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Abstract
While lattice models are used extensively for macromolecules (synthetic polymers proteins, etc),
calculation of the absolute entropy, S, and the free energy, F, from a given Monte Carlo (MC)
trajectory is not straightforward. Recently we have developed the hypothetical scanning MC (HSMC)
method for calculating S and F of fluids. Here we extend HSMC to self-avoiding walks on a square
lattice and discuss its wide applicability to complex polymer lattice models. HSMC is independent
of existing techniques and thus constitutes an independent research tool; it provides rigorous upper
and lower bounds for F, which can be obtained from a very small sample and even from a single
chain conformation.

Lattice models have been utilized to study a wide range of phenomena in polymer physics
[1–5] as well as in structural biology, mainly related to protein folding and stability [6–9] (Refs
1–9 constitute a very limited representation of hundreds of papers published in the last 15
years). Because of their simplicity these models have been invaluable tools for understanding
global properties that do not depend strongly on molecular details. Such models vary in
complexity, ranging from self-avoiding walks on a square lattice to chain models on enriched
3D lattices with a large effective coordination number.

Commonly, these systems are simulated by variants of Metropolis Monte Carlo (MC) - a
dynamical method that enables one to generate samples of chain configurations i distributed
according to their Boltzmann probability, Pi

B, from which equilibrium information can be
extracted [10]. Using MC it is straightforward to calculate properties that are measured directly
from i, such as the potential energy Ei. On the other hand, the value of Pi

B cannot be obtained
in a straightforward manner, which makes it difficult to calculate the absolute entropy, S ~ -
lnPi

B directly, i.e., as a byproduct of the simulation (like Ei). There is a strong interest in S as
a measure of order and as an essential ingredient of the free energy, F=E−TS, where T is the
absolute temperature; F constitutes the criterion of stability, which is mandatory in structure
determination of proteins, for example. Furthermore, because MC simulations constitute
models for dynamical processes, one would seek to calculate changes in F and S during a
relaxation process, by assuming local equilibrium in certain parts along the MC trajectory; a
classic example is simulation of protein folding [11].

S, and F are commonly calculated by thermodynamic integration (TI) techniques [12–14] that
do not operate on a given MC sample but requires conducting a separate set of MC simulations.
This is a robust approach that enables one to calculate differences, ΔSab and ΔFab, between
two states a and b of a system; however, if the structural variance of such states is large (e.g.,
helical and hairpin states of a polypeptide) the integration from state a to b becomes difficult
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and in many cases unfeasible. On the other hand, if one could calculate the absolute Fa and
Fb directly from two separate sets of simulations carried out at states a and b, ΔFab = Fa −
Fb and the integration can be avoided. Still, the absolute F can also be obtained with TI provided
that a reference state r is available, where the free energy is known exactly and the integration
path between r and a (and b) is relatively short. However, for non-homogeneous lattice models
such integration might not be trivial, and in models of peptides and proteins, defining reference
states that are close to the state of interest is a standing problem.

Another type of simulation method has been developed for polymers, where a chain is
constructed step-by-step with transition probabilities (TPs) [15–19, see also an extensive
review in Ref. 5]. The product of these TPs leads to Pi

B, hence S is known. However, these
build-up procedures are not always the methods of choice mainly because they lack the
dynamical aspects (and simplicity) of MC, which thus has become the commonly used method.
Hence, it is important to develop methods for calculating the absolute entropy from a given
MC trajectory. Nonetheless, a hybrid of one buildup procedure, the scanning method [19], with
the dynamical MC approach has led to two approximate techniques, the local states (LS) [20,
21] and hypothetical scanning (HS) methods [22,23]. These methods enable one to calculate
S and F directly from a given sample generated by any simulation technique, and they have
been applied successfully to polymers, peptides, proteins, magnetic systems, and lattice gas
models [14].

Recently, the HS method has been extended to fluids and has been further developed by
defining transition probabilities (TPs) that are calculated by an MC procedure and (unlike the
TPs of HS) take into account all the long-range interactions[24,25]; this HSMC method has
been applied very successfully to liquid argon, TIP3P water [25], and polyglycine molecules
in helical, extended and hairpin states [26]. HSMC is significantly more accurate than HS,
provides rigorous upper and lower bounds for F, which can be calculated from a relatively
small sample and even from a single conformation.

The aim of this paper is to extend the scope of HSMC to lattice polymer models, in particular
to random coil chains. For that we study self-avoiding walks (SAWs) on a square lattice - a
difficult test case due to the strong excluded volume (EV) interactions occurring in 2D [5] -
and discuss application of HSMC to more complex lattice chain systems. The present results
are compared to results obtained by us using TI, to those obtained some time ago by the
scanning method [27], and to results based on series expansion (exact enumeration) techniques
[28]. In what follows we first describe the scanning method [19], the HS method, and then
HSMC for SAWs.

Assume a single SAW of N steps (bonds), i.e., N+1 monomers starting from the origin on a
square lattice. All the SAWs i are equally probable with Boltzmann probability

Pi
B = 1/ ZSAW, (1)

where the partition function, ZSAW, is the total number of different SAWs, and the free energy
is

F/ kBT = − S/ kB = ∑
i

Pi
B ln Pi

B = − ln ZSAW = ln P j
B (2)

where kB is the Boltzmann constant, and j is any SAW. The summations (in i) here and in the
rest of the paper are over the ensemble of SAWs. Eq. (2) demonstrates that F (and S for this
particular model) has zero fluctuation, which is a general property of the correct free energy
of any system, while the fluctuation of an approximate F is expected to be finite [29]. Eq. (2)
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also shows that if the Boltzmann probability of any single SAW (j) is known, F (and S for this
particular model) is known as well, which again is a general property satisfied by any system
in equilibrium.

With the scanning method [19] a SAW is grown step-by-step with TPs; thus, at step k of the
process, k−1 directions (bonds), ν (ν =1,4) will have already been constructed [they are denoted
ν1,.., ν(k−1)]. To determine the direction νk (out of 4 possible directions, ν) one enumerates all
the possible continuations Zk

ν(f) of the chain in a limited number of f future steps that start
from ν of step k, where Zk

ν(f) is a partial future partition function and f is the scanning parameter.
Zk

ν(f) enables one to define TPs for ν,

p(v| v(k−1), … , v1, f ) = Zk
v( f )/ ∑

v=1

4
Zk

v( f ). (3)

Using these TPs, the kth step is determined by a random number and the process continues.
The construction probability Pi

0(f) of SAW i is the product of the TPs with which the steps
have been chosen,

Pi
0( f ) = ∐

k=1

N
p(vk| v(k−1), … , v1, f ) (4)

Again, for f ≪ N Pi
0(f) is approximate. Due to this “incomplete” scanning, the chain can get

trapped in a dead end during construction. Also, Pi
0(f) is biased, i.e., unlike Pi

B, it is larger for
the compact SAWs than for the open ones. This bias can be decreased systematically by
increasing f, where for a complete future scanning, i.e., fmax=N−k+1, the TPs [Eq. (1)] become
exact and no trapping occurs [19]. In practical applications the bias is removed by an
importance sampling procedure, which leads to an unbiased estimation that is exact within the
statistical error. The scanning method can easily be extended to a chain model with finite
interactions; in this case the interaction energy Ej(ν)

k (f) of the future chain j that starts from
with itself and with the rest of the chain is calculated and the corresponding Boltzmann factor
contributes to Zk (f), rather than 1, Zk

ν( f ) = ∑
j(ν)

exp − E j(ν)
k ( f ) /kBT .

The HS method (as well as LS) is based on the concept that two samples in equilibrium
generated by different simulation methods are equivalent in the sense that both lead to the same
estimates (within the statistical error) of average properties, such as the entropy, energy, and
their fluctuations. Relying on this equivalence, one assumes that a given sample of SAWs
constructed by any exact procedure (e.g., Metropolis MC) has instead been generated with the
scanning method. Thus, for each of the bonds [νk(i)] of SAW i one calculates the TPs [Eq. (3)]
as if i had been generated with the scanning method. The product of these TPs leads to Pi

0(f)
[Eq. (4)] and to a functional SA, which can be shown rigorously (using Jensen’s inequality) to
be an upper bound for S [23],

S A( f ) = − kB∑i
Pi

B ln Pi
0( f ), (5)

where i runs on the complete ensemble of SAWs.. The fluctuation σA(f) of ln Pi
0(f),

σA( f ) = { ∑
SAWs

Pi
i

B S A( f ) + kB ln Pi
0( f ) 2}1/2, (6)

is expected to be larger than zero, decreasing with increasing f (i.e., with improving the
approximation).
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While the TPs defined by HS are deterministic (based on all the future SAWs of f bonds at
step k), for a large chain they are always approximate, i.e., f ≪ N due to the exponential growth
(with f) of the number of future SAWs. The HSMC method overcomes this limitation by
seeking to estimate the exact TP at step k [see Eq. (3)],

p (v | v(k−1), … , v1, fmax = N − k + 1) = Zk
v( fmax)/ ∑

v=1

4
Zk

v( fmax) (7)

Thus, an MC simulation of the entire future part of the chain (i.e., steps k, k+1,…,N) is carried
out in the presence of the “frozen past” [ν1,.., ν(k−1)]. The TP of the actual direction, νk(i) in
the reconstructed SAW i is calculated from the number of MC steps, nk

ν(i) for which νk(i) was
visited during the simulation of total nMC MC steps at k,

pHS(vk(i) | v(k−1), … , v1) = nk
v(i)/ nMC (8)

and the reconstruction probability of chain i is

pi
HS = ∐

k=1

N
pHS(vk | v(k−1), … , v1) (9)

where, for simplicity, i has been omitted in the TPs. To be consistent with Ref. 25, the
probabilities, Pi

HS and pHS, are superscripted with HS rather than HSMC. It should be noted
that unlike the deterministic Pi

0(f) [Eq. (4)], Pi
HS is defined stochasticly. The fact that the entire

future is considered is important for systems with strong long-range interactions such as SAWs,
proteins, etc. Still, pHS and hence Pi

HS are approximate, but as the MC simulation is increased,
their estimation improves, i.e., pHS → pexact and Pi

HS → Pi
B, meaning that S can be estimated

by reconstructing a single SAW (see Eq, (2)]. In practice, however, Pi
HS is approximate leading

to an approximate functional SA [compare with Eq. (5)]

S A = − kB∑i
Pi

B ln Pi
HS = ∑

i
Pi

BSi
HS (10)

It can be shown (see Appendix of Ref. 25) that like SA [Eq. (5)], SA [Eq. (10)] defined with
stochastic probabilities, Pi

HS, is a rigorous upper bound, which is expected to have non-zero
fluctuation σA [Eq. (6)]. Also, it should be pointed out that an HSMC reconstruction for SAWs
with attractions is practically the same, where, however, the MC acceptance criterion is
determined by both, EV and the attractions [26].

One can define another entropy functional, SB that is a rigorous lower bound of S. To estimate
SB from an (exact) MC sample, we express it in terms of statistical averages defined with
Pi

B,

S B = − kB∑i
Pi

HS ln Pi
HS = − kB

∑
i

Pi
B Pi

HS ln Pi
HS

∑
i

Pi
BPi

HS (11)

If the deviations of SA and SB from S (in the absolute values) are approximately equal, their
average SM becomes a better approximation than either of them individually,

S M = S A + S B / 2. (12)

The entropy can be expressed exactly by SD (see Ref. 25), which can also be estimated from a
sample generated with Pi

B
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S D = − kB ln ∑
i

Pi
BPi

HS = − kB ln ∑
i

Pi
B exp ( − Si

HS/ kB) (13)

While the theory above has been introduced for the entire ensemble, it also applies to a set of
reconstructions of a single chain conformation (see Appendix, Ref. 25). Thus, we have
calculated the entropy of SAWs consisting of N= 49, 99, 149, 249, 399 and 599 bonds, where
for each chain length the results were obtained by n replicate reconstructions (based on a
different sets of random numbers) of a straight SAW of N bonds. For example, in this paper
SA is estimated as follows: from n reconstructions of the same single chain we obtain n values
for ln Pt

HS and we take their arithmetic average − (kB/n) ∑t ln Pt
HS; an analogous procedure

is used for SB and SD. The efficiency of HSMC is affected considerably by the MC procedure
employed in the reconstruction process. On a square lattice, “crankshaft” moves are in most
cases rejected due to the strong EV interactions while corner moves have somewhat higher
acceptance rate [5]. Therefore, for the reconstruction process we have used an MC procedure
based on 50% corner moves (that provide local conformational changes) and 50% “pivot”
moves that have been shown to effectively induce global changes [30].

The calculations are based on the sample size n - the number of reconstructed SAWs and
nfuture, which is related to the number of future MC steps per bond applied during the
reconstruction process as defined below. First we note that the first bond of the chain is not
reconstructed; its probability is always ¼. The number of MC steps, nMC, for bond k is scaled
as nMC=(N−k+1)nfuture, meaning that the maximal number of future MC steps is applied for
the reconstruction of the second bond (to which corresponds the largest future segment of N
−1 bonds), while the last bond (N) is allotted the minimal number of MC steps. Because each
simulation at step k always starts from a straight chain it is important to let the future SAW
equilibrate, otherwise pHS [Eq. (8)] would (on average) be too high; therefore, 300 MC steps
per future bond are used for equilibration. As discussed earlier, the larger is nfuture the better
(i.e., smaller) is SA [Eq. (10)], the larger is SB [Eq. (11)] and the smaller is the fluctuation,
σA [Eq. (6)]. To demonstrate this effect, the results for each chain length are presented in Table
1 for nfuture = 500, 5000, and 50000, where the corresponding sample size, n, is decreased,
which results in approximately the same computer time for each calculation. We present results
obtained with the scanning method [27] and with series expansion [S/kB=(lncN)/N], where
cN ~ μN [a1N11/32 + a2N−21/32 + b1N−37/32 + (−1)N d1N−3/2 + (−1)Nd2N−2], a1=1.1771(2),
a2=0.554(2), b1= −0.19(2), d1=−0.19(2), d2= 0.034(2), and μ=2.6381585(10) (the error of the
last digit appears in parenthesis) [28]. Also, using the present MC procedure, we have carried
out TI simulations starting from an ideal chain (with known entropy of kB[ln4+(N−1)ln3] and
integrating S by a gradual increase of the EV interaction (e.g., see Ref. 31). These results are
presented in the table as well. We shall consider the TI and series results as correct.

The table supports the above expectations. Thus, for all chain lengths, as nfuture is increased
from 500 to 50,000, the fluctuation decreases, SA decreases and remains an upper bound, and
SB increases remaining a lower bound. On the other hand, for N ≤ 249, SM the average of SA

and SB is constant for the three nfuture values and for N=400 and 600 SM is the same for
nfuture=5000 and 50000. In all these cases SM is equal, within the error bars, to the TI and series
results, and for N<600 also to the scanning results, which demonstrates that for these cases
(i.e., for good enough approximations) the absolute values of SA and SB deviate equally from
the correct results. For each N, SD and SM are equal within the statistical errors. We suspect
that the scanning result for N=599 underestimates the correct value due to the bias (toward the
compact SAWs) introduced by the scanning procedure, which has not been removed
completely by importance sampling. Also, the series expansion and TI results are equal within
the error bars except for N=599. Overall the HSMC statistical errors are small (0.002–0.005%);
however, it should be noted that much more computer time has been invested in the simulations
of the longer chains.
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An inherent inefficiency of HSMC lies in the need to carry out N−1 simulations for pan N-
bond SAW. Still, performance can be improved by changing the scaling function discussed
above, which controls the extent of simulation applied to each bond in the reconstruction
process. However, the most significant factor affecting efficiency is the spimulation method
used. Thus, our preliminary simulations based on corner moves alone have converged
extremely slowly, and adding the pivot moves improved performance dramatically. In three
dimensions, where the EV effect is weaker, one can add crankshaft moves (and other moves,
see Ref. 5) that are expected to increase efficiency further. Also, a chain with attractive
interactions (a homopolymer or a heteropolymer consisting of monomers with different
interactions) unlike SAWs would span (at low T) only a limited part of conformational space;
to obtain the corresponding local F, the future chains should be limited to this region, which
can be achieved only by local MC moves [26]. Moreover, in this work we have studied straight
chains that are the easiest to reconstruct, where in practical applications non-straight SAWs
will be treated. For such chains one can envisage situations where the present MC procedure
will not be ergodic (at least for specific bonds) due to geometrical constraints imposed by the
frozen past, thus leading to incorrect probabilities ρHS [Eq. (8)]. One remedy for this problem
would be to replace for these bonds the present dynamic MC procedure by a suitable step-by-
step construction (growth) procedure [15–18] (these procedures can provide S, but unlike
HSMC, not from a given trajectory). For SAWs the most efficient is the scanning method,
followed by TI, where HSMC is the least efficient. For example, one reconstruction of a 399-
bond SAW for nfuture=50000 requires ~4.2 h CPU leading to S=0.9757 (6). The value of TI in
the table required ~100 h CPU.

However, the applicability of HSMC to both, random coil SAWs and peptides that fluctuate
locally [26] demonstrates applicability to all ranges of flexibility, versatility that is not shared
by other methods. Thus, the harmonic and quasi-harmonic techniques [32,33] are limited to
handle (at least approximately) local fluctuations (for which HS has failed), LS is very
inefficient for SAWs, and calculating the absolute S (and F) of local fluctuations of peptides
by TI is a standing problem. The practical application of HSMC to a wide range of lattice
models (e.g., with attractions or any set of boundary conditions) is straightforward but requires
selecting an optimal simulation method for each case, as discussed earlier. An interesting test
case is a model of multiple SAWs enclosed in a “box”, studied previously by the scanning and
HS methods [34], where chains are added successively to an initially empty box. However,
with HS only the partial future of a reconstructed chain is considered, whereas HSMC can take
into account the entire future, including that of the reconstructed chain and the positions and
conformations of the as yet unreconstructed chains.

In summary, calculation of S is a central (notoriously difficult) problem in computer simulation
and HSMC with its unique features constitutes a new tool for obtaining S independent of other
methods. With HSMC all interactions are considered, and its accuracy depends only on the
amount of MC sampling. Furthermore, the accuracy analysis of the results (SM and. SD) is
inherent in the method, by verifying the increase and decrease of the rigorous upper and lower
bounds, SB and SA, and the decrease of σA, as the approximation improves. Finally, HSMC is
of general applicability and unlike most methods, enables one to extract the absolute entropy
from a given sample, where only a small number of SAWs (and even a single chain) need to
be reconstructed; this is important for studying relaxation processes, such as protein folding.
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Table 1
HSMC results for the entropy of N-bond SAWs obtained from n reconstructions of a straight chain. SA [Eq. (10)]
and SB [Eq. (11)] are upper and lower bounds, respectively, SM [Eq. (12)] is their average, and SD [Eq. (13)] is
an exact entropy functional. σA [Eq. (6)] is the fluctuation and nfuture is related to the number of MC steps per
bond (see text). STI and Sscan and Sseries were obtained by thermodynamic integration, the scanning method
[15], and a series expansion formula (see text), respectively. The statistical error is defined by parentheses: 1.00
(3) = 1.00 ± 0.03.

nfuture SA / kB σA SB / kB SM / kB SD / kB n

N = 49 SSCAN = 1.000904 (4)
500 1.00583 (1) 0.01424 (2) 0.99602 (5) 1.00093 (3) 1.00091 (3) 1250000
5000 1.00140 (1) 0.00448 (2) 1.00042 (3) 1.00091 (2) 1.00091 (2) 125000
50000 1.00095 (1) 0.00142 (2) 1.00085 (3) 1.00090 (2) 1.00090 (2) 12500

STI 1.000897 (3) 1.000897 (3) 1.000897 (3) 1.000897 (3)
Sseries 1.000899 (4) 1.000899 (4) 1.000899 (4) 1.000899 (4)

N = 99 SSCAN = 0.987726 (5)
500 0.99294 (2) 0.01030 (3) 0.9826 (1) 0.98775 (5) 0.98773 (5) 250000
5000 0.98826 (2) 0.00324 (3) 0.98722 (5) 0.98774 (3) 0.98774 (3) 25000
50000 0.98777 (2) 0.00101 (3) 0.98767 (4) 0.98772 (2) 0.98772 (3) 2500

STI 0.987727 (3) 0.987727 (3) 0.987727 (3) 0.987727 (3)
Sseries 0.987730 (3) 0.987730 (3) 0.987730 (3) 0.987730 (3)

N = 149 SSCAN = 0.982740 (3)
500 0.98806 (2) 0.00852 (3) 0.9774 (2) 0.9827 (1) 0.9827 (1) 250000
5000 0.98329 (2) 0.00267 (3) 0.98222 (5) 0.98276 (3) 0.98276 (3) 25000
50000 0.98281 (2) 0.00085 (3) 0.98270 (4) 0.98275 (2) 0.98275 (3) 2500

STI 0.982742 (3) 0.982742 (3) 0.982742 (3) 0.982742 (3)
Sseries 0.982740 (2) 0.982740 (2) 0.982740 (2) 0.982740 (2)

N = 249 SSCAN = 0.97836 (2)
500 0.98391 (3) 0.00669 (4) 0.9727 (3) 0.9783 (2) 0.9783 (2) 63000
5000 0.97889 (2) 0.00208 (4) 0.97782 (8) 0.97836 (4) 0.97836 (5) 9100
50000 0.97840 (2) 0.00066 (4) 0.97829 (5) 0.97835 (3) 0.97835 (3) 930

STI 0.978358 (4) 0.978358 (4) 0.978358 (4) 0.978358 (4)
Sseries 0.978360 (1) 0.978360 (1) 0.978360 (1) 0.978360 (1)

N = 399 SSCAN = 0.97567 (4)
500 0.98138 (6) 0.00540 (5) 0.9710 (5) 0.9762 (3) 0.9759 (3) 9500
5000 0.97625 (4) 0.00170 (5) 0.9751 (1) 0.97567 (5) 0.97567 (5) 2000
50000 0.97568 (4) 00.00053 (5) 0.97557 (7) 0.97563 (4) 0.97563 (5) 225

STI 0.975655 (8) 0.975655 (8) 0.975655 (8) 0.975655 (8)
Sseries 0.975652(1) 0.975652 (1) 0.975652 (1) 0.975652 (1)

N = 599 SSCAN = 0.97395 (5)
500 0.98003 (8) 0.00445 (7) 0.9706 (8) 0.9753 (4) 0.9748 (5) 3000
5000 0.97466 (7) 0.00139 (7) 0.9736 (2) 0.9741 (1) 0.9741 (1) 450
50000 0.97413 (5) 0.00036 (7) 0.9741 (1) 0.97409 (6) 0.97409 (5) 45

STI 0.97404 (1) 0.97404 (1) 0.97404 (1) 0.97404 (1)
Sseries 0.974025(1) 0.974025(1) 0.974025(1) 0.974025(1)
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