a long
way from complete characterization. The development of
new tools and strategies will contribute to further progress
in the elucidation of the Ci-accumulation mechanism in the
microalgae.
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