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Human capabilities in dexterously manipulating many different
tools suggest modular neural organization at functional levels, but
anatomical modularity underlying the capabilities has yet to be
demonstrated. Although modularity in phylogenetically older
parts of the cerebellum is well known, comparable modularity in
the lateral cerebellum for cognitive functions remains unknown.
We investigated these issues by functional MRI (fMRI) based on our
previous findings of a cerebellar internal model of a tool. After
subjects intensively learned to manipulate two novel tools (the
rotated mouse whose cursor appeared at a rotated position, and
the velocity mouse whose cursor velocity was proportional to the
mouse position), they could easily switch between the two. The
lateral and posterior cerebellar activities for the two different tools
were spatially segregated, and their overlaps were <10%, even at
low statistical thresholds. Activities of the rotated mouse were
more anterior and lateral than the velocity mouse activities. These
results were consistent with predictions by the MOdular Selection
And Identification Controller (MOSAIC) model that multiple inter-
nal models compete to partition sensory-motor experiences and
their outputs are linearly combined for a particular context.

S tructural and functional modularity is an important key to
understanding brain and mind mechanisms. Much is known

about the modular architecture in the primary cerebral cortex.
Somatotopic organization in the sensory-motor cortices is a well
known modular feature (1). Regarding the cerebellum, Snider
and Eldred (2) recorded surface potentials evoked by peripheral
stimuli and presented somatotopic maps in cats and monkeys,
where one map lay in the anterior lobe and the other lay in the
intermediate parts of the posterior lobe (Fig. 1). Recently, by
using functional MRI (fMRI), Grodd et al. (3) investigated
activation patterns in the human cerebellum during motor tasks
and found two homunculoid representations similar to those
found by Snider and Eldred (2). These somatotopic maps show
modularity on a relatively large scale. Functional modularity on
a fine scale has also been studied in these regions. Regarding
parallel fiber inputs, somatotopic maps have been identified in
the cerebellar cortex, but the map is fractured, that is, each small
area of body surface is represented multiple times by spatially
separated clusters of cells (4, 5). Microzones, as long as several
centimeters along the longitudinal axis of the cerebellar folia and
as wide as 0.2 mm, have been identified for climbing fiber inputs
as functional units (6).

The above cerebellar modularity has been demonstrated only
for motor and somatosensory functions. In the past decade, a
growing number of studies revealed that the cerebellum con-
tributes to higher cognitive functions. One of the first examples
during a clearly cognitive task came from studies of language
processing and reported activation in the right lateral cerebellum
(7, 8). Since then, other studies (for reviews, see refs. 9 and 10)
have also pointed to cerebellar involvement in cognitive tasks
such as working memory (11), problem solving (12, 13), and
visual attention (14). Many studies (11, 14, 15) demonstrated
that cognitive and motor (somatosensory) processing indepen-
dently activate distinct cerebellar regions: the former activates

the lateral part of the posterior lobe, and the latter activates the
anterior lobe and the intermediate parts of the posterior lobe,
where the homunculoid representations lie (Fig. 1a, arrows).
Although this dichotomy is not deterministic, convergent evi-
dence in functional imaging studies suggests that the lateral part
of the posterior lobe is closely related to the cognitive functions.

Regarding cognitive functions in the lateral cerebellum, stud-
ies performing metaanalysis of published data suggested that
there is anatomical distribution of activity related to different
tasks (10, 16). However, it has not been resolved whether each
area might uniquely contribute to a distinct cognitive function.
Hence, modularity has yet to be experimentally demonstrated
for the ‘‘cognitive’’ cerebellum (Fig. 1b, arrows).

Recent computational models such as MOdular Selection
And Identification Controller (MOSAIC) (17–20) suggest that
multiple internal models reside in the cerebellum. Internal
models are neural mechanisms that can mimic the input–output
properties of motor apparatuses or their inverses (21–23). This
motor control theory can be extended to a cognitive domain, i.e.,
use of tools, by simply extending the object of internal model
learning from motor apparatuses (objects of motor control) to a
general object in the external world. In our previous study, we
found that an internal model for a novel tool is acquired in the
cerebellar cortex while human subjects learn to use the tool (24).
Here, we investigate modularity and multiplicity of internal
models in cerebellar cortex after subjects learn to switch between
two different novel tools.

Methods
Subjects. Seven neurologically normal subjects (21–32 years of
age; five females and two males) participated in the experiments.
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Fig. 1. Flattened view of cerebellar surface illustrating that anterior lobe
and intermediate parts of posterior lobe are related to ‘‘motor and somato-
sensory functions,’’ whereas lateral posterior cerebellum is related to ‘‘cog-
nitive functions.’’ (a) Arrows indicate difference between ‘‘motor’’ and ‘‘cog-
nition’’ found in previous neuroimaging studies. (b) Arrows indicate
modularity within lateral posterior cerebellum for two different cognitive
functions. Illustrations were modified from refs. 39 and 40.
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All subjects were right-handed except for one left-handed par-
ticipant (25). Informed written consent was obtained from each
participant. The protocol was approved by the ethics committees
of Communications Research Laboratory and Advanced Tele-
communications Research Institute.

Tasks. All subjects, including the one left-handed subject, ma-
nipulated a computer mouse with the right hand to track a
randomly moving target on a screen with a cursor (a tracking
task). By changing the transformation, i.e., from mouse move-
ment to cursor movement, we generated two novel tools: the
rotated mouse and the velocity mouse. The relationship between
the cursor position and the mouse position was

� xc

yc
� � � cos120° sin120°

�sin120° cos120°��xm

ym
�

for the rotated mouse, where (xc, yc) denotes the cursor’s screen
coordinates (visual angle, °), and (xm, ym) denotes the mouse�
hand coordinates (centimeters). In contrast, the cursor’s velocity
(ẋc, ẏc) (°�second) was determined by the mouse position for the
velocity mouse:

� ẋc

ẏc
� � 8.76� xm

ym
� .

A projector controlled by a personal computer displayed the
target and the cursor. A small white square target was presented
on a dark background. The x and y components of the target path
were each sums of sinusoids whose amplitude and frequency
were randomly determined. The subjects moved a small cross-
hair cursor on the screen with the mouse.

The subjects were given detailed verbal instructions about the
transformation. The color of the cursor (red, violet, or green)
and text presented on the screen (‘‘rotate,’’ ‘‘velocity,’’ or
‘‘normal’’) indicated the current tool.

Training Sessions. Seven subjects performed 18 training sessions
before fMRI scanning. The sessions were divided into 2 days (14
sessions on Day 1). The tasks were performed outside of the
MRI scanner, but the subjects lay as in the scanner. In each
session, the subjects performed the tracking task by using the two
novel mice and a normal mouse, six times each in blocks of 43.2 s.
The order of the mice (1. rotated 2. normal 3. velocity or 1.
velocity 2. normal 3. rotated) was counterbalanced between
sessions. The subjects had a rest period in every fourth block,
which also lasted 43.2 s. Therefore, a training session lasted 17.28
min [ � 43.2 s � 6 repetitions � (three tools � rest)].

Scanning Sessions. All subjects underwent four fMRI scanning
sessions after the training sessions. Each session comprised 16
alternating blocks (one block, 43.2 s) of test and baseline
periods and lasted 11 min and 31 s (� 43.2 s � eight
repetitions � two tools). In two of the four sessions, the
subjects manipulated the rotated mouse during the test periods
and the normal mouse during the baseline periods (‘‘rotated
session’’). In the other two sessions, the subjects manipulated
the velocity mouse during the test periods and the normal
mouse during the baseline periods (‘‘velocity session’’). The
session order was counterbalanced between subjects. By in-
creasing the target velocity during the baseline periods, the
errors during the baseline periods were matched to those
during the test periods according to the methods explained
below (see Equalization of Tracking Error). Five of the seven
subjects performed the supplementary scanning experiment in
which they manipulated the three kinds of mice in a single
session. Each session was the same as the training session
except that the error was equalized (see below).

Equalization of Tracking Error. In our previous study (24), two types
of activity related to the learning were observed in the cerebel-
lum. One reflected the error signals guiding the learning acqui-
sition of the internal models, and the other reflected an acquired
internal model. The former activity was very strong and distrib-
uted over the cerebellum and also blurred the latter activity.
Following a procedure used in the previous study, tracking error
during manipulation of one mouse was equalized to another by
using a linear relationship between a tracking error and a target
velocity. This procedure allowed us to distinguish internal model
activity for the novel tools from activity reflecting the error
signal.

Before the functional imaging, the subjects performed the
tracking task by using each mouse (the normal, the rotated, or
the velocity mouse) at various target velocities for 15 min. A
linear relationship was derived by the least-squares method. In
the first scanning experiment, the target velocity was increased
in the baseline period by using this relationship, so that the
baseline error was equal to the mean error in the preceding test
period. In the supplementary experiment, the order of the tools
was 1. rotated 2. normal 3. velocity or 1. velocity 2. normal 3.
rotated, and the errors for the second and third tools were
matched to the mean error for the first tool. The details of this
method are described in ref. 24.

MRI Acquisition. MRI scanners (1.5 T) were used to obtain blood
oxygen level-dependent contrast functional images. Images
weighted with the apparent transverse relaxation time were
obtained with an echo-planar imaging sequence (repetition time,
5.4 s; echo time, 66 ms; f lip angle, 90°; field of view, 256 � 256
mm; matrix size, 64 � 64). Twenty-two axial slices (thickness, 4
mm) encompassing the cerebellum were selected. One hundred
twenty-eight or 192 functional images were scanned for each
slice during one session in the first or the supplementary
experiment, respectively. High-resolution anatomical images
were obtained for these slices with a T1 weighted sequence.

Analysis of Behavior Data. The cursor and the target positions were
sampled at 60 Hz. Mouse positions were reconstructed from the
cursor positions afterward. Each subject’s performance was
measured by the tracking errors, i.e., the average distance
between the cursor and the target. The distance between the
cursor and the target at each sampling point was accumulated
over 5.4 s (position tracking error). The mouse velocity or the
target velocity was also accumulated over 5.4 s, and this was used
as an explanatory variable in the regression analysis of the brain
activity.

MRI Analysis. Motion artifacts were removed by using AUTO-
MATED IMAGE REGISTRATION (http:��bishopw.loni.ucla.edu�
AIR3). We used SPM99 (www.fil.ion.ucl.ac.uk�spm) for further
analysis. The functional images of each subject’s cerebellum were
transformed to the Montreal Neurological Institute’s (MNI;
Montreal, Canada) reference brain. The data were spatially
smoothed with a Gaussian kernel with an 8-mm full width at half
maximum (FWHM). The voxel time series were temporally
smoothed with a Gaussian filter (FWHM of 4 s).

A Model for Simple Subtraction Analysis. For the comparison
between each novel mouse and the normal mouse, condition-
specific effects were estimated with a linear model:

Si
k � �iti

k � �iui
k � �ivi

k � ei.

Here, Si
k denotes the fMRI signal at the ith voxel in the kth scan.

t, u, and v were explanatory variables representing the type of
mouse used (t, rotation, u, velocity; and v, normal). Each was a
step function assigned 1 if the scan corresponded to its mouse
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type and 0 otherwise. e is a residual error. Session-specific effects
were also modeled as effects of no interest. Activations related
to the rotated mouse and the velocity mouse were specified by
statistical comparisons of the estimated parameters (� � � for
rotation and � � � for velocity) by using t statistics (Statistical
Parametric Mapping{t}).

A Model for Multiple Regression Analysis. We also conducted a
multiple regression analysis including explanatory variables cor-
responding to various behavioral factors. The linear model was:

Si
k � �iti

k � �iui
k � �ivi

k � �iwi
k � �ixi

k � �iyi
k � 	izi

k � ei.

As described above, the first three variables were step functions
of the mouse type. w represented switching of a mouse and was
assigned 1 in the scan immediately after the mouse type changed
and 0 otherwise. x, y, and z were the mouse velocity, tracking
error, and target velocity, respectively. They were recorded
during the scans and averaged over a scan interval (5.4 s). Mouse
velocity is related to mouse and�or hand movements, and the
target velocity is related to visual motion information and
attention. Activations related to the rotation and the velocity
mice were specified by the statistical comparisons: � � � and � �
�. Activations related to the last four variables were specified by
finding regions where the estimated parameters (�, �, �, and 	)
were significantly larger than zero.

We used the effective degree of freedom adjusted for analysis
of fMRI (26). In assessing statistical significance, we made a
correction for multiple comparisons based on the theory of
random Gaussian fields. This correction was made for the entire
volume of the cerebellum.

Results
Behavioral Results During Training Sessions. For the rotated and
velocity mice, the tracking errors decreased significantly as the
number of sessions increased (Fig. 2a, orange or blue line),
suggesting that learning occurred. A repeated-measures
ANOVA on the errors indicated a significant effect of sessions
for the rotated mouse [F(17, 102) � 21.32, P � 0.0001] and for
the velocity mouse [(F(17, 102) � 14.90, P � 0.0001]. In contrast,
for the normal mouse, the errors were small and constant (black
line). There was no significant effect of sessions for the normal
mouse [F(17, 102) � 0.53].

The tracking errors aligned on the switching of the tools (Fig. 2b),
averaged over the subjects and the last five sessions, were almost
constant after the switching, indicating that the subjects rapidly

switched internal models appropriate for the different tools. Al-
though a repeated-measures ANOVA on the errors indicated a
significant effect of the time after the switching for the rotated
mouse [F(7, 42) � 17.45, P � 0.0001] and the normal mouse [F(7,
42) � 20.24, P � 0.0001], only the error during the first 5.4 s after
the switching was significantly larger than the other errors (at the
P � 0.05 level by Tukey’s honestly significant difference method).
The transient error increase was most probably induced by reset of
the cursor position to the center of the screen when a tool changed.
We conducted a control experiment where the cursor was reset to
the center but the tool did not change and found a very similar time
course of the error (the broken line with open circles in Fig. 2b). The
behavioral data strongly suggest that internal models are acquired
as separate functional modules.

Comparison of Activation Patterns Between Each Novel Mouse and the
Normal Mouse. The colored regions in Fig. 3a (subject 1) and Fig.
3b (subject 2) indicate regions significantly more activated
during the test periods than the baseline periods [t (236) � 4.1,
fixed effect model, P � 0.05 corrected]. The orange and blue
regions indicate activity for the rotated mouse and the velocity
mouse, respectively. Fig. 3c shows the four local maxima with the
highest activity for each subject [t maps; t (236) � 3.1, P � 0.001
not corrected] derived from a comparison of the test periods with
the baseline periods for all subjects. Here, the colors indicate the
tools (orange � rotated, blue � velocity), and the numbers
indicate subjects. The rotated mouse activations tend to be
located more anteriorly and laterally than the velocity mouse
activations. A multivariate ANOVA on the 3D positions of the
local maxima (anterior–posterior, inferior–superior, and lateral–
medial) revealed this significant positional difference [F(2, 41) �
3.54, P � 0.05]. Significant increase in activity in the test periods
cannot be attributed to the tracking error, the mouse�hand
movements, the visual target velocity, attention, or effort, be-
cause the magnitudes of these factors in the baseline periods
were larger than those in the test periods as described below.

Fig. 2c shows the tracking errors averaged across the subjects.
In the rotated session, the baseline error was significantly larger
than the test error [F(1, 6) � 15.52, P � 0.01], whereas in the
velocity session, there was no significant difference between the
test and the baseline errors [F(1, 6) � 0.45]. These results suggest
that the above activation revealed by the test minus the baseline
contrast does not reflect error signals.

To check whether the activation was evoked by behavioral factors
other than the error, we investigated the kinematics (velocity and

Fig. 2. (a) Tracking errors (across-subjects, mean � SD) when subjects manipulate rotated mouse (orange line), velocity mouse (blue line), and normal mouse
(black line) in training sessions. (b) Time course of errors (across-subjects, mean � SD) in last five training sessions aligned on switching of tools. Broken line with
open circles indicates time course obtained from a control experiment, in which the cursor position was reset to center but the tool did not change and was always
the normal mouse. (c) Tracking errors (across-subjects, mean � SD) when cerebellar activity was scanned in the first experiment. Error during manipulation of
rotated mouse or velocity mouse was matched by changing target velocity during manipulation of normal mouse (baseline). Baseline error matched to rotated
mouse was significantly larger than corresponding test error [F(1, 6) � 15.52, P � 0.01]. There was no significant difference in errors between velocity mouse
and corresponding baseline [F(1, 6) � 0.45]. (d) Tracking errors (across-subjects, mean � SD) in the first and the supplementary scanning experiments. There was
no significant difference between any pair of mean values according to Tukey’s honestly significant difference method (at P � 0.05 level).
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acceleration) of the cursor and the mouse�hand movements (see
also Supporting Text and Table 2, which are published as supporting
information on the PNAS web site, www.pnas.org). In any com-
parison between the test and baseline periods, the velocity and
acceleration in the baseline periods were significantly larger than
those in the test periods [F(1, 6) � 63.7, P � 0.0002; about 1.5-fold
for velocity and 2-fold for acceleration]. Because the force is
proportional to the acceleration, dynamic factors in the baseline
periods are also expected to be larger than those in the test periods.
The target velocity and acceleration are closely related to visual
motion and eye movements. They were large in the baseline periods
in comparison to those in the test periods [F(1, 6) � 22.4, P � 0.003],
suggesting that the magnitudes of the visual motion and eye
movements were larger in the baseline periods. All of the subjects

reported that they needed more effort and attention in the baseline
periods than in the test periods because of the increased target
velocity. Thus, the activation increase in the test periods cannot be
attributed to the mouse�hand movements, the visual motion, the
eye movements, attention, or effort. The most plausible explanation
is that the activity increase in the test periods reflects the acquired
internal model for the novel tools.

Table 1 shows a summary of activation. The activated volume was
measured in each subject’s activity map and then averaged. The
overlapping region is only 2.1% of the total activated volume by
using a moderate threshold (P � 0.05 corrected) and 6.3% even at
a considerably lower threshold (P � 0.001 uncorrected). The sizes
of the orange (57.5%) and blue (40.4%) regions are comparable at
the moderate threshold. The different tools evoked activities in
distinct locations with small overlap, demonstrating the modularity
and multiplicity of internal models for tools.

We also measured activated volume (P � 0.05 corrected) in
the left and the right sides of the cerebellum for each subject. The
averaged volume was 5.76 cm3 in the left side and 3.79 cm3 in the
right side for the rotated mouse, whereas it was 3.24 and 3.56 cm3

for the velocity mouse. Activation was bilateral in general, but a
preference for the left side was observed in the rotated-mouse
activity.

Results of Multiple Regression Analysis. As described above, the
activation increase in the test periods cannot be attributed to
behavioral factors (i.e., tracking error, mouse�hand movements,
visual motion, eye movements, attention, or effort). However, we
have to justify our assumption that the difference in activation
patterns obtained from the simple subtraction analyses solely
reflects the regional differences in the internal models. This is
because the error-equalization procedure inevitably increases
the magnitudes of the behavioral factors in the baseline periods,
and the level of this increase depends on the tracking error
during use of the novel mice. Use of the normal mouse at different
levels of these factors may change the baseline activation patterns
and may affect the results of the subtraction analysis.

Because it is impossible to simultaneously equalize every
aspect of a subject’s behavior, we decided to conduct an addi-
tional analysis by using a multiple regression technique to
remove possible factors that may affect the cerebellar activity,
i.e., tool switching, hand�mouse movements, tracking error,
visual motion, and eye movements (see Methods). Using a linear
model of brain activity including these factors and the type of
mouse as explanatory variables, we can estimate the unadulter-
ated effect associated with the use of each mouse. Large
variability and a large data set are necessary for a reliable
multiple regression analysis. Thus, we conducted a supplemen-
tary experiment with a different design from the previous one
(see Methods) and then combined the data from the previous and
the supplementary experiments.

There was no significant difference in the tracking error
among the mice, as shown in Fig. 2d (at P � 0.05 level by Tukey’s
honestly significant difference method), because the tracking
errors for the three kinds of mice were equalized by changing the
target velocity.

Fig. 3. (a and b) Cerebellar activity of two typical subjects in transverse
sections. Colored regions were significantly more activated in test periods
than in baseline periods (P � 0.05 corrected for multiple comparisons in the
cerebellum). Orange and blue regions were activated in rotated and velocity
sessions, respectively. Overlap between orange and blue was activated in both
sessions. Numbers in bottom left corners of images indicate superior–inferior
(z) positions in Montreal Neurological Institute’s coordinates (see Methods).
(c) Distributions of four local maxima with highest activity (P � 0.001 not
corrected) for each subject. Orange and blue numbers indicate maxima in
rotated sessions and velocity sessions, respectively. Positions of maxima and
normalized anatomical images are projected onto transverse, coronal and
sagittal sections. Numbers correspond to different subjects.

Table 1. Percentage of activated volume to total activated volume (%) and absolute activated volume (cm3, in
parentheses) averaged over all subjects

Region* Color codes in Figs. 3 and 4 R-(R � V) orange V-(R � V) blue R � V overlap

Threshold P � 0.001 corrected (t � 5.0) 75.7 (6.36) 24.1 (2.03) 0.2 (0.02)
P � 0.05 corrected (t � 4.1) 57.5 (9.22) 40.4 (6.46) 2.1 (0.34)
P � 0.001 uncorrected (t � 3.1) 45.4 (13.82) 48.3 (14.70) 6.3 (1.9)

*R-(R � V) or V-(R � V) was activated only when subjects manipulated rotated mouse or velocity mouse, respectively. R � V was activated
when subjects manipulated either rotated mouse or velocity mouse.
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To specify the activation related to use of the novel tools, by
using t statistics, we compared the parameters estimated for the
above explanatory variables corresponding to mouse type. The
orange (or the blue) regions in Fig. 4 indicate voxels where the
parameter for the rotated mouse (or the velocity mouse) was
significantly larger than the parameter for the normal mouse
[t(7,113) � 5.23, fixed effect model, P � 0.001 corrected; see also
Movies 1–8, which are published as supporting information on
the PNAS web site]. The relative locations of the two tools
averaged across subjects (i.e., anterior and lateral for rotated
mouse) were very similar to those in Fig. 3 for individual subjects.

Activations related to the other explanatory variables were
specified by finding regions where the estimated parameters
were significantly larger than zero (the same threshold as above).
Activations correlated with tool switching were in bilateral
superior parts of the cerebellum (anterior lobule). The peaks of
switching activation in Montreal Neurological Institute’s space
(x, y, z, respectively) and their t values were (�22, �82, �18; t �
15.16) in the left hemisphere and (28, �74, �18; t � 10.92) in
the right hemisphere. Activations correlated with the mouse
average velocity, that is, directly correlated with movement
control, were in the anterior lobule (24, �54, �28; t � 13.52) and
the biventer lobule (24, �60, �56; t � 7.52) ipsilateral to the
hand that was used. This is consistent with the previous study (3)
indicating somatotopic organization for sensory-motor func-
tions. Only weak activity related to the tracking error was
observed in the lateral parts of the cerebellum at low thresholds
(P � 0.05 not corrected; �50, �68, �26; t � 1.66), because the
tracking error was constant by experimental design (Fig. 2d).
Activity related to the average target velocity (visual motion
information and eye movements) did not reach significant levels
in the cerebellum even with a low threshold.

The error-equalization procedure increased magnitudes of
hand�mouse movements and other behavioral factors in the
baseline periods and may have affected the activation patterns in
the previous analysis. However, the multiple regression analysis
of the combined data from the previous and supplementary
experiments demonstrated similar activation patterns to the
previous analysis even when several possible factors were taken
into account. These results together demonstrate that somewhat

common cerebellar areas are allocated for each tool across all
subjects, although there exist large interindividual differences at
exact locations (Fig. 3c).

Discussion
Integration of Multiple Internal Models. The MOSAIC theory (17)
proposes that multiple pairs of controllers (inverse internal
models) and predictors (forward internal models) are tightly
coupled as functional units. They contribute to the selection of
appropriate modules for the current behavioral situation. The
key feature is a ‘‘responsibility signal’’ calculated for each
module. The forward model generates a prediction of the
outcome of the motor commands being issued. The prediction is
confirmed by the sensory consequences. The smaller the pre-
diction error, the more likely that the pair of forward and inverse
models must have been appropriate for the current situation, and
hence the higher the module’s responsibility. The responsibility
signals determine the degree of each module’s contribution to
the total output from the cerebellum. Because each responsi-
bility signal is an analog value, the linear combination of multiple
modules’ outputs is possible. By modulating and combining the
output, an enormous repertoire of behaviors can be generated
even if the number of modules is limited (20). Many situations
that we encounter may be derived from a combination of
previously experienced situations, that is, the same modules may
be activated in different situations.

Our results were consistent with the theory in two points. First,
activation related to a specific novel tool was observed in multiple
regions (Figs. 3 and 4), which suggests that multiple modules are
combined to cope with the tool. Second, small but significant
common regions were activated by different tools (Table 1). This
suggests that the internal models acquired in these regions represent
common properties with the novel mice. It is not likely that they
were related to the hand movements or the normal mouse because
they were found by subtraction of the activation for the normal
mouse from the activation for the novel mouse.

Number of Microzones Contributing to Internal Models of the Novel
Tools. Each forward or inverse model may correspond to a
microzone from a neurophysiological viewpoint. Using two
different methods, we estimated the number of microzones that
constitute internal models of the novel mice. In the first simple
method, we estimated the activated microzones based on the
ratio of the activated volume to the cerebellar volume and the
numbers of microzones contained in the human cerebellum.
According to Table 1, the mean activated volume is 9.22 cm3 for
the rotated mouse only and 6.46 cm3 for the velocity mouse only
at the medium threshold (P � 0.05 corrected). Human cerebellar
volume of healthy adults is about 130 cm3 (27), which contains
5,000–10,000 microzones (28). Thus, the estimated numbers are
355–709 (� 5,000 or 10,000 � 9.22�130) for the rotated mouse
and 298–497 (� 5,000 or 10,000 � 6.46�130) for the velocity
mouse. This estimation gives the upper bounds, because we
assume that microzones are densely packed into fMRI voxels
and neglects any blurring effects by the spatial smoothing filter
used in the analysis.

The other, more reasonable, method is based on the anatomical
size of the microzone and considers how a microzone’s activity was
blurred by our imaging resolution and the smoothing filter. The size
of the microzone along the cerebellar folia ranges between 5 and 12
mm in humans (3), with a width of 0.2 mm (6) and a cortical
thickness of 1 mm (29). Accounting for our imaging resolution
(4-mm isotropic voxels), one microzone activates three voxels
(length � width � thickness: 3 � 1 � 1 voxels). Because we spatially
smoothed the image with a Gaussian filter having an 8-mm full
width at half maximum, the activity could spread maximally over
the adjacent 14 voxels. As mentioned above, the mean activated
volume was 9.22 cm3 for the rotated mouse and 6.46 cm3 for the

Fig. 4. Regions related to manipulation of the novel tools as revealed by
multiple regression analysis. Regions are shown in superior–posterior–lateral
view (Center), lateral view from right side (Left), superior view (Bottom), and
posterior (Right) view. Orange and blue colors indicate regions where activa-
tion was more highly and positively correlated with manipulation of rotated
or velocity mouse, respectively, than manipulation of normal mouse. Statis-
tical thresholds are P � 0.001 corrected.
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velocity mouse at the medium threshold. The volumes of 3 and 17
voxels are 0.192 cm3 and 1.088 cm3. We estimated the number of
microzones by dividing the activated volume by the volume corre-
sponding to one microzone, i.e., 9 (� 9.22�1.088) � 48 (� 9.22�
0.192) for the rotated mouse, and 6 (� 6.46�1.088) � 34 (�
6.46�0.192) for the velocity mouse.

This estimation assumes that microzones related to a similar
function are sparsely distributed. If these microzones are densely
packed in each voxel, the estimated number of microzones
increases. However, it is unlikely that neighboring microzones
behave similarly, which is against the definition of a microzone
(i.e., different climbing fiber inputs and hence different func-
tions). Although there is a large variability in the estimated
numbers, a small portion of all microzones (about 10% at
maximum) is related to each novel mouse.

Multiple Internal Models for Cognitive Functions. For the following
reasons, we believe that internal models acquired in the current
experiment are for cognitive functions rather than basic sensory-
motor transformations. First, the acquired internal models in
these experiments are expected to represent the relationship
between the cursor movement and the ‘‘mouse’’ movement
rather than the ‘‘hand’’ movement. This is because our previous
behavioral study (30) found that the learning effects in this task
are not specific to the hand, that is, the effects acquired during
practice by using one hand can be easily carried over to perfor-
mance by using the other hand. Second, the bilateral activity may
indicate that activated regions acquire internal models for
cognitive functions independent of the ipsilateral correspon-
dence between the motor apparatus and the cerebellum (e.g.,
refs. 11, 13–15, 31). Regarding the rotated-mouse activation, a
preference for the left side, i.e., contralateral to the performing
hand, was observed and agrees with activity related to cognitive
spatial operations (e.g., maze learning, ref. 15).

Anatomical and physiological studies in monkeys demon-
strated connectivity between the lateral cerebellum and the
frontal and parietal cortices (32–34). Our previous study (35)
investigated the entire brain activity when human subjects
learned to use the rotated mouse. We revealed that functional
connectivity between the loci of the lateral cerebellum examined
in this study and the ventral premotor cortex (especially the right

homologue of Broca’s area) increased after sufficient learning.
These cerebral regions could provide inputs and read outputs
from the internal models acquired in the cerebellum. For
example, mirror neurons in the ventral premotor cortex (36) may
have input–output relationships with internal models and may
represent the desired state of action.

Many functional imaging studies using a variety of paradigms
with pictures and words have reported tool-related regions (for
a review, see ref. 37): the medial fusiform gyrus activated by
form of tools, the left posterior middle temporal gyrus repre-
senting visual motion related to tool use, and the ventral
premotor regions representing tool-use-associated action. The
concept of tool is complex, and semantic memory of tools
consists of information stored in these distributed networks.
Current study suggests that the cerebellum also contributes to
the representation of tool by storing information about the
input–output property of each tool. We confirmed this by
showing differences in cerebellar activation patterns between
common tools such as a hammer and a knife (38).

Although trends common to all subjects could be identified in the
spatial distributions of the rotated mouse modules (anterior–
lateral) and the velocity mouse modules (posterior–medial) (Fig. 4),
their precise locations differed among the subjects (Fig. 3c). This
may indicate that locations of internal models for cognitive func-
tions are not innately determined. This characteristic in the lateral
posterior ‘‘cognitive’’ cerebellum contrasts strikingly with the low
variability of somatotopic organization in the ‘‘motor’’ cerebellum
(3), the anterior lobe, and the intermediate parts of the posterior
lobe. The somatotopic organization directly correlated with phys-
ical systems that are common to humans, whereas the functional
modules in higher cognition may differ among individuals with
different cultural and conventional backgrounds.

We demonstrated anatomical modularity in the cognitive
cerebellum with multiple internal models for different tools.
Although the MOSAIC theory was originally proposed in studies
of motor control, our results suggest that the computational
architectures proposed by the theory may be common to the
‘‘cognitive’’ and ‘‘motor’’ cerebellum.
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