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ABSTRACT

This paper compares the type I error and power of
the one- and two-sample t-tests, and the one- and
two-sample permutation tests for detecting differ-
ences in gene expression between two microarray
samples with replicates using Monte Carlo simula-
tions. When data are generated from a normal distri-
bution, type I errors and powers of the one-sample
parametric t-test and one-sample permutation test
are very close, as are the two-sample t-test and two-
sample permutation test, provided that the number
of replicates is adequate. When data are generated
from a t-distribution, the permutation tests outper-
form the corresponding parametric tests if the
number of replicates is at least ®ve. For data from a
two-color dye swap experiment, the one-sample test
appears to perform better than the two-sample test
since expression measurements for control and
treatment samples from the same spot are correl-
ated. For data from independent samples, such as
the one-channel array or two-channel array experi-
ment using reference design, the two-sample t-tests
appear more powerful than the one-sample t-tests.

INTRODUCTION

Recent advances in cDNA microarray technology provide
exciting tools for studying the expression levels of thousands
of distinct genes simultaneously. There are two main
platforms for cDNA microarray: nylon membrane-based ®lter
arrays and chemically coated glass-based arrays. The nylon
membrane arrays are hybridized with 33P or 35S-labeled cDNA
targets, and glass arrays are hybridized with ¯uorescent dye-
labeled targets. The nylon array is also used with the
colorimetric detection (1). The simplest microarray experi-
ment is to study changes in gene expression levels between a
reference sample and a treated (toxin or drug) sample. In the
experiment, samples of DNA clones with known sequence
content are spotted and immobilized onto a glass slide or
nylon ®lter. The mRNA extracted from the tissue cell under
study is puri®ed, reversed-transcribed into cDNA and labeled
with radioactive markers or with green or red ¯uorescent
dyes. Labeled cDNA hybridizes to the spots containing

complementary sequences on the array. After hybridization,
the radioactive or ¯uorescent signal intensities are measured
using a phosphoimager or laser scanner, respectively. One
intensity is measured on each spot for the radiation-labeled
array (one-channel array) while two intensities are measured
on each spot for the ¯uorescence dye-labeled array (two-
channel array). In both cases, the intensities are surrogates for
the expression levels of genes in the sample under study.

In a two-channel experiment, the same spot is used to assess
the expression of a gene for the control sample and the treated
sample labeled with red and green (or vice versa), respect-
ively. The expression levels of the two samples can be
compared for each gene in an array. The ratio of the ¯uor
intensity for each spot measures the relative abundance of the
corresponding gene under two different experimental condi-
tions. In contrast, in a one-channel experiment, the expression
levels of a gene for the control and treated samples are
measured on two different arrays. The expression levels of the
control and treatment arrays are compared to assess the
difference between two samples.

It has been recognized that there are many sources of
systematic variation, spatial heterogeneity and signal satur-
ation, in assigning expression levels to the measured
intensities. The expression levels from the two measurements
are not directly comparable. Adjustments of the expression
data should be performed prior to statistical analysis. Yang
et al. (2) and Irizarry et al. (3) described several normalization
methods for the two-channel and one-channel arrays, respect-
ively.

A goal of the microarray analysis is to identify a subset of
genes that are differentially expressed between the control and
treated samples. Draghici (4) gave a review and comparison of
currently proposed methods for detecting the set of differen-
tially expressed genes. In general, a gene is said to be
differentially expressed if the ratio in absolute value of the
expression levels between the treated group to the control
exceeds a certain threshold (5), e.g. 2- or 4-fold change. These
genes are classi®ed as altered genes. This approach is de®cient
in some respects. For example, the ratio at the lower levels can
be more different than that at the higher levels. Furthermore,
gene expression measurements in hybridization experiments
are noisy; e.g. the coef®cient of variation in gene expression in
mouse liver was found to be >30% among 80% of genes tested
and >50% of the 56% of genes (6). Alternatively, Newton et al.
(7) proposed an improved method of inferring fold changes by
deriving the posterior odds of change within a similar model.
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Furthermore, the statistical signi®cance testing approach and
ANOVA can also be applied to identify differentially
expressed genes (8±10).

Standard statistical methods have been used for compari-
sons of intensity levels among treatments one gene at a time
(11). The log-transformed normalized intensities from two
groups can be compared using either the one-sample or two-
sample t-test (8,9). These two approaches represent different
underlying model assumptions. The two-sample t-test assumes
the distribution of the log-transformed intensity data in each
group is independently and identically normally distributed,
while the one-sample t-test assumes that the paired distribu-
tion of treated and control groups is normally distributed. In
this paper we compare these two different testing approaches
and compare them to permutation tests for identifying
differentially expressed genes with replicate arrays. All
models and methods described here are not restricted to any
speci®c microarray platform or technology.

MATERIALS AND METHODS

Statistical models for background-subtracted raw
intensity data

Assume that the experimental design for two cDNA samples
on the array are a control and a treatment sample, for example,
the control sample is assigned to the green dye and the treated
sample is assigned to the red dye. Because of different labeling
ef®ciencies or different scanning sensitivities to the two dyes,
the so-called dye swap design with two arrays is often used to
account for dye biases. In the dye swap design, on array 1, the
control sample is assigned to the green dye and the treated
sample is assigned to the red dye; the dye assignments are
reversed on array 2. We ®rst present a model for gene
expression data from this type of two-channel cDNA
microarray design. We will consider the data from another
type of two-channel cDNA microarray design and from a one-
channel microarray.

It has been recognized that microarray spot intensity, in
general, is approximately log-normally distributed with the
standard deviation approximately proportional to the magni-
tude of intensity (mean), e.g. Black and Doerge (12), Chen
et al. (13) and Ideker et al. (14). Furthermore, two intensity
measurements of the same spot are correlated. A model for
background-subtracted intensities (without a normalization)
for a spot (gene) on the array is

Xijc = micehijc + eijc

Xijt = mitehijt + eijt,

where (mic,mit) represents the paired true expression levels at
the spot i for control and treated samples. In this model,
(hijc,hijt) represents the multiplicative error and (eijc,eijt)
represents the additive error for spot i and arrays j, i = 1,...,
g and j = 1,..., r. For each gene i, we assume that the two error
components are independently and identically bivariate-
normally distributed,

(hijc,hijt)
i.i.d.
~ N(0,Fi)

(eijc,eijt)
i.i.d.
~ N(0,Si),

where Fi and Si are variance±covariance matrices of (hijc,hijt)
and (eijc,eijt), respectively, and

Fi � f2
ic

tificfit

tificfit

f2
it

� �
and

X
i
� s2

ic

risicsit

risicsit

s2
it

� �
:

Also, the errors (hijc,hijt) and (eijc,eijt) are independent of one
another. This model is similar to that proposed by Rocke and
Durbin (15). The mean, variance and covariance for (Xijc, Xijt)
are

E�Xijk� � mik � ef2
ik=2 Var�Xijk� � m2

ik � ef2
ik � �ef2

ik ÿ 1� � s2
ik; for k � c; t

Cov�Xijc;Xijt� � micmit � e
f2

ic
2 �

f2
it
2 � �eÿtificfit ÿ 1� � risicsit :

This model has an approximately constant coef®cient of
variation. That is, the standard deviation is approximately
proportional to its mean expression level. We refer to this
model as Model I.

Frequently, the background-subtracted intensities may have
different scales among replicated arrays due to different total
amounts of labeled cDNA sample or different sensitivities in
scanner setting. In other words, the variation among the genes
on the same array may behave more alike. A simple approach
to modeling array effects is to model multiplicative error as
array-speci®c effects

(hijc,hijt) º (hjc,hjt)
i.i.d.
~ N(0,Fi).

Under this model, the covariance between the spots i1 and i2
on the same array j is, Cov(Xi1jk

,Xi2jk
) = mi1k

,mi2k
´ ef2

k ´ (ef2
k ± 1),

k = c,t. We will refer to this model as Model II.
In practice, the background-subtracted intensity data are

usually log-transformed to improve the normality and to
stabilize the variance before statistical analysis. Applying the
logarithmic transformation Yijk = log(Xijk) and using the
Taylor's expansion at m*

ik = E(Xijk), the mean, variance and
covariance are approximately:

E�Yijk� � log�m�ik� � log�mik� � f2
ik=2;

Var�Yijk� � m2
ik � ef2

ik � �ef2
ik ÿ 1� � s2

ik

m2
ik � ef2

ik

� f2
ik �

s2
ik

m2
ik

;

Cov�Yijc; Yijt� � �eÿtificfit ÿ 1� � risicsit

micmit

:

Since mik is generally much larger than sik, the log-
transformed intensity Yijk will be approximately normally
distributed with mean log(mik) and variance f2

ik. This supports
using the parametric approach, such as t-test or F-test, to the
log-transformed data for identifying differentially expressed
genes. In the evaluation and analysis below, the data generated
from Models I and II are assumed to be log-transformed (in
base 2).

Statistical models for log-transformed data

As discussed, there are a number of nuisance factors that can
in¯uence the intensity measurements. Typically, a normal-
ization method, such as the median, ANOVA or M versus A
plot lowess normalization, is applied to the log-transformed
intensity prior to statistical analysis. Let Yijc and Yijt be the
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background-subtracted and normalized intensity for control
and treated samples, respectively. We propose the linear
model with two sources of variation,

Yijc = mic + hijc + eijc

Yijt = mit + hijt + eijt

Analogous to Model I and Model II, the (hijc,hijt) and (eijc,eijt)
are assumed to be independent of one another, and both are
independently and identically bivariate-normally distributed.
The distributions of Yijc and Yijt are

Yijc
i.i.d.
~ N(mic,f2

ic + s2
ic) and Yijt

i.i.d.
~ N(mit,f2

it + s2
it).

The covariance between Yijc and Yijt is (tificfit + risicsit). The
distribution of difference Tij = Yijc ± Yijt is normal with mean
(mic ± mit) and variance s2

i = (f2
ic ± 2tificfit + f2

it) + (s2
ic ± 2risic

sit + s2
it). This model assumes that responses among the spots

on the same array are independent. We will refer to this model
as Model III.

Similarly, the variation among genes on the same array can
be modeled as array-speci®c effects, that is, hijc = hjc and hijt =
hjt. The variance and covariance are Var(Yijk) = f2

k + s2
ik and

Cov(Yi1 jk,Yi2 jk) = f2
k, k = c,t. This is known as the liner mixed-

effects model. The distribution of difference Tij = Yijc ± Yijt is
also normal with mean (mic ± mit) and variance s2

i = (f2
c ± 2tfcft

+ f2
t) + (s2

ic ± 2risicsit + s2
it). We will refer to this model as

Model IV.
The models described above are for data from a two-

channel microarray experiment in which the control and
treatment samples are hybridized on the same array. These
models can be applied to the data either from a one-channel
experiment or from a two-channel experiment with reference
design (2). In the reference design, all samples of interest
(control and treatments) are hybridized on different arrays
labeled with the same color dye, while a reference sample
labeled with the other color dye is used on every array to
hybridize with either a control or a treatment sample. In this
design, the relative expression levels of the control-to-
reference or treatment-to-reference can be directly computed
as observed responses for each array. Thus, like the one-
channel, the array consists of one measurement (assuming no
replicate spots within an array) for each gene. In either case,
the expression data are an independent sample, and the
correlations ti and ri are set to be 0.

Test statistics

Identifying differentially expressed genes between the control
and treatment can be formulated in terms of the hypothesis

Hi0: mic ± mit = 0 versus Hi1: mic ± mit ¹ 0.

The sampling distribution YÅ ic ± YÅ it is used to test the hypothesis
Hi0, where YÅ ic and YÅ it are the means of the r (array) replicates
in the control group and r replicates in the treatment group,
respectively, and s2

ic and s2
it are the corresponding sample

variances.
For independent control and treatment samples (assuming ti

= ri = 0), the hypothesis is commonly done by computing the
two-sample t-statistic (YÅ ic ± YÅ it)/si,2, where si,2 is the standard
error estimate of (YÅ ic ± YÅ it), i = 1,..., g. Under the model of an
equal variance Var(Yijc) = Var(Yijt), if there is no difference
between the two groups, then YÅ ic ± YÅ it has a t-distribution with

2r±2 degrees of freedom, where s2
i,2 = (2/r)s2

i and s2
i = (r ± 1)

(s2
ic + s2

it)/(2r ± 2) is the common variance estimate. If the
two groups have difference variances, then the two-sample
unequal variance t-statistic or Welch test is applied (9,10). In
this paper, evaluation of the two-sample t-test is based on the
model of an equal variance in the two groups.

As discussed, the intensities measured from the same spot
are correlated. In such paired control and treatment data, we
can apply the one-sample t-test for the two-group comparison.
Let Dij = Yijc ± Yijt and DÅ i be mean of the Dij over the r replicate
arrays. If there is no difference between the two groups, then
the one-sample t-statistic ti = DÅ i/si,1 has a t-distribution with
r±1 degrees of freedom, where s2

i,1 = s2
i/r and s2

i is the sample
variance of Dij over the r replicates.

The t-test has the highest power to detect a difference if the
samples are normally distributed. If the two groups have
difference variances, then the two-sample unequal variance t-
statistic should be applied. In this case, the use of an equal
variance two-sample t-test may be biased. In practice, the
distribution of the normalized intensity data may not follow a
normal distribution, the permutation tests are generally
recommended. The permutation test does not require any
distribution assumption. We consider one-sample and two-
sample permutation tests using t-statistics.

The model for the t-tests presented in this paper performs a
gene-by-gene analysis. It computes the sample variance
(standard deviation) for each gene in the analysis. Thus, this
approach does not require a constant variance or a constant
coef®cient of variation across genes.

Example data set

The example is a cDNA two-channel experiment from a
toxicogenomic study of gene expression levels of kidney
samples from rats dosed with a drug. The experiment includes
six replicate arrays (arrays A1±A6) from a 700-gene rat Phase-
1 chip (Molecular Toxicology, Santa Fe, NM). In each array
there are four by four grids of 14 3 14 spots. Grids 9±12 are
replicates of grids 1±4, and grids 13±16 are replicates of grids
5±8. On the arrays A1±A3, the control samples were assigned
to the red dye and treated samples were assigned to the green
dye. The dye assignments to the control and treated samples
were reversed on the arrays A4±A6. In addition, sequences of
®ve genes from other species different from the one of 700
genes were also spotted on the array to monitor non-speci®c
background binding of labeled RNA. Chen et al. (16)
described several normalization methods for this data set.
Let yijk denote the base-2 logarithm of the intensity for the i-th
gene on the array j in the t-th treatment and k-th dye, i = 1,..., g,
j = 1,..., r, k = 1,2 and t = 1,2. For a given array, let s denote the
number of disjoint subsets (partitions) in the array, which is
based on the spotting pattern matrix generated by a single pin
with the size 14 3 14. Denote Ll(j) as the l-th subset (location)
on the array j, l = 1,..., s. Chen et al. (16) proposed the subset
normalization model

yijk,l = m +Gi + Ll(j) + Ij + Dk + (AD)jk + eijk,l,

where m is the overall average signal, Gi represents the effect
of the i-th gene, Ll(j) represents the effect of the location l on
the j-th array, Ij represents the effect of the intensity on the
array j, Dk represents the effect of the k-th dye and (AD)jk

PAGE 3 OF 10 Nucleic Acids Research, 2003, Vol. 31, No. 9 e52



accounts for the effect of array j and dye k. This model is a
generalization of the Kerr's global ANOVA model (17,18);
the array effects Aj are decomposed into location and intensity
components, Ll(j) + Ij. In this paper, the Ll(j) is estimated by the
median, Ij is estimated using the lowess ®t and the other effects
are estimated using the least-squares estimates. The residuals
(normalized intensities) removing the overall effects from the
®tted model correspond to the treatment 3 gene interactions
as the effect of interest.

Figure 1A and B are scatterplots of the mean versus
standard deviation of the un-normalized intensities for the
control and treatment among the 705 genes, and the ®tted
lowess regression curves for the control and treatment

samples. Figure 1A shows an approximately linear relation-
ship between the mean and standard deviation before the log-
transformation. Applying the log-transformation to stabilize
variation, Figure 1B shows no apparent relationship between
the mean and standard deviation. Figure 2A is a scatterplot of
the mean versus standard deviation of the normalized
intensities for the two groups. There is no apparent relation-
ship between the mean and standard deviation. Figure 2B is a
scatterplot of the standard deviations between the control
versus the treatment. The standard deviations between the two
groups for the 705 genes mostly appear to be similar. We also
evaluated the correlation between two intensities on the same
spot. The mean correlations for the un-normalized data and

Figure 2. Scatterplots for the example data set after a normalization. (A) Mean intensity versus standard deviation plot for control and treatment samples.
There is no apparent relationship between the mean and standard deviation for the normalized log-intensity data. (B) Standard deviation plots of the control
versus treatment. The standard deviations between the two groups are approximately equal.

Figure 1. Scatterplots for mean intensity and standard deviation of background-subtracted and un-normalized data (described in Example data set). (A) An
approximately linear relationship for non-transformed data. (B) Stabilized standard deviations, no apparent relationship between the mean and standard
deviation for log-transformed data.
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normalized data are 0.6 and 0.8, respectively; a signi®cant
correlation between two samples from the same spot. A
normal probability plot is used to assess the normality
assumption for this data set. A normal probability plot
displays the ordered values of the data set versus the
corresponding quantiles of a standard normal distribution. A
linear plot would imply that the data are reasonably normal.
Figure 3A and B are the normal probability plots for the
control and treatment, respectively. It can be seen that the
normalized intensity data appear to be heavy-tailed; this
suggests that the data are more similar to a t-distribution than
to a normal distribution. Using a permutation test to identify
differentially expressed genes should be more appropriate.

RESULTS

Analysis of example data set

The control and treated groups are compared one gene at a
time using the one- and two-sample t-tests, and one- and

two-sample permutation t-tests. Figure 4 displays the p-values
of the 700 genes with excluding ®ve housekeeping genes for
the four tests. If there is no treatment effect for all genes, i.e.
all null hypotheses are true, then the p-values should be
uniformly distributed on the interval (0,1). That is, the p-value
plot should be a straight line across the diagonal. If a null
hypothesis is not true, then its p-value will tend to be small. In
Figure 4, the horizontal line at the y-axis represents the
number of signi®cant genes at the correspondent level of
signi®cance a = 0.01 (vertical line). Figure 4 shows that the
distribution of p-values appears to be quite non-uniform and
the numbers of signi®cant genes from one-sample tests and
two-sample tests are substantially different. However, the
behaviors of one-sample t-test and permutation test are very
similar, as are the two-sample t-test and the two-sample
permutation test. Moreover, the one-sample t-tests appear
more powerful than the two-sample t-tests because of a
positive correlation between the control and treated samples
on the same array.

Simulation study

We conducted a Monte Carlo simulation experiment to
evaluate the type I error of four methods for a control and
treatment comparison. We generated gene expression levels
under Models I±IV with r arrays per group, where r = 3, 5 and
8, and the number genes of in an array is g = 500 and 1000. We
assumed an equal variance for the control and treated groups,
f2

ic = f2
it = f2 and s2

ic = s2
it = s2. The true expression levels mik

for each channel at each spot were randomly drawn from a
log-normal (base 2) distribution with mean 10 and the
standard deviation 1.2 suggested by Hoyle et al. (19). This
is based on 16-bit tiff images with the intensities ranging from
0 to 216±1 (from 0 to 65 535). The parameter values of
bivariate normal distribution (hijc,hijt) were f2 = 0.1 and 0.3
with the correlation ti = 0.9 and 0 (one-channel experiment).
The parameter values of bivariate normal distribution (eijc,eijt)
were s2 = 0.5 and 1, and ri = 0.1 and 0 with the constraint ti >
ri. For each simulated data set, the proportion of signi®cances
was calculated for the four methods at signi®cance level a =
0.01. One thousand random samples were generated in each
analysis. Note that the one-sample permutation test was based

Figure 4. P-value plot for the four statistical tests on the example data set.
Using the signi®cance level at a = 0.01, the numbers of signi®cant genes
are 254, 257, 145 and 132 for one-sample t-test, one-sample permutation
test, two-sample t-test and two-sample permutation test, respectively.

Figure 3. Normal probability plots of the normalized log mean intensity data for the control (A) and treatment (B) for the example data set. The normalized
log intensities have heavy tails deviating from the normal variate.
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on 10 000 random samples from the population of all
permutations. All simulations were carried out using Fortran
90 programs on Unix systems.

Table 1 is the average of the proportions of signi®cances for
g = 500 and r = 5. Since data from Model III and Model IV
give similar results, only the results from Model IV are shown.

It can be seen that for t > 0 or r > 0 (correlated model), both
the two-sample parametric and two-sample permutation t-tests
are conservative. In particular, the two-sample permutation
test is very conservative because of small sample sizes. (The
averaged proportions of rejections for all models are zero for r
= 3, not shown.) Both one-sample parametric and one-sample

Table 1. Average type I errors of the one-sample (one-t) and two-sample (two-t) t-test, one-sample random permutation (one-p) and two-sample
permutation (two-p) test under three statistical models for g = 500 and r = 5 at a = 1%

Model I Model II Model IV
(f2,t) (s2,r) one-t one-p two-t two-p one-t one-p two-t two-p one-t one-p two-t two-p

(0.1,0.9) (0.5,0.0) 0.0100 0.0122 6.6E-5 6.4E-5 0.0095 0.0107 0.00 0.00 0.0099 0.0101 0.0068 0.0055
(0.1,0.9) (0.5,0.1) 0.0101 0.0125 6.4E-5 5.0E-5 0.0041 0.0099 0.00 0.00 0.0099 0.0101 0.0054 0.0044
(0.1,0.0) (0.5,0.0) 0.0101 0.0102 0.0100 0.0079 0.0109 0.0110 0.0090 0.0070 0.0101 0.0102 0.0101 0.0080
(0.1,0.9) (1,0.0) 0.0103 0.0127 5.2E-5 4.2E-5 0.0045 0.0098 0.00 0.00 0.0100 0.0100 0.0079 0.0064
(0.1,0.9) (1,0.1) 0.0101 0.0125 6.8E-5 4.8E-5 0.0107 0.0081 0.00 0.00 0.0099 0.0101 0.0063 0.0051
(0.1,0.0) (1,0.0) 0.0100 0.0101 0.0101 0.0080 0.0090 0.0083 0.0090 0.0074 0.0101 0.0103 0.0098 0.0079
(0.3,0.9) (0.5,0.0) 0.0102 0.0124 7.4E-5 8.6E-5 0.0092 0.0153 0.00 0.00 0.0098 0.0102 0.0037 0.0031
(0.3,0.9) (0.5,0.1) 0.0100 0.0124 7.0E-5 5.8E-5 0.0141 0.0134 0.00 0.00 0.0099 0.0103 0.0030 0.0025
(0.3,0.0) (0.5,0.0) 0.0099 0.0100 0.0100 0.0080 0.0100 0.0150 0.0150 0.0110 0.0099 0.0100 0.0098 0.0078
(0.3,0.9) (1,0.0) 0.0097 0.0121 7.2E-5 5.6E-5 0.0062 0.0089 0.00 0.00 0.0101 0.0104 0.0057 0.0046
(0.3,0.9) (1,0.1) 0.0101 0.0124 6.2E-5 5.0E-5 0.0091 0.0103 0.00 0.00 0.0101 0.0103 0.0045 0.0036
(0.3,0.0) (1,0.0) 0.0099 0.0100 0.0098 0.0080 0.0090 0.0109 0.0099 0.0099 0.0100 0.0100 0.0099 0.0080

Table 2. Average type I errors of the one-sample (one-t) and two-sample (two-t) t-test, one-sample random permutation (one-p) and two-sample
permutation (two-p) test under three statistical models for g = 500 and r = 8 at a = 1%

Model I Model II Model IV
(f2,t) (s2,r) one-t one-p two-t two-p one-t one-p two-t two-p one-t one-p two-t two-p

(0.1,0.9) (0.5,0.0) 0.0100 0.0105 4.0E-6 4.0E-6 0.0061 0.0068 0.00 0.00 0.0099 0.0101 0.0060 0.0061
(0.1,0.9) (0.5,0.1) 0.0100 0.0104 4.0E-6 4.0E-6 0.0112 0.0126 0.00 0.00 0.0100 0.0101 0.0043 0.0043
(0.1,0.0) (0.5,0.0) 0.0097 0.0099 0.0100 0.0099 0.0130 0.0131 0.0110 0.0121 0.0101 0.0101 0.0099 0.0098
(0.1,0.9) (1,0.0) 0.0100 0.0105 1.0E-5 1.2E-5 0.0092 0.0102 0.00 0.00 0.0101 0.0101 0.0078 0.0076
(0.1,0.9) (1,0.1) 0.0099 0.0103 1.2E-5 1.2E-5 0.0111 0.0107 0.00 0.00 0.0100 0.0100 0.0055 0.0055
(0.1,0.0) (1,0.0) 0.0101 0.0100 0.0101 0.0100 0.0090 0.0091 0.0108 0.0118 0.0100 0.0101 0.0101 0.0101
(0.3,0.9) (0.5,0.0) 0.0101 0.0106 8.0E-6 6.0E-6 0.0169 0.0157 0.00 0.00 0.0099 0.0100 0.0028 0.0028
(0.3,0.9) (0.5,0.1) 0.0099 0.0103 4.0E-6 4.0E-6 0.0043 0.0072 0.00 0.00 0.0099 0.0101 0.0021 0.0021
(0.3,0.0) (0.5,0.0) 0.0099 0.0101 0.0099 0.0098 0.0070 0.0081 0.0070 0.0070 0.0103 0.0104 0.0098 0.0098
(0.3,0.9) (1,0.0) 0.0099 0.0103 2.0E-6 4.0E-6 0.0090 0.0098 0.00 0.00 0.0101 0.0103 0.0051 0.0051
(0.3,0.9) (1,0.1) 0.0100 0.0104 4.0E-6 6.0E-6 0.0092 0.0096 0.00 0.00 0.0101 0.0102 0.0037 0.0036
(0.3,0.0) (1,0.0) 0.0100 0.0101 0.0101 0.0100 0.0100 0.0109 0.0142 0.0160 0.0102 0.0102 0.0102 0.0101

Table 3. Average type I errors of the one-sample (one-t) and two-sample (two-t) t-test, one-sample random permutation (one-p) and two-sample
permutation (two-p) test under three statistical models for g = 500 and r = 3, 5 and 8 at a = 1% with (hijc = hjt) drawn from a bivariate t-distribution with
degree of freedom 3 and correlation t

Model I Model II Model IV
r (t,r) one-t one-p two-t two-p one-t one-p two-t two-p one-t one-p two-t two-p

3 (0.9,0.0) 0.0075 0.0006 0.0004 0.00 0.0101 0.0006 0.00 0.00 0.0080 0.0004 0.0031 0.00
(0.9,0.1) 0.0075 0.0006 0.0005 0.00 0.0062 0.0007 0.0020 0.00 0.0084 0.0005 0.0027 0.00
(0.0,0.0) 0.0079 0.0006 0.0067 0.00 0.0088 0.0006 0.0110 0.00 0.0080 0.0005 0.0066 0.00

5 (0.9,0.0) 0.0065 0.0110 8.2E-5 8.4E-5 0.0040 0.0098 0.00 0.00 0.0073 0.0096 0.0017 0.0019
(0.9,0.1) 0.0064 0.0110 4.4E-5 9.0E-5 0.0070 0.0096 0.00 0.00 0.0072 0.0095 0.0014 0.0016
(0.0,0.0) 0.0070 0.0100 0.0061 0.0077 0.0042 0.0094 0.0070 0.0079 0.0072 0.0095 0.0066 0.0074

8 (0.9,0.0) 0.0064 0.0092 1.0E-5 1.4E-5 0.0080 0.0158 0.00 0.00 0.0072 0.0088 0.0011 0.0016
(0.9,0.1) 0.0063 0.0090 6.0E-6 1.0E-5 0.0050 0.0101 0.00 0.00 0.0070 0.0090 0.0010 0.0012
(0.0,0.0) 0.0071 0.0102 0.0069 0.0100 0.0082 0.0128 0.0110 0.0150 0.0074 0.0100 0.0070 0.0095

For Model IV, the errors (eijc,eijt) are distributed analogously, with correlation r. For Model I and II, the additive errors are drawn from a bivariate normal
distribution with mean 0, variance s2

c = s2
t = 0.3 and correlation r.
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Figure 5. Simulated power versus mean difference with mc = 9. The multi-
plicative errors (hijc,hijt) are drawn from a bivariate normal distribution
with mean 0, variance f2

c = f2
t = 0.1 and correlation t = 0.9. The additive

errors (eijc,eijt) are generated analogously, with variance s2
c = s2

t = 0.5 and
correlation r = 0.1.

Figure 6. Simulated power versus mean difference with mc = 9. The multi-
plicative errors, hijc and hijt, are independently drawn from a normal distri-
bution N(0,0.1) and the additive errors, eijc and eijt, are independently drawn
from a normal distribution N(0,0.5).
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Figure 7. Simulated power versus mean difference with mc = 9. The multi-
plicative errors (hijc,hijt) are drawn from a bivariate t-distribution with
degree of freedom 3 and correlation t = 0.9. For Model IV, the additive
errors (eijc,eijt) are generated analogously, with correlation r = 0.1. For
Model I and II, the additive errors are drawn from a bivariate normal distri-
bution with mean 0, variance s2

c = s2
t = 0.3 and correlation r = 0.1.

Figure 8. Simulated power versus mean difference with mc = 9. The multi-
plicative errors, hijc and hijt, are independently drawn from a t-distribution
t(3) and the additive errors, eijc and eijt, are independently drawn from a
t-distribution t(3) for Model IV and from a normal distribution N(0,0.3) for
Model I and II.
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permutation t-tests perform well, with few exceptions. Table 2
is the averaged proportions of signi®cance for g = 500 with
r = 8. The tests show an overall improvement, as compared
with r = 5; the averaged rejections are close to 0.01 for the
two-sample permutation test with t = 0 and r = 0 (independent
model). The results for g = 1000 and r = 8 are similar (not
shown). In summary, the one-sample parametric and one-
sample permutation tests are similar, and two-sample para-
metric and two-sample permutation tests are similar with r = 8.
When the data are correlated, both the parametric and
permutation two-sample tests are too conservative because
the assumption of independence is violated.

We conducted another simulation by varying the distribu-
tion of errors. The multiplicative errors (hijc,hijt) were drawn
from a bivariate t-distribution with mean 0, degree of freedom
3 and correlation t. For Models I and II, the additive errors
(eijc,eijt) were drawn from a bivariate normal distribution with
mean 0, variance s2

c = s2
t = 0.3 and correlation r. For Models

III and IV, the additive errors were from the same bivariate
t-distribution as (hijc,hijt) with correlation r. Table 3 is the
average of the proportion of signi®cance for r = 3, 5 and 8. It
can be seen that the parametric tests, which rely on the
normality assumption, are too conservative. The one-sample
permutation test appears to perform well for r = 5 and 8; the
test becomes conservative for r = 3 because of small sample
size.

In addition to the type I error, we also examined the powers
of the four tests for g = 500, r = 5 and mc = 9 shown in
Figures 5±8. Figure 5 shows that the one-sample parametric
and permutation tests are more powerful when the samples are
correlated, as expected. Even when the data were generated
from a t-distribution, the one-sample permutation test is more
powerful than other tests (Fig. 7). When the two groups are
independent, the two-sample parametric and permutation tests
appear to be more powerful than one-sample tests for all three
models (Figs 6 and 8). The permutation tests are as powerful
as the parametric tests when r > 5. In summary, when the data
were generated from normal distributions with ®ve replicates,
the one-sample tests can detect a 2-fold change (in log scale)
with >90% power and the two-sample test, under independ-
ence, can detect a 2-fold change with >95% power. When
the data were generated from t-distributions, the powers are
only 80% and 20% for one-sample and two-sample tests,
respectively.

DISCUSSION

Intensity data from microarray experiments often involve a
variety of random and systematic errors. In order to remove
sources of variation, different transformation and normal-
ization methods based on either raw or log-transformed
intensity data have been proposed to adjust for stochastic
biases. We use Models I and II to model raw expression data.
The ®rst order approximation of Model I is

Xijc = mic(1 + hijc + h2
ijc/2 + ...) + eijc = mic + mic ´ hijc + eijc,

Xijt = mit(1 + hijt + h2
ijt/2 + ...) + eijt = mit + mit ´ hijt + eijt.

This model has been proposed by Ideker et al. (14). They used
the likelihood ratio test approach to identifying differentially
expressed genes. The computation of likelihood ratio test is

not straightforward; it requires estimating the parameters of
the bivariate normal models. In present evaluation, Tables 1±3
show that the log-transformed data from Models I or II can be
analyzed using the traditional or permutation t-test. The tests
seem to perform reasonably well in terms of type I error and
power under proper conditions, for example, the two-sample
permutation test performs well under an independent model.
Models III and IV assume that the log-transformed normalized
intensity data are normally distributed. Therefore, the t-test or
permutation test can be applied directly. Models I and III
assume the two sources of variation for spot intensities are
independent. Models II and IV assume a systematic variation
due to array-speci®c effects, such as amount of RNA or
different hybridization dates, etc. Model IV may be more
appropriate for some normalization methods, such as median
or lowess, that are array dependent.

Because of lack of replications, the early approach for
assessing differentially expressed genes is based on the ratio of
the treatment-to-control to determine signi®cant genes. This
concept leads to the use of the one-sample t-test for the
analysis of data from two-color dye-swap experiments.
Alternatively, the two-sample t-test has also been used to
detect genes with differential expression (9). This paper
demonstrates that the two-sample t-test (either parametric or
permutation test) is conservative when the samples are
correlated (Example data set). For a two-color dye swap
experiment, the one-sample tests appear to perform better than
the two-sample tests. On the other hand, when the expression
data are independent observations, such as one-channel
microarray or two-channel reference design, the two-sample
t-test is more powerful.

When the number of arrays is suf®cient, the permutation
test performs better than the corresponding parametric test
when the data do not follow a normal distribution. In practice,
the distribution of the normalized intensities appears to have a
t-distribution rather than a normal distribution. With a small
sample size, however, permutation tests can produce a skewed
or bimodal reference distribution. For example, at replicate
arrays r = 3, only 20 permutations are possible. When the
number of replicates is small (r < 3), the permutation test is
not recommended.

The power study assumes a constant effect (mean differ-
ence) for all genes and evaluates the average proportion of
signi®cances of the given effect. In practice, the majority of
genes do not express differentially between treatment groups.
Furthermore, the genes that would be affected by a treatment
generally have different effects. Different effects will result in
different powers. However, the conclusions summarized
above should remain valid.
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