Skip to main content
Clinical and Experimental Immunology logoLink to Clinical and Experimental Immunology
. 1986 Jun;64(3):518–525.

Long-term immunological reconstitution by peripheral blood leucocytes in severe combined immune deficiency disease: implications for the role of mature lymphocytes in histocompatible bone marrow transplantation.

S H Polmar, B Z Schacter, R U Sorensen
PMCID: PMC1542441  PMID: 3539420

Abstract

A 7 month old girl with severe combined immunodeficiency disease (SCID) received a single transfusion of peripheral blood leucocytes from her histocompatible grandfather in an attempt to achieve immunological reconstitution. There was rapid restoration of humoral and cellular immunity which has persisted undiminished over a 54 month follow-up period and the patient has remained free of any significant infections. Lymphocytes of donor karyotype were repeatedly demonstrated in the patient's peripheral blood. In contrast, no evidence of donor cell engraftment in her bone marrow could be obtained by karyotypic, antigenic or enzyme phenotypic analyses. These observations suggest that long term immunological reconstitution may be achieved solely by peripheral engraftment of mature lymphocytes. A review of the literature reveals that this mechanism of immunological reconstitution may not be uncommon following histocompatible bone marrow transplantation for treatment of SCID.

Full text

PDF
518

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birch R. E., Rosenthal A. K., Polmar S. H. Pharmacological modification of immunoregulatory T lymphocytes . II. Modulation of T lymphocyte cell surface characteristics. Clin Exp Immunol. 1982 Apr;48(1):231–238. [PMC free article] [PubMed] [Google Scholar]
  2. Bockman D. E., Lawton A. R., Cooper M. D. Fine structure of thymus after bone marrow transplantation in an infant with severe combined immunodeficiency. Lab Invest. 1972 Mar;26(3):227–239. [PubMed] [Google Scholar]
  3. Bortin M. M., Rimm A. A. Severe combined immunodeficiency disease. Characterization of the disease and results of transplantation. JAMA. 1977 Aug 15;238(7):591–600. [PubMed] [Google Scholar]
  4. Brovall C., Schacter B. Radiation sensitivity of human natural killer cell activity: control by X-linked genes. J Immunol. 1981 Jun;126(6):2236–2239. [PubMed] [Google Scholar]
  5. De Koning J., Van Bekkum D. W., Dicke K. A., Dooren L. J., Rádl J., Van Rood J. J. Transplantation of bone-marrow cells and fetal thymus in an infant with lymphopenic immunological deficiency. Lancet. 1969 Jun 21;1(7608):1223–1227. doi: 10.1016/s0140-6736(69)92112-6. [DOI] [PubMed] [Google Scholar]
  6. Gatti R. A., Meuwissen H. J., Allen H. D., Hong R., Good R. A. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet. 1968 Dec 28;2(7583):1366–1369. doi: 10.1016/s0140-6736(68)92673-1. [DOI] [PubMed] [Google Scholar]
  7. Kapoor N., Kirkpatrick D., Blaese R. M., Oleske J., Hilgartner M. H., Chaganti R. S., Good R. A., O'Reilly R. J. Reconstitution of normal megakaryocytopoiesis and immunologic functions in Wiskott-Aldrich syndrome by marrow transplantation following myeloablation and immunosuppression with busulfan and cyclophosphamide. Blood. 1981 Apr;57(4):692–696. [PubMed] [Google Scholar]
  8. Parkman R., Rappeport J., Geha R., Belli J., Cassady R., Levey R., Nathan D. G., Rosen F. S. Complete correction of the Wiskott-Aldrich syndrome by allogeneic bone-marrow transplantation. N Engl J Med. 1978 Apr 27;298(17):921–927. doi: 10.1056/NEJM197804272981701. [DOI] [PubMed] [Google Scholar]
  9. Pierce G. F., Brovall C., Schacter B. Z., Polmar S. H. Impaired culture generated cytotoxicity with preservation of spontaneous natural killer-cell activity in cartilage-hair hypoplasia. J Clin Invest. 1983 Jun;71(6):1737–1743. doi: 10.1172/JCI110928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pierce G. F., Polmar S. H., Schacter B. Z., Brovall C., Hornick D. L., Sorensen R. U. Natural cytotoxicity in immunodeficiency diseases: preservation of natural killer activity and the in vivo appearance of radioresistant killing. Hum Immunol. 1986 Jan;15(1):85–96. doi: 10.1016/0198-8859(86)90319-8. [DOI] [PubMed] [Google Scholar]
  11. Polmar S. H., Wetzler E. M., Stern R. C., Hirschhorn R. Restoration of in-vitro lymphocyte responses with exogenous adenosine deaminase in a patient with severe combined immunodeficiency. Lancet. 1975 Oct 18;2(7938):743–746. doi: 10.1016/s0140-6736(75)90726-6. [DOI] [PubMed] [Google Scholar]
  12. Reinherz E. L., Geha R., Rappeport J. M., Wilson M., Penta A. C., Hussey R. E., Fitzgerald K. A., Daley J. F., Levine H., Rosen F. S. Reconstitution after transplantation with T-lymphocyte-depleted HLA haplotype-mismatched bone marrow for severe combined immunodeficiency. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6047–6051. doi: 10.1073/pnas.79.19.6047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rich K. C., Richman C. M., Mejias E., Daddona P. Immunoreconstitution by peripheral blood leukocytes in adenosine deaminase-deficient severe combined immunodeficiency. J Clin Invest. 1980 Aug;66(2):389–395. doi: 10.1172/JCI109868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schacter B., Preis P., Kadushin J. M., Herzig R., Gross S. Family studies of neutrophil alloantigens in bone marrow transplantation. Tissue Antigens. 1980 Oct;16(4):267–273. doi: 10.1111/j.1399-0039.1980.tb00306.x. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Experimental Immunology are provided here courtesy of British Society for Immunology

RESOURCES