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Abstract
Hypothetical scanning Monte Carlo (HSMC) is a method for calculating the absolute entropy, S, and
free energy, F, from a trajectory generated by any simulation technique. HSMC was applied initially
to fluids (argon and water) and later to peptides and self-avoiding walks on a lattice. In this paper
we make a step further and apply it to a model of decaglycine (at T= 300 K) in vacuum with constant
bond lengths where external stretching forces are exerted at the end points; the changes in S and F
are calculated as the forces are increased. The molecule is placed initially in a helical structure, which
is changed to an extended structure after a short simulation time due to the exerted forces. This study
has relevance to problems in polymers (e.g., rubber elasticity) and to the analysis of experiments
where individual molecules are stretched by atomic force microscopy (AFM), for example. The
results for S and F are accurate and are significantly better than those obtained by the quasi-harmonic
approximation and the local states method. However, the molecule is quite stiff due to the strong
bond angle potentials and the extensions are small even for relatively large forces. Correspondingly,
as the force is increased the decrease in the entropy is relatively small while the potential energy is
enhanced significantly. Still, differences, T S, for different forces are obtained with very good
accuracy of ~0.2 kcal/mol.

I. Introduction
Calculation of the entropy and free energy constitutes a central problem in computer simulation
in spite of the significant progress achieved in the last 50 years. In particular, one would like
to be able to calculate the absolute entropy, S, and the free energy, F, from a Monte Carlo (MC)
1 or a molecular dynamics (MD)2,3 sample (trajectory) directly, i.e., in the same manner as
the energy, E, or geometrical properties such as the radius of gyration of a polymer, are
obtained. However, while these simulation methods enable one to sample system configuration
i correctly with its Boltzmann probability, Pi

B, the value of Pi
B is not provided

straightforwardly and therefore S ~ −ln Pi
B and F (F = E−TS, where T is the absolute

temperature) are unknown. Still, differences, ΔFm,n (ΔSm,n) between two states m and n (e.g.,
a helical and hairpin states of a peptide) can be obtained by the commonly used thermodynamic
integration (TI) techniques, but only when the absolute entropy of one state is known can that
of the other be obtained. While TI is a robust approach (see Refs.4–9 and references cited
therein), for proteins, such integration is feasible only if the structural variance between the
two states is very small; otherwise, the integration path can become prohibitively lengthy and
complex. Therefore, it is important to develop methods that enable one to obtain Pi

B directly
from a given sample, where the absolute Fm (Fn) can be calculated from a sample of state m
(n) leading to ΔFm,n = Fm − Fn even for significantly different states, while the integration
process is avoided. Furthermore, because MC (MD) simulations constitute models for
dynamical processes, one would seek to calculate changes in F and S during a relaxation
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process, by assuming local equilibrium in certain parts along the trajectory; a classic example
is simulation of protein folding.10 Again, such information cannot be obtained by
thermodynamic integration, and methods that estimate S and F directly from the trajectory of
interest should be developed.

An approach for estimating the value of the sampling probability, Pi
B, from a given MC or

MD sample has been suggested by Meirovitch. Two related techniques, the local states (LS)
method11–15 and the hypothetical scanning (HS) method16–21 have been developed and
applied to magnetic systems, polymers, and peptides. Recently the HS method has been
extended to fluids by two procedures, the grand canonical HS (HSGC)5 and the Monte Carlo
HS (HSMC).6 HSMC has been further developed to a method named complete HSMC,22,
23 which unlike HS and HSMC takes into account all system interactions (i.e., short as well
as long-range) and in this respect can be considered to be exact; the only approximation is due
to insufficient MC sampling for calculating the transition probabilities. This method provides
rigorous upper and lower values for F, and F can be obtained from a very small sample, even
from a single conformation.

Complete HSMC is a general technique that has been applied thus far very successfully to
liquid argon, TIP3P water,22,23 peptides,24,25 and very recently also to self avoiding walks
on a lattice.26 In particular, two models of polyglycine molecules of 10 and 16 residues,
described by the AMBER force field27 in vacuum were studied. One model is based on
constant bond lengths and bond angles (the rigid model) and the other consists only of constant
bond lengths (the flexible model). These models were simulated by MC in helical, hairpin, and
extended states and the corresponding Fm and Sm were calculated leading to very accurate
results for ΔFm,n = Fm − Fn (ΔSm,n), which are significantly better than those obtained with
the LS and the quasi-harmonic28,29 methods. Our long-term goal is to be able to calculate the
absolute free energy of a peptide or a surface loop of a protein immersed in explicit water.
Because in all recent studies the complete version of HSMC has been used, which also will be
the method of choice in the future, we drop the word complete and call the method HSMC.

With HSMC applied to a peptide, S is calculated from a given MC sample by reconstructing
each peptide conformation step-by-step, i.e., calculating transition probabilities (TPs) for the
dihedral angles and fixing the related atoms at their positions. At each step the chain’s
coordinates that have already been determined are kept fixed (the “frozen past”) and the TP is
obtained from an MC simulation of the “future” part of the chain whose TPs as yet have not
been determined.

In this paper HSMC is tested further by applying it to the flexible model of (Gly)10, where the
peptide is subjected to stretching by external forces applied to its end points. This study has
relevance to a wide range of experimental situations in polymers, such as rubber elasticity.
30 Also, single molecule techniques have been developed where individual molecules can be
manipulated and stretched by external forces using atomic force microscopy (AFM),31–34 for
example. A well-studied case is the muscle protein titin, where force-extension profiles of the
reversible unfolding of its immunoglobulin-like domains have been obtained by AFM32,34
and optical tweezers.35 To interpret these experiments at the atomic level, a series of steered
molecular dynamics (SMD) simulations have been carried out mostly by Schulten’s group.
36–39 AFM and SMD were also used to study the unbinding of the avidin-biotin complex,
31,35,40 and it is hoped that the mechanisms of ligand-protein and protein-protein binding in
general can be better understood by inducing such unbinding events.41,42 Force induced DNA
unzipping experiments also show promise of providing faster methods of sequence analysis in
the future.43 Reconstructing the potential of mean force along the SMD trajectories is an
important goal of these calculations.44,45
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Thus, just as the temperature affects biomolecular motions and transitions among
conformational microstates, the external force is another available parameter that can be readily
tuned within the framework of current experimental techniques. Correspondingly, in
simulations, under the action of suitable external forces, a peptide can undergo conformational
changes from a helix to an extended state, for instance, where the free energy calculated with
HSMC provides the thermodynamic basis for such transitions. Thus, the scope of HSMC as a
general tool is widened, which enables us in the present study to gain insight into the behavior
of a small molecule like decaglycine under stretching.41,42

II. Theory and methodology
A. The model studied

We study a model of polyglycine, NH2(Gly)10CONH2 [(Gly)10] in vacuum defined by the
AMBER96 force field,27 where the charges of the end groups are neutralized. In this model
the bond lengths are constant and therefore a conformation is determined by the dihedral angles
ϕi,ψi, and ωi and the bond angles θi,l (i=1,10, l=1,3) ordered along the chain, which for
simplicity are denoted by αk, k=1,60. An external force K→  in the −z and +z directions is exerted
on the Cα atoms of the first and last residues with coordinates r→(1) and r→(10), respectively. The
corresponding external energy is K→ ⋅ R→ , where R→ = r→(10) − r→(1) is the end-to-end vector
defined by these Cα atoms. However, for simplicity we shall omit the vector notation, denoting
the force by K, which is practically in the z direction, and by R the projection of R→  on the force
vector; thus, the external energy is denoted by KR. This model is simulated with the Metropolis
MC method1 in internal coordinates using the program TINKER.46 The simulations start from
a helical structure, and the entropy and free energy at constant absolute temperature T are
calculated by the HSMC method for increasing values of K.

It should be pointed out that MD and MC are most straightforwardly carried out in Cartesian
coordinates; however (as discussed in Ref. 25), we have found MC simulations in Cartesian
coordinates (i.e., for a fully flexible model) to be extremely inefficient, while significantly
higher efficiency has been achieved with the present model that is based on internal coordinates.
However, while the LS, the quasi-harmonic, and the HSMC methods are implemented naturally
in internal coordinates, they can also be applied to samples generated by MD, for example,
where the analyzed conformations are transferred from Cartesian to internal coordinates.

B. Statistical mechanics of a peptide in internal coordinates
The partition function of a peptide, Z, is an integral over the function exp(−E/kBT) (E is the
potential energy and kB the Boltzmann constant) with respect to the Cartesian coordinates over
the whole conformational space, Ω. However, for a stable microstate (like the helix) the
integration is carried out only over the limited region Ω0 that defines this microstate. As said
above, to apply HSMC or LS, one has to change the variables of integration from Cartesian to
internal coordinates, which makes the integral dependent also on a Jacobian, J. For a linear
chain J has been shown to be independent of the dihedral angles and is a simple function of
the bond angles and bond lengths.28,47,48 Thus, in previous LS and HSMC studies of linear
and cyclic peptides, and surface loops in proteins, an approximate transformation to dihedral
and bond angles was adopted where the bond lengths were kept constant (see below).13,14,49

The transformation from Cartesian to the internal coordinates, αk, k=1,60, is applied under the
assumption that the potentials of the bond lengths (“the hard variables”) are strong and therefore
their average values can be assigned to J, which to a good approximation can be taken out of
the integral. For the same reason one can carry out the integration over the bond lengths
(assuming that they are not correlations with the αk) and the remaining integral becomes a
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function of the 6N dihedral and bond angles (αk) 28,47,48 and a Jacobian that depends only on
the bond angles. An expression for the partition function with an external force K is

Z ′ = DZ = D ∫
Ω0

exp { − E( αk ) − KR( αk ) /kBT }dα1 … dα6N , (1)

where [αk] =[α1,…α6N]. D is a product of the integral over the bond lengths and their Jacobian
J. The Jacobian [Πk sin(θk)] of the bond angles, θk that should appear under the integral is
omitted for simplicity. We assume D to be the same (i.e., constant) for different forces, and
therefore lnD cancels and can be ignored in calculations of free energy and entropy differences
for different forces. The Boltzmann probability density corresponding to Z (eq 1) is

ρB( αk ) = exp { − E( αk ) − KR( αK ) /kBT }/ Z, (2)

and the exact entropy S and exact free energy F (defined up to an additive constant) are

S = − kB ∫
Ω0

ρB( αk ) ln ρB( αk )dα1 … .α6N (3)

and

F = ∫
Ω0

ρB( αk ) E( αk ) + kBT ln ρB( αk ) − KR( αk ) dα1 … .α6N (4)

As discussed in earlier applications of the HSMC method the fluctuation of F is zero,50 because
the integrand, E([αk]) + kBT ln ρB ([αk]) − KR([αk]) = −kT ln Z = F, is constant and equal to
F for any set [αk]. This means that the free energy can be obtained from any single conformation
if its internal and external energies, and the Boltzmann probability density are known. Using
the HSMC method, it is possible to estimate the free energy of the system from any single
structure. Notice that the fluctuation of an approximate free energy (i.e., based on an
approximate probability density) is finite and it is expected to decrease as the approximation
improves.8,9,20–24,50

C. Exact scanning procedure
The HSMC method is based on the ideas of the exact scanning method, which is a step-by-
step construction procedure for a peptide.51,52 Thus, an N-residue conformation of
polyglycine in the helical region (Ω0), for example, is built by defining the angles αk step-by-
step with transition probabilities (TPs) and adding the related atoms;52 for example, the angle
ϕ determines the coordinates of the two hydrogens connected to Cα, and the position of C’.
Thus, at step k, k−1 angles α1, …,αk−1 have already been determined; these angles and the
related structure (the past) are kept constant, and αk is defined with the exact TP density ρ
(αk|αk−1…α1),

ρ(αk| αk−1 … α1) = Zfuture(αk … α1) / Zfuture(αk−1 … α1)dαk (5)

where dαk is a small segment centered at αk, and Zfuture (αk …α1) is a future partition function
defined over the helical region Ω0 by integrating over the future conformations defined by
αk + 1 …dα6N (within Ω0) where the past angles, α1 …αk, are held fixed
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Zfuture(αk, … , α1) = ∫
Ω0

exp − (E(α
6N

, … , α1) − KR) /kBT dαk+1 … dα6N . (6)

The probability density of the entire conformation is

ρB(α6N , … , α1) = ∐
k=1

6N
ρ(αk| αk−1 … α1). (7)

This construction procedure is not feasible for a large molecule and in practice can be carried
out by scanning only a limited number of future angles;51,52 however, the ideas of the exact
scanning method constitute the basis for HSMC, as discussed in what follows.

Thus, the exact scanning method is equivalent to MC and MD in the sense that large samples
generated by all these methods lead to the same averages and fluctuations within the statistical
errors. Therefore, one can assume that a given MC sample has rather been generated by the
exact scanning method, which enables one to reconstruct each conformation by calculating the
TP densities that hypothetically were used to create it step-by-step. This idea has been
implemented initially in two different ways, by the LS and the hypothetical (HS) methods.
However, an exact reconstruction of the TPs (eq 5) is feasible only for a very small peptide.
Therefore, calculation of future partition functions (eq 6) by these methods has been carried
out only approximately, by considering a partial future (or past in the case of LS). As described
later, with HSMC the entire future is considered and in this respect the method can be
considered to be exact. Because some elements of LS are implemented within the framework
of HSMC we describe the LS method first.

D. The local states (LS) method
In the first step the MC sample (of a given microstate) is visited and the variability range
Δαk is calculated, where αk are the dihedral and bond angles, 1≤ αk ≤ 6N 13,14,25

Δαk = αk(max ) − αk(min ), (8)

where αk(max) and αk(min) are the maximum and minimum values of αk found in the sample,
respectively. Next, the ranges Δαk are divided into l equal segments, where l is the discretization
parameter. We denote these segments by νk, (νk=1,l). Thus, an angle αk is now represented by
the segment νk to which it belongs and a conformation i is expressed by the corresponding
vector of segments [ν1(i), ν2(i), …, ν6N (i)]. Under this discretization approximation ρ(αk|
αk−1 …α1) can be estimated by

ρ(αk| αk−1 … α1) ≈ n(vk, … , v1)/ {n(vk−1, … , v1) Δαk/ l } (9)

where n(νk,…, ν1) is the number of times the local state [i.e., the partial vector (νk,…, ν1)
representing (αk,…, α1)] appears in the sample. Because the number of local states increases
exponentially with k one has to resort to approximations based on smaller local states that
consists of νk and the b angles preceding it along the chain, i.e., the vector (νk, νk−1,…, νk−b) ;
where b is the correlation parameter. The sample is visited for the second time and for a given
b one calculates the number of occurrences n(νk, νk−1,…,νk−b) of all the local states from which
a set of transition probabilities p(νk| νk−1,…, νk−b) are defined. The sample is then visited for
the third time and for each member i of the sample one determines the 6N local states and the
corresponding transition probabilities, whose product defines an approximate probability
density ρi(b,l) for conformation i
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ρi(b, l) = ∐
k=1

6N
p(vk| vk−1, … , vk−b) / (Δαk/ l), (10)

the larger are b and l the better the approximation (for enough statistics); notice that ρi (b,l)
depends on the external force, K, only implicitly. ρi (b,l) allows one to define an approximate
entropy and free energy functional, SA and FA, which constitute rigorous upper and lower
bounds for the correct values, respectively,17

S A = − kB∫ρB ln ρ(b, l)dα1 … α6N (11)

and

F A = E − TS A − K R = E − K R + kBT∫ρB ln ρ(b, l) dα1 … α6N , (12)

where <E> is the Boltzmann average of the potential (force field) energy, estimated from the
MC sample and ρB (eq 2) is the Boltzmann probability density with which the sample has been
generated. SA is estimated from a Boltzmann sample of size n by S̄A,

S̄A = −
kB
n ∑

t=1

n
ln ρt(b, l). (13)

As discussed in section II.B, the fluctuation (standard deviation) σF of the correct free energy
is zero, while the approximate FA has finite fluctuation, σA (estimated by σĀ), which is
expected to decrease as the approximation improves, 8,9,20–24,50

σĀ = 1
n ∑
t=1

n
F̄A − Et − kBT ln ρt(b, l) + KRt

2
1/2

. (14)

It should be noted that eqs 12–14 also hold for the HSMC procedures described later, where
ρ(b,l) is replaced by ρHS.

The LS method can be applied to any chain flexibility, i.e., it is not limited to harmonic or
quasi-harmonic fluctuations, and free energy difference between two microstates with a
significant structural variance can be obtained from two samples representing these
microstates.

E. The HSMC method
As discussed in section II.C, the idea of the hypothetical scanning (HS) method is to reconstruct
each sample conformation step-by-step obtaining the TP density of each αk (eq 5) by calculating
the future partition functions Zfuture (eq 6). However, a systematic integration of Zfuture based
on the entire future within the limits of Ω0 is difficult and becomes impractical for a large
peptide where Ω0 is unknown. The idea of the HSMC method is to obtain the TPs (eq 5) by
carrying out MC simulations of the future part of the chain rather than by evaluating the
integrals defining Zfuture (eq 6) systematically. Thus, at reconstruction step k of conformation
i the TP density, ρ(αk|αk−1 …α1) is calculated from nf MC steps (trials),1 where the entire future
of the peptide can move by changing the future angles αk,…,α6N while the angles α1,…, αk−1
and their related atoms (defining the past) are kept fixed at their values in conformation i. A
small segment (bin) δαk (see also eq 5) is centered at αk and the number of MC visits to this
bin, nvisit, during the simulation is calculated; one obtains,

ρ(αk| αk−1 … α1) ≈ nvisit / nfδαk (15)
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where the relation becomes exact for very large nf (nf → ∞) and a very small bin (δαk → 0)
(see discussion in Ref. 25). The product of these TP densities leads to the probability density
of the entire chain (eq 7). Notice that unlike the deterministic calculation of Zfuture, (eq 6),
where the limits of Ω0 are in practice unknown, with HSMC the future structures generated by
MC at each step k remain in general within the limits of the wide microstate Ω0 defined by the
analyzed MC sample. In some cases, however, the future samples might escape from this
region; therefore, before applying the HSMC method, the LS method is applied to the analyzed
sample and the αk(min) and αk(max) values (eq 8) are calculated; they are then used to keep
the future structures within Ω0 by rejecting MC moves with angle values beyond those of
αk(min) and αk(max). It should be pointed out, however, that when force is exerted the molecule
stays at Ω0 and this precaution (while used) is unnecessary.

While HSMC considers the entire future, in practice ρ(αk|αk−1 …α1) (eq 15) will be somewhat
approximate due to insufficient future sampling (finite nf), a relatively large bin size δαk, an
imperfect random number generator, etc. Therefore, the corresponding probability density
[approximating ρB (eq 7)] will be denoted by ρHS ([αk]) [for the sake of brevity we use ρHS

([αk]) rather than ρHSMC ([αk])]. ρHS ([αk]) defines approximate entropy and free energy
functionals, SA and FA, where ρHS ([αk]) replacing (b,l) in Eqs. (11) and (12), respectively.
SA and FA are expected to overestimate and underestimate, respectively the correct values,
where the fluctuation of FA, σA (eq 14) does not vanish, but decreases as the approximation
improves, i.e., as nf increases and/or δαk decreases.

F. Upper bounds for the free energy
In addition to FA(ρHS ([αk])) (eq 12), which in practice is a lower bound, one can define another
approximate free energy functional denoted FB,17

F B = ∫
Ω0

ρHS( αk ) E + kBT ln ρHS( αk ) − KR dα1 … dα6N (16)

According to the free energy minimum principle,53 FB ≥ F (eq 4). Thus, FB is an upper bound
which approaches the correct free energy, F, when ρHS → ρB [eq 2). It is necessary to rewrite
eq 16 such that FB can be estimated by importance sampling from a (Boltzmann) sample of
configurations generated with ρB (rather than ρHS). It has been shown that

F B =

∫
Ω0

ρB ρHS exp (E − KR)/ kBT (E + kBT (E + kBT ln ρHS − KR) dα1 … dα6N

∫
Ω0

ρB ρHS exp (E − KR)/ kBT dα1 … dα6N

(17)

In practice FB is estimated as the ratio of simple arithmetic averages, which are accumulated
for each of the quantities in the brackets in eq 17. It should be noted, however, that the statistical
reliability of this estimation (unlike the estimation of FA) decreases sharply with increasing
system size, because the overlap between the probability distributions ρB and ρHS decreases
exponentially [see discussion in Ref. 14].

With values for both FA and FB, their average, FM, defined by

F M = (F A + F B)/ 2, (18)

often becomes a better approximation than either of them individually. This is provided that
their deviations from F (in magnitude) are approximately equal, and that the statistical error
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in FB is not too large. Typically, several improving approximations for FA, FB, and FM are
calculated and their convergence enables one to determine the correct free energy with high
accuracy.

It should be pointed out that the probability distribution defined by HSMC is stochastic as
compared to the deterministic distribution (for a given sample) obtained by the LS method and
the deterministic HS method. In Ref. 23 we have proved that the inequalities FA ≤ F ≤ FB hold
for the stochastic probabilities as well.

G. Exact expression for the free energy
As shown for fluids in Ref. 23, the denominator of FB in eq 17 defines an exact expression for
the partition function,

1
Z = 1

Z ∫
Ω0

ρB(ρHS/ ρB) dαk = ∫
Ω0

ρB(ρHS exp (E − KR)/ kBT ) dαk =

= ∫
Ω0

ρB exp F HS/ kBT dαk

(19)

and an exact expression for the correct free energy F, denoted by FD is

F D = kBT ln ( 1Z ) = kBT ln ∫
Ω0

ρBexp F HS/ kBT dαk . (20)

where [dαk] = dα1 …dα6N and FHS / kBT = (E[αk] − KR[αk]) / kBT + ln ρHS[αk].

In practice, the efficiency of estimating F by FD depends on the fluctuation of this statistical
average, which is determined by the fluctuation of FHS exponentiated. Obviously, as FHS

→F (i.e., ρHS → ρB) all fluctuations become zero and F can be obtained from a single
configuration (see discussion following eq 4 and Ref. 23). Therefore (as for FB), the direct
calculation of F through FD will not be as statistically reliable as the corresponding calculation
for the lower bound estimate, FA; however, FD is expected to be more statistically reliable than
FB which is defined as a ratio of two summations similar to that defining FD.

H. The quasi-harmonic approximation
With the quasi-harmonic approximation28,29 the entropy, SQH is given by,

SQH = (1/ 2)6NkB + (1/ 2)kB ln (2π)6Nσ (21)

where σ is the determinant of the covariance matrix of the 6N dihedral and bond angles. Because
SQH takes into account only the covariances (higher order correlations are ignored) it
constitutes an upper bound (SQH ≥ S).

I. Calculation of differences in S and F of by thermodynamic integration
The end-to-end distance, R, can be expressed as the derivative of the free energy with respect
to the external force

R = − ∂F
∂K . (22)
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As the force increases, the extension increases and the free energy must decrease. The
difference in free energy for two values of the external force can also be calculated from eq 22
by carrying out MC simulations for intermediate forces and integrating the R(K) curve
(∫RdK). Also, the difference in the (Helmholtz) free energy ΔF1,2

H for forces K1 and K2 is equal
to the reversible amount of mechanical work w to go from state 1 to state 2,

w = ΔF1,2
H = TΔS1,2 − ΔE1,2 ⇒ TΔS1,2 = w + ΔE1,2 = − ∫

R1

R2
KdR + ΔE1,2 (23)

therefore, the change in entropy can be calculated by numerically integrating the work
(−KdR) between states 1 and 2 and adding the difference in potential energy, ΔE1,2. Like the
free energy, the entropy decreases as the molecule is stretched because of the loss in
conformational freedom.

If the external force is applied to a helix state the conformation remains helical for small values
of the force with the only effect being an overall stretching of the molecule in the direction of
the force and a contraction in the direction perpendicular to the force. As the force increases
beyond a critical value the molecule no longer remains helical where an abrupt transition to
the extended state occurs. The passage from the helical to the extended state is not continuous
because these low energy states are well separated on the free energy landscape.

III. Results and discussion
A. Simulation and computational details

Samples of stretched (Gly)10 were generated by the Metropolis MC procedure1 at 300 K where
a trial structure was obtained by changing all the 60 dihedral and bond angles, αk. A trial
dihedral angle k (k=1,3N) was defined randomly within ±2° of its current value, whereas a trial
bond angle was determined by first selecting a cosine value at random within the range cos
[θ0(k)] ±δ (i.e., by considering the Jacobian), where θ0(k) is the current value of bond angle
k (k=1,3N) and δ=0.005; the chosen cosine values were then translated into bond angles through
the arccosine function. These simulations were started from a helical conformation, that was
obtained by minimizing the initial structure defined by ϕk = ψk = −55°, and ωk = 180°. As
discussed earlier, the external force was exerted on the first and last Cα atoms in the −z and
+z directions, respectively. The first 5000 MC steps were used for equilibration and then
500,000 MC steps were performed. A configuration was retained for future analysis every 200
MC steps; in this way several samples, each of 2500 structures were generated for different
values of the external force. Using the above parameters, the MC acceptance rates values are
55, 41, 35 and 20% for the forces, K=8, 20, 40, and 100 kcal/(mol·Å), respectively.

As expected, as the external force is increased the molecule becomes extended further along
the z-axis and contracts along the x- and y-axis. Correspondingly, the potential energy and the
absolute value of the external energy (−KR) increase with increasing K. This behavior is also
reflected by the corresponding Δαk values (eq 8) that in most cases decrease as K is increased
(see Table 1), representing relatively concentrated samples due to stretching; for example, for
the second residue, Δϕ decreases from 90° to 79°, 68°, and 59°, as the force is increased from
8 to 20, 40, and 100, kcal/(mol·Å), respectively; see figure 1. In the figures the structures for
K=2 and K=100 are shown as they show the most dramatic differences in structure. Notice,
however, that due to correlations each microstate is significantly smaller than the
corresponding region, Δα1×Δα2×…..×Δα60.
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For small values of the external force the conformations remain helical during the entire
simulation, but for K ≈ 4 kcal/(mol·Å) the molecule that stays initially in the helical region is
transformed after a short simulation time into an extended state, the stronger is K the shorter
is this time, where for large enough K the (metastable) helical state is hardly observed in the
trajectory. The HSMC method is applied to samples (obtained from different values of the
external force) consisting of the (most stable) extended conformations.

The TPs and their product, ρHS (eqs 7 and 15) were calculated by reconstructing each
conformation step-by-step with MC simulations of the future part, where the geometrical
restriction defined by the Δαk is applied as well. To check the convergence of the results they
were calculated for four future sample sizes, nf= 20,000, 40,000, 80,000, and 160,000,
generated by retaining a conformation every 10 MC steps, and for four bin sizes, δ=Δαk/60,
Δαk/30, Δαk/15, and 20° centered at αk.(i.e., αk ±δ/2). Notice that as for the LS method, the bin
size is proportional to Δαk. If the counts of the smallest bin are smaller than 50 the bin size is
increased to the next size, and if necessary to the next one (δ=Δαk/15), etc.. In the case of zero
counts, nvisit is taken to be 1; however, zero counts is a very rare event. Samples of 600
structures for K=8, 20, 40 and 100 kcal/(mol·Å) were analyzed using HSMC and the
corresponding entropy and free energy results are summarized in Tables 2 and 3.

B. Results for the entropy
It should first be pointed out that as for the dihedral angles, eq 15 was used with δαk also for
the bond angles, i.e., without considering the Jacobian component [Πksin(θk)], because we have
found that to a good approximation, the contribution of the Jacobian to the entropy cancels out
in entropy and free energy differences, which are our main interest.

Table 2 contains results (at T=300 K) for the entropy, TSA (eq 11) for four different external
forces. For each force 600 configurations (out of the entire sample size of 2500) were analyzed,
and the results were calculated for four different future sample sizes nf and four bin sizes.
However, the extent of convergence of these results is demonstrated by the best ones, i.e., those
for the two smallest bin sizes, Δαk/60 and Δαk/30 and therefore only they are presented in the
table. Results were calculated for partial samples of size, 100, 200, 300, 400, 500 and 600,
where typically the entropy (SA) and energy for sample sizes 300–600 have been found to
converge, i.e., to fluctuate slightly around an average value; the statistical errors were obtained
from these fluctuations.

The accuracy of HSMC can always be improved by decreasing the bin size and increasing the
future sample size, meaning that the corresponding SA is expected to decrease, provided that
the probability density ρHS is defined on the same conformational space that was generated by
MC simulation. Indeed, for K=8 and 20 the central values decrease or remain constant for each
bin as nf increases; a similar picture is shown for K=40 and 100 even though in some cases this
trend is reversed due probably to insufficient equilibration for the high external forces for the
smaller nf values (20000, and 40000), which leads to elevated SA results. However, almost
always these differences are insignificant within the statistical errors, meaning that for the
present accuracy a future sample of 80,000 and even 40,000 is sufficient.

As expected, the values for the smallest bin, Δαk/60 are slightly lower than the corresponding
values for Δαk/30 (even though in most cases the differences are covered by the error bars)
meaning that convergence has not been attained completely with respect to the bin size;
however, the differences T[SA (Δαk/30) − SA (Δαk/60)] for nf =160,000 are almost equal, 0.2–
0.3 kcal/mol for all forces, i.e., the extent of convergence is about the same and therefore correct
entropy differences are expected to be obtained from differences in SA. In fact, the molecule
is already relatively stiff for K=8 and the change, T[SA (K=100) − SA (K=8)] ≈ 10 kcal/mol is
therefore relatively small as well.
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The HSMC entropy results (TSA) are compared in the table with those obtained using the LS
method and the quasi-harmonic (QH) approximation. For this we generated larger samples of
sizes 15,000 and 30,000 for the QH and LS, respectively imposing the geometric restriction as
explained earlier. As expected, both methods lead to results that are larger than the HSMC
values, by up to 15 kcal/mol, i.e., ~15% (LS, using b=1 and l=10) and 12 kcal/mol (QH).

C. Results for the free energy
Results for the free energy functional, FA (eq 12) and its fluctuation, σA (eq 14), FB [Eqs. (16)
and (17)], FD (eq 20) and the energies are presented in Table 3. These results are given only
for the smallest bin, because FA values for the bin, Δαk/30 can be obtained from the entropies
of Table 2 and the energies provided in the bottom of Table 3.

The results for FA follow the opposite trend observed in Table 2 for the entropy, i.e. for K=8
and K=20 FA increases or remains unchanged, as the sample size nf increases, in accordance
with FA being a lower bound; for K=40 and K =100 this trend is changed some times according
to the behavior of SA discussed in the previous section. As for SA, differences in FA are expected
to represent faithfully the exact ones. The values of σA, as expected, decrease or remain
unchanged as the future sample size increases, but within relatively large statistical errors.

The results for FB (eqs 16 and 17) (that constitutes an upper bound for the free energy) indeed
in most cases show the expected decrease as nf is increased and they are larger than the FA

values. However, the corresponding values for the larger bin, Δαk/30 (not shown) are smaller
than those presented in the table (for Δαk/60), which suggests that the FB results are not yet
statistically converged, i.e., much larger samples are needed; also, it is difficult to calculate
their statistical errors, which we estimate to be at least three times larger than the corresponding
errors presented for FA. The same discussion applies to FD, which is expected, however, to be
statistically more reliable than FB; we estimate its errors to be at least twice as large as those
presented for FA(nf = 160,000). Still, we present the results for FM, the average of FA and
FB, which are close to the FD values (maximum difference ~1.5 kcal/mol), and constitute
estimates for the correct free energy; the differences, FM − FA are ~2.7, 3.9, 5.3, and 3.1 kcal/
mol for K=8, 20, 40, and 100, respectively and we expect the correct values to be closer to
FA than to FM. Although these differences might seem large, the relative differences are small
(smaller than 0.6% and for K=100 ~0.08 %). Since the relatively large external force (see table
3) sets the scale for the free energy of the system, the contribution of the entropy to the absolute
free energy as well as to free energy differences for various external forces is quite small. As
for the entropy, the QH and LS results constitute a significant underestimation of the free
energy.

The results shown thus far suggest that the model of peptide used is quite stiff. This is also
demonstrated in Table 4 by the relatively small increase in the extension (ΔR=1.8 Å) in going
from K=8 to K=100, and a relatively small (expected) decrease in the corresponding entropy
by TΔS= ~10 kcal/mol. On the other hand, the change in the potential energy is relatively large
ΔEint = ~66 kcal/mol, due to strong bond angle potentials, and the change in the energy due to
the external force is 1.8·92~166 kcal/mol.

D. Results from thermodynamic integration and free energy derivatives
The relatively small changes in the entropy as the forces increase are also shown in Table 5,
where they are compared with results obtained by thermodynamic integration using eq 23. The
latter results were calculated as follows: the segment [Ki, Ki+1] was divided into 20 equal
values, and for each value an MC sample of 600 structures was generated (imposing the Δαk
restrictions) where the corresponding extension R was calculated. The difference in entropy
was calculated from the area below the K(R) function by a numerical integration technique. It
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should be pointed out, that while the HSMC and the integration values for the entropy
differences are equal within the statistical errors, the integration errors are relatively large
because we have found the integration results to be sensitive to the sample size (we studied
samples between 600 –5000 conformations).

Another test for the reliability of the HSMC results is based on eq 22. Thus, we generated two
samples of 200 structures for K=7 and 9 and calculated the corresponding values of FA, from
which Rd = − [FA(9)− FA(7)]/2 was calculated. Indeed Rd is very close to both R(K=8) (Table
4) and the average of R(9) and R(7) obtained from the two samples. Reconstructing a single
conformation of (Gly)10 based on nf = 160,000 requires ~240 minutes CPU time on a 2.6 GHz
Athlon processor. Obviously, application of HSMC to a sample of size n can be carried out in
parallel on n processors.

VI. Summary
In this paper we have applied the HSMC method to the flexible model of decaglycine in the
helical conformation (at T=300 K) subjected to a stretching external force. However, for forces
larger than a small critical value a transition from the helix to the extended state occurs already
in the early stage of the MC simulation and the entropy and free energy were therefore obtained
for the extended state. The present results are more accurate than those obtained by the LS and
QH methods, and it is of interest to compare them also to results obtained for the flexible model
of (Gly)10 in Ref. 25 at T=100 K without applying external forces. Thus, the accuracy of SA,
the upper bound of the entropy, is better than that obtained there for the hairpin and is slightly
worse than that obtained for the helix and extended states. However, the results for FB and
FD are less accurate than those found for the un-stretched peptides.25 It should be noted that
because of the decrease in the conformational space due to the forces, the smallest bin size was
decreased from Δαk/15 in Ref. 25 to Δαk/60 in the present study. We have also found that the
MC acceptance rate should be ~0.4.

The molecule is found to be relatively stiff due to the strong bond angle potentials, which is
reflected by the relatively small extension obtained by increasing the force by a factor of 10;
the corresponding decrease in the entropy, as expected, was small as well. In other words, the
contribution of the entropy to differences in the free energy is significantly smaller than the
contribution of the external and internal energies. Still, differences in entropy for the different
forces are calculated with acceptable errors that are not larger than 0.2 kcal/mol.

The present study constitutes the initial application of HSMC to a peptide under stretching
forces, therefore we have chosen a molecule (decaglycine) that is much smaller and simpler
than the molecules typically studied by AFM; however, simple small peptides under a
stretching force have been also simulated by others,41,42,54 and experiments on relatively
small proteins have been carried out.55 Because the time frame of AFM experiments is in the
millisecond to second range,37 the force exerted is changed relatively slowly, leading
approximately to a reversible process. SMD simulations, on the other hand, are limited to the
nanosecond time frame and therefore require much stronger (and rapidly changed) forces that
lead to an irreversible mechanical work significantly larger than the corresponding reversible
work. Calculating the reversible work (from irreversible SMD trajectories) has been the subject
of several recent papers,44,45,54 but it can alternatively be obtained by HSMC using eq 23,
where state 1 corresponds to zero force and state 2 to any force of interest along the SMD
trajectory. The irreversible work can be obtained by integrating K(R) (eq 23) and the difference
between the reversible and irreversible works thus calculated; these works can be compared
to that generated in the experiment.
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The present results demonstrate further the versatility of the HSMC method, which has been
applied thus far to liquid argon and TIP3P water,22.23 self avoiding walks on a lattice,26 and
models of decaglycine.24,25 To further enhance the performance of HSMC we are extending
it now to molecular dynamic (rather than MC) simulations, where our long-term goal is to
develop software that enables one to apply the method to a general peptide consisting of any
sequence of amino acid residues in implicit as well as explicit solvent. HSMC will then be
used to study the effect of surface loops flexibility on protein function, and will become an
ingredient of procedures for free energy based docking of flexible ligands to an active site of
an enzyme; thus, HSMC will become a useful tool also in protein engineering. When applied
with MD, the scope of HSMC will be extended to more complex problems involving
macromolecular stretching, where the calculation of free energy and potential of mean force
profiles is of interest, as discussed in some detail above.
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Figure 1.
A picture (generated using gOpenMol) of the peptide subjected to external forces (in the
horizontal direction in the picture) of K=2 and 100 kcal/(mol·Å). For K=2 the molecule is still
approximately helical with end-to-end distance of R=21.7 Å. For K=100 kcal/(mol·Å) the helix
becomes an extended structure that is stretched significantly to R=36.8 Å with decreased
conformational freedom. This is a pictorial illustration for the results of Δαk (Table 1), which
are shown to decrease as the external force increases. Similar figures for the forces K=8, 20
and 40 are not provided because the corresponding extensions are close to that of K=100 (see
Table 4).

Cheluvaraja and Meirovitch Page 15

J Phys Chem B. Author manuscript; available in PMC 2006 August 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Cheluvaraja and Meirovitch Page 16

Table 1
The differences (in degrees) between the minimum and maximum values of the dihedral angles (eq 8) of
(Gly)10 for three different values of the external force (K).a

K=8 K=20 K=40 K=100
Res. # Δϕ Δψ Δω Δϕ Δψ Δω Δϕ Δψ Δω Δϕ Δψ Δω

1 360 99 60 110 58 55 360 47 54 222 34 48
2 90 135 56 79 79 50 68 60 42 59 51 40
3 129 101 55 83 68 51 78 55 43 50 45 43
4 89 82 53 83 70 47 73 58 45 60 46 44
5 103 74 49 80 57 54 63 62 46 67 44 47
6 105 91 51 89 74 43 59 53 42 52 41 39
7 99 97 48 81 63 43 66 51 42 61 45 41
8 97 70 54 81 62 45 76 51 38 62 41 47
9 95 72 51 81 63 56 66 54 46 59 39 41

10 107 92 45 97 70 47 73 51 47 62 46 42

a
The angles are calculated for samples of 2500 conformations; the force is given in kcal/(mol·Å).
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Table 2
Entopy, TSA (T=300 K) in kcal/mol (eq 11) for various bin sizes (eq 5) and future sample sizes, nf, obtained with
the HSMC method for different values of the external force, K*

Bin size nf K=8 K =20 K =40 K =100

Δαk/30 20,000 99.9 (3) 96.5 (2) 92.6 (4) 89.2 (3)
" 40,000 99.4 (3) 96.3 (1) 92.6 (3) 89.1 (3)
" 80,000 99.3 (3) 96.2 (2) 92.7 (3) 89.2 (3)
" 160,000 99.3 (2) 96.2 (2) 92.7 (3) 89.2 (3)

Δαk/60 20,000 99.4 (3) 96.0 (2) 92.1 (4) 88.7 (3)
" 40,000 99.1 (2) 96.0 (2) 92.3 (3) 88.8 (3)
" 80,000 99.1 (2) 95.9 (1) 92.4 (3) 88.9 (3)
" 160,000 99.1 (2) 95.9 (2) 92.4 (3) 88.9 (3)

TSQH 110.2 (4) 106.5 (3) 104.2 (4) 98.0 (5)
TSLS 114.7 (5) 110.1 (3) 105.9 (4) 101.4 (5)

*
Δαk is defined in eq 8. The HSMC results are based on a sample of 600 conformations. K is given in kcal/(mol·Å). The statistical errors are given in

parentheses, e.g., 99.1 (3) = 99.1 ±0.3. SQH is the quasi-harmonic entropy (eq 21) and SLS (eqs 11 and 13) is the local states (LS) entropy obtained for
b=1 and l=10. The entropy is defined up to an additive constant.
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Table 4
HSMC results for extensions, R, entropies, TSA, and potential energies, Eint, for different external forces, K, at
T=300 K*

K [kcal/(mol·Å)] R (Å) TS [kcal/mol] Eint [kcal/mol]

8 34.98 (3) 99.1 (2) −43.5 (2)
20 35.49 (2) 95.9 (2) −39.5 (4)
40 35.99 (2) 92.4 (3) −27 (1)

100 36.78 (2) 88.9 (3) +23.1 (8)

*
The statistical error is defined in Table 2.
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Table 5
Differences in the entropy, T SA, (kcal/mol) at T=300 K for different forces, K obtained by HSMC and by
integration using eq 23*

HSMC Integration

T[SA(K=8) - SA(K=20)] 3.2 (1) 3.1 (2)
T[SA(K=20) - SA(K=40)] 3.5 (2) 3.0 (5)
T[SA(K=40) - SA(K=100)] 3.5 (2) 3.8 (5)

*
The statistical error is defined in Table 2.
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Table 6
Calculation of the extension, R for external force, K=8 from free energy results (F ) obtained by HSMC for K=7
and K=9 using the derivative, eq 22*

F(K=7) (kcal/mol) F(K=9) (kcal/mol) -ΔF/ΔK (Å) [R(K=9)+R(K=7)]/2 (Å) R(K=8) (Å)

−387.5 (4) −457.7 (4) 35.1 (4) 34.96 (3) 34.98 (3)

*
K is given in kcal/(mol·Å). The free energy values were obtained from samples of 200 configurations. The statistical error is defined in the caption of

Table 2.
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