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The recent flood of genomic (13), transcriptomic (29), and
other high-throughput data (21, 33, 45) makes the need to
interpret this information in a systemic fashion increasingly
pressing. The construction of in silico models represents a way
to interpret these data and place them in the context of cellular
physiology. A variety of in silico modeling approaches in biol-
ogy have been developed, including detailed kinetic models,
cybernetic models, stochastic models, metabolic control anal-
ysis, biochemical systems theory, and constraint-based meth-
ods. Many of these methodologies have been reviewed else-
where (5, 20, 25, 40, 46, 52, 62).

Modern modeling approaches in biology need to be easily
scalable and able to integrate available “-omics” data (38) that
may contain tens of thousands of measurements. A constraint-
based modeling approach (5, 14, 62) meets these criteria and at
present is the only methodology by which genome-scale models
have been constructed. The few parameters used in a con-
straint-based framework enable models to be built quickly and
to encompass a larger portion of biochemical reaction net-
works than the portion currently encompassed by other mod-
eling methodologies. To date, constraint-based models ac-
count for the largest metabolic models in terms of numbers of
genes and reactions and have proven to be predictive of some
types of data, including phenomic data (15, 26, 63), qualitative
transcriptomic data (9), and gene knockout data (16, 54).

Escherichia coli is a well-studied organism, and much is
known about its metabolism, regulation, and physiology. Con-
straint-based models of E. coli have been under development
for the past 13 years. The continual growth in the size and
scope of constraint-based E. coli models, as shown in Fig. 1,
illustrates the iterative nature of in silico model building and
how such models expand in scope and completeness over time.
While many modeling approaches have been used to study E.
coli (2, 12, 57, 65), in this minireview we focus on the devel-
opment of successive constraint-based models that have been
formulated to describe the metabolic network of E. coli and
summarize the models’ abilities to predict or explain pheno-
typic behavior. The principles that have been developed and
the experiences that have been gained from modeling E. coli
can be directly applied to modeling other organisms; this pro-

cess has begun for Haemophilus influenzae (17), Helicobacter
pylori (48), Saccharomyces cerevisiae (8, 23), and Methylobacte-
rium extorquens (58), and more models are expected to emerge
soon. The scope of constraint-based in silico models should
continue to grow, and these models are likely to have a variety
of uses in the near future.

PRINCIPLES OF CONSTRAINT-BASED MODELING

Reviews that describe the constraint-based modeling proce-
dure have appeared previously (5, 14, 19, 62). While kinetic
models may ultimately provide a detailed understanding of
integrated cellular functions, they are limited by the current
availability of the information needed to construct them and by
the fact that kinetic constants can vary across a population and
change over time through evolution. The constraint-based mod-
eling procedure does not strive to find a single solution but
rather finds a collection of all allowable solutions to the gov-
erning equations that can be defined. Solutions that violate
any of the imposed constraints are excluded from the col-
lection, which mathematically is called a solution space. The
subsequent application of additional constraints further re-
duces the solution space and, consequently, reduces the
number of allowable solutions that a cell can utilize. The
constraints that have been used in the first generation of con-
straint-based models include stoichiometric constraints (mass
balance), thermodynamic constraints (regarding the reversibil-
ity of a reaction), and enzymatic capacity constraints (using an
appropriate Vmax value).

Stoichiometric constraints can be represented by the matrix
equation Sv � 0, where S is the stoichiometric matrix describ-
ing all the reactions in the network and v is a vector describing
the fluxes through each of the reactions. Each column of S
corresponds to an individual reaction, and the rows of S cor-
respond to the different metabolites. The stoichiometric coef-
ficients of a reaction are then represented as elements in col-
umn (i.e., Sij corresponds to the stoichiometric coefficient of
the ith metabolite in the jth reaction). The equation Sv � 0
imposes the restriction that the total rate of production for any
metabolite must equal the total rate of consumption for that
metabolite. In addition to stoichiometric or mass balance con-
straints, thermodynamic constraints and enzyme capacity con-
straints place limits on the range of values for individual fluxes
(vj) in the network. Enzyme capacity constraints place an upper
limit on the values that a given flux can take. Application of
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thermodynamic constraints further restricts the range of flux
values. If a reaction is irreversible, the corresponding flux must
be greater than or equal to zero; however, reversible reactions
can have positive or negative flux values. A more systematic
representation of thermodynamic constraints has appeared (3,
44). Stoichiometric, enzyme capacity, and thermodynamic con-
straints represent hard inviolable physicochemical constraints
that cells must abide by.

Given the governing constraints, the next step involves char-
acterizing the allowable solution space and predicting which
solution a cell is likely to use. Different techniques exist under
the constraint-based modeling framework, including extreme
pathway analysis (50), elementary mode analysis (52, 53), flux
balance analysis (FBA) (5, 14, 19, 62), and minimization of
metabolic adjustments (54), which aid in this process. Figure 2
illustrates the different constraint-based modeling techniques
used to characterize the solution space defined by the network
and the applied constraints.

Characterizing the solution space. Extreme pathways and
elementary modes represent sets of vectors that describe the
solution space and are themselves biochemically valid flux dis-
tributions through a defined metabolic network. Calculation of
elementary modes and extreme pathways has been described
elsewhere (50, 53). Elementary modes are unique vectors that
characterize the solution space. An elementary mode is de-
fined as a “minimal set of enzymes that could operate at

steady-state with all irreversible reactions proceeding in the
appropriate direction” (52). Extreme pathways are related to
elementary modes and correspond directly to the edges of the
convex solution space. Both approaches have been applied to
core metabolic networks of E. coli whose sizes are listed in
Table 1. Positive linear combinations of these vectors can be
used to generate any valid steady-state flux solution under the
governing constraints. These analysis methods are useful for
characterizing the solution space, and the next step is to try to
determine what solution in the solution space the cell actually
chooses to use.

Calculating optimal phenotypes. Linear optimization has
been used to find a particular solution within the allowable
solution space that maximizes or minimizes a particular objec-
tive function. The objective function can be used to explore the
content of a solution space, to determine capabilities (such as
optimal metabolic by-product yields), or to guess at likely phe-
notypic functions. This approach is referred to as FBA and has
been reviewed elsewhere (5, 14, 19, 62). Some commonly used
objective functions include production of ATP, production of a
desired by-product, or growth rate (as defined by the weighted
consumption of metabolites needed to make biomass). The
size of the metabolic networks used to model E. coli metabo-
lism by FBA has expanded over time from 14 to 929 metabolic
reactions, as shown in Table 2.

Construction of constraint-based models is iterative in na-

FIG. 1. Development of successive constraint-based FBA models of E. coli. Constraint-based models of E. coli first focused on metabolism. By
the time the complete genome was sequenced (1997), only 26% of metabolic genes were accounted for in FBA models. Over the next 5 years the
number grew to include nearly 80% of the metabolic genes. Methods for incorporating transcriptional regulation have been developed and
implemented in a core metabolic model of E. coli, as have methods for including protein synthesis. Expanding the regulatory and protein synthesis
models to the genome scale can be accomplished by using information that is known today (indicated by dotted lines). Further functional analysis
of genes should increase the size of models (dashed lines). These three components can be combined to form an integrated model (E. coli i2K)
that accounts for nearly 2,000 genes. The superscript letters indicate references, as follows: a, reference 4; b, reference 55; c, reference 32; d,
references 59 and 60; e, references 42 and 43; f, reference 16; g, reference 11; h, reference 9; and i, reference 1.
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ture, and while correct predictions are desirable, the incorrect
predictions are the ones that lead to an iterative refinement of
the models (37). Over the past 13 years the constraint-based
modeling approach has been used to study, explain, and pre-
dict the phenotypic behavior of E. coli. The individual models
can be characterized by the type of analysis performed and by
the time frame in which they were developed.

ELEMENTARY MODE AND EXTREME
PATHWAY ANALYSES

A representation of E. coli’s central metabolic network
was constructed and analyzed by using elementary mode
analysis (31). For this study modes that produce 3-deoxy-D-

arabinoheptulosonate 7-phosphate, a precursor of the aro-
matic amino acids, and/or ATP were calculated with xylose
or glucose as the carbon source. When glucose was the
carbon source, all possible steady-state flux distributions

FIG. 2. Constraint-based modeling. Application of constraints to a reconstructed metabolic network leads to a defined solution space in which
a cell’s network must operate. From this solution space a number of methods have been developed that help predict or explain phenotypic
behavior. Linear optimization can be used to find solutions in the space that maximize or minimize a given objective (5, 14, 19, 62), and
mixed-integer linear programming (MILP) can be used to find multiple optima if they exist (30, 41). Elementary mode analysis (52, 53) and extreme
pathway analysis (50) can be used to characterize vectors in the solution space; the edges of the space correspond to extreme pathways (EP) and
are a subset of the elementary modes (EM). Phenotypic phase plane analysis shows for what conditions the metabolic network operates under
different limitations (18). The effects of gene deletions can also be computed. In the diagram the old optimal solution (point a) does not lie in the
new solution space. A new optimum can be calculated (point b), or a suboptimal solution that is closest to the old optimum can be calculated (point
c) (54). In addition, work has been done by using experimental flux measurements (indicated by a point) to back-calculate objective functions
(indicated by vectors) (6a).

TABLE 1. Elementary mode analysis and extreme
pathway analysis models

Model Year No. of metabolic
reactions

No. of
metabolites

Liao et al. 1996 28 20
Schilling et al. 2000 78 53
Stelling et al. 2002 110 89
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(i.e., solutions which obey stoichiometric and thermody-
namic constraints) could be written as the sum of 11 calcu-
lated elementary modes. Examination of the properties of
the calculated elementary modes, such as 3-deoxy-D-arabi-
noheptulosonate 7-phosphate yields, provided insight into
experimental results (31).

The extreme pathways for a larger network containing 78
reactions and 53 metabolites were calculated for two differ-
ent carbon sources, glucose and succinate. The extreme
pathway vectors calculated for the conditions when the bio-
mass precursors were included in the network as a growth
reaction were correlated with results from FBA when
growth was used as the objective function (49). More re-
cently, the elementary modes in a larger representation of E.
coli’s metabolic network (containing 110 reactions and 89
metabolites) were calculated and analyzed (56). In this study
five different carbon sources were used, and again a reaction
representing the drain of metabolic precursors needed for
growth was added to the network. Elementary mode analysis
was used to determine which of 90 genes were essential for
growth; a reported 90% of the predictions agreed with ex-
perimental data when phenotypes were classified as either
growth or no growth. The number of elementary modes
varied depending on the carbon source and ranged from 598
when acetate was the carbon source to 27,099 for glucose.
The modes were further analyzed to identify which enzymes
would most likely be regulated for changing growth condi-
tions (i.e., different carbon sources). A good correlation
between regulatory predictions and measured mRNA ex-
pression data was found (56).

The metabolic networks studied by elementary mode or
extreme pathway analysis are smaller than the networks stud-
ied by FBA. This limitation is due to the computational com-
plexity associated with calculating these vectors and not from
limitations on known reaction stoichiometry (28).

Direct determination of optimality properties can be accom-
plished by using optimization procedures that circumvent the
exhaustive enumeration of extreme pathway analysis or ele-
mentary mode analysis. Linear programming has been used
extensively to determine the optimality properties of recon-
structed E. coli networks.

PREGENOME ERA MODELS

Initial model of core metabolism. In 1990, Majewski and
Domach formulated an FBA model that included 14 metabolic
reactions (tricarboxylic acid [TCA] cycle, partial glycolysis, and
respiratory chain) and four load fluxes that served as drains for
the metabolic precursors needed for cell growth (oxaloacetate,
�-ketoglutarate [�KG], pyruvate, and acetyl coenzyme A) (32).
In their analysis production of high-energy phosphate bonds
on ATP and GTP was used as the objective function.

Majewski and Domach studied the optimal behavior of the
metabolic network under two different types of constraints,
enzymatic capacity constraints and electron transport chain
constraints. Both types of constraints placed an upper limit on
the value for fluxes through different reactions in the network.
By maximizing the utilization of the network for the produc-
tion of high-energy phosphate bonds under either an enzy-
matic constraint (�KG dehydrogenase) or an electron trans-
port chain capacity constraint, equations describing the onset
of acetate overflow and the rate of acetate production could be
derived. The experimentally determined secretion patterns for
acetate overflow in E. coli agreed with the network operating
under enzymatic capacity constraints (32). The model led to
the conclusion that the electron transport chain capacity is a
constraint only when the growth rate approaches the maximum
achievable growth rate (32).

Model built on Neidhardt’s compendium. Varma and Pals-
son’s reconstruction of E. coli’s metabolic network contained
both anabolic and catabolic reactions based on previously pub-
lished information (34, 35). The model contained 53 catabolic
reactions and 94 biosynthetic reactions that produce the amino
acids, nucleic acids, and cell membrane and cell wall constitu-
ents found in cell biomass (59, 60). Several network properties
were calculated from this model, such as optimal production of
cofactors (ATP, NADPH, NADH) (60), optimal production of
metabolic precursors (such as pyruvate or succinate) (60), max-
imal theoretical yields for amino acid and nucleic acid produc-
tion (59), and evaluation of constraints (energy, redox, or stoi-
chiometric) that restrict production of metabolites or cofactors
(59, 60), as well as optimal flux distributions for biomass pro-
duction (61). Model predictions agreed with experimental re-
sults when E. coli was grown on glucose minimal medium
under aerobic and anaerobic conditions and if the metabolic
network was optimized for the production of biomass constit-
uents (63). Sensitivity analysis of the predicted growth rate
with respect to the biomass composition was conducted, and it
was found that the sensitivity of the biomass yield to changes in
metabolite requirements was low (61).

Effects of growth rate-dependent biomass composition. Pra-
manik and Keasling’s metabolic network was an expansion of
Varma and Palsson’s model and consisted of 300 reactions and
289 metabolites (an additional 17 reactions and 16 metabolites
were added later) (42, 43). The biomass composition of E. coli
varies with the carbon source and the growth rate (36). Varma
and Palsson’s model had used a fixed biomass composition
based on previously published data, while Pramanik and Keas-
ling’s model used derived equations relating growth rate to
biomass requirements, allowing for changes in biomass com-
position in a growth rate-dependent manner (43).

To analyze the accuracy of the model, 13 experimentally

TABLE 2. Flux balance models

Model Year(s) No. of metabolic
reactions

No. of
metabolites

Majewski and Domach 1990 14 17
Varma and Palssona 1993–1995 146 118
Pramanik and Keaslingb 1997–1998 300 (317) 289 (305)
Edwards and Palsson 2000 720 436
Covert and Palssonc 2002 113 77
Reed and Palsson 2003 929 626

a Varma and Palsson’s model contained a catabolic and biosynthetic network.
The values shown are the values for the combined networks.

b Pramanik and Keasling developed two models. The second model, the num-
ber of parameters of which is indicated in parentheses, included reactions from
the first model plus an additional 17 reactions.

c Regulated model of central metabolism.
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measured flux values (64) were compared to fluxes calculated
by using Pramanik and Keasling’s model (43). Three experi-
mental conditions were examined: anaerobic growth on glu-
cose, aerobic growth on acetate, and aerobic growth on acetate
plus glucose. For aerobic growth on acetate plus glucose the
average difference between experimental flux measurements
and model predictions was 16%. Similar results were found for
aerobic growth on acetate (17%). No experimental flux values
were available for comparison for anaerobic glucose, but a
branched TCA cycle (with an oxidative branch producing �KG
and a reductive branch producing succinyl coenzyme A) had
been observed experimentally; the model’s prediction agreed
with this observation. Further analysis of the model also indi-
cated that the predicted flux values were sensitive to biomass
composition (42, 43). Other studies have been conducted by
using slight modifications of Pramanik and Keasling’s model to
investigate the effects of large-scale gene deletions or additions
(6) and to calculate a minimal gene set (7).

POSTGENOME ERA MODELS

Finally, a genome-scale model. The complete genome of
E. coli K-12 strain MG1655 was sequenced and annotated in
1997 (4). Genomic data allow systematic assessment of the
capabilities of the organism; in addition, genes encoding met-
abolic enzymes that have not yet been biochemically charac-
terized can be included in a model based on sequence similar-
ity. For less-studied organisms the genome plays a more
significant role in network reconstruction, and many of the
enzymes are assigned based on sequence homology and await
biochemical characterization. In the case of E. coli, the
genomic information, coupled with physiological and biochem-
ical data (10), enabled reconstruction of a genome-scale met-
abolic model describing the E. coli metabolic network (16).

Edwards and Palsson’s model included 720 reactions and
436 metabolites involved in glycolysis, the TCA cycle, the pen-
tose phosphate pathway, respiration, anaplerotic reactions, fer-
mentative reactions, amino acid biosynthesis and degradation,
nucleotide biosynthesis and interconversions, fatty acid biosyn-
thesis and degradation, phospholipid biosynthesis, cofactor
biosynthesis, and metabolite transport. This model was vali-
dated with mutant data (16), was used to design quantitative
experiments (15), and was found to predict the outcome of
adaptive evolution (26).

The results of in silico gene deletion studies were compared
with growth data obtained with known mutants. The in vivo
growth characteristics of a series of E. coli mutants on several
different carbon sources were examined and compared to the
in silico deletion results. In this analysis, 68 of 79 (86%) of the
in silico predictions were consistent with the experimental ob-
servations (16). The predictions of the in silico E. coli model
were highly consistent with phenotypes of known mutants and
knockouts.

Phenotypic phase plane analysis was developed (18) and
applied to Edwards and Palsson’s E. coli model. Quantitative
predictions regarding optimal usage of a carbon source and
oxygen to maximize the growth rate were made and tested for
a variety of substrates. Growth on M9 minimal medium with
acetate, malate, or succinate as the primary carbon source
agreed with the computational hypothesis (15, 26); however,

glycerol supported only suboptimal growth of E. coli. Repeated
exponential balanced growth batch cultures on glycerol were
then incubated for 60 days (around 900 generations), and the
cells reproducibly evolved towards the a priori predicted opti-
mal growth behavior (26).

Incorporating effects of transcriptional regulation. A short-
coming of the purely stoichiometric metabolic models is that
they do not account for transcriptional regulation, so all the
gene products are assumed to be available to the cell to opti-
mize its performance in a defined environment. This assump-
tion is based on the rationale that E. coli would have evolved
its regulatory network to allow optimal growth under condi-
tions to which the microorganism was already adapted. Some
instances where this assumption might not be true are for E.
coli mutants or for growth on multiple carbon sources. It has
also been found that some carbon sources do no initially sup-
port optimal behavior, although limited adaptive evolution
data do suggest that over time E. coli adjusts its metabolic
fluxes to find the optimal solution (26; S. S. Fong and B. O.
Palsson, unpublished data).

To address this issue, the effects of transcriptional regulation
have recently been included in a constraint-based model of
E. coli central metabolism (9). The method for modeling tran-
scriptional regulation is based on Boolean logic, where the
genes can be either on or off, and their status is evaluated
based on conditional if statements. The regulatory network has
been reconstructed for central metabolism in E. coli by using
this method. Covert and Palsson’s metabolic and regulatory
network includes 149 genes (16 are regulatory genes), which
take part in 113 metabolic reactions, 45 of which are regulated
by 16 regulatory proteins (9).

Covert and Palsson’s regulated model has been used to com-
pare regulated model predictions of gene deletions with mu-
tant data and predictions from an unregulated model (9). The
unregulated network correctly predicted 97 of 116 cases cor-
rectly (83.6%), while the regulated network predicted 106 of
116 cases correctly (91.4%); thus, incorporating regulation im-
proved the accuracy of in silico knockout predictions. The
model was also used to calculate time courses of batch growth.
The in silico predictions were in agreement with the experi-
mental by-product (acetate, formate, and ethanol) secretion
patterns, as well as the glucose uptake and biomass production
patterns (9).

FUTURE DIRECTIONS

Expanding current models. Annotation updates to the
E. coli genome (55), coupled with previously published data
and organism-specific databases, including EcoCyc (27), have
enabled expansion of Edwards and Palsson’s metabolic model.
So far, an additional 242 genes have been added to Edwards
and Palsson’s model, and the metabolic network now contains
929 different metabolic reactions (J. L. Reed and B. O. Pals-
son, unpublished data). Genome-scale maps of E. coli me-
tabolism have been constructed and are available (http:
//gcrg.ucsd.edu/organisms/ecoli/html). Work is now focused
on filling in the gaps in the metabolic network and validating
the model. This model should continue to grow as more
metabolic genes are identified and characterized.

Recent work has also been done to include the regulatory
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constraint-based model of E. coli (9). The expansion of this
regulatory model to include the effects of regulation on larg-
er genome-scale models of metabolism is one of the next fore-
seeable steps in building more accurate constraint-based mod-
els of E. coli. Tools that should aid in this effort include
RegulonDB, a database containing information about gene
regulation in E. coli that is publicly available (47), and methods
that extract gene regulatory networks from transcriptomic data
(24).

Finding objective functions. There are many issues that
remain involving the selection of an objective function. Bio-
mass compositions have often been used to compute the
basis for optimal growth objective function. The effects of
growth rate-dependent changes in biomass composition have
already been accounted for (43). In addition to these ad-
vances, work is being done to back-calculate objective func-
tions based on measured flux data, so that utilization of a
calculated objective function yields a solution that mini-
mizes the error between predicted and experimentally mea-
sured fluxes (6a).

Alternative solutions. A single linear optimization identifies
one solution in the solution space; however, alternate optimal
solutions can exist in the allowable solution space. These
equivalent solutions can be calculated by using a variety of
techniques, such as mixed-integer linear programming (30, 41),
extreme pathway analysis (39), and elementary mode analysis
(52); which optimal solution is actually used by the cell is still
not known.

The in silico finding that the same phenotype can be attained
in more than one way with the same underlying network gives
rise to the possibility that it may be difficult to determine the
true state of a cell. Preliminary experimental data support this
expectation since strains that evolve to have the same growth
phenotype (26) are not identical (Fong and Palsson, unpub-
lished). Further, evolution of phosphotransferase system
knockouts in E. coli also support this expectation (22).

Gene knockouts. The in silico representation of biological
associations among genes, proteins, and reactions is important
when the effects of gene deletions are modeled. Enzyme sub-
units and enzyme complexes need to be taken into account
when associations among genes, enzymes, and reactions are
made (Fig. 3). Deleting a gene in constraint-based models

results in removing the reactions associated with the protein
from the network, unless other isozymes are present. Removal
of reactions changes the solution space, and some wild-type
solutions might be eliminated (Fig. 2). Knocking out essential
genes from the model produces no solutions which allow for
cellular growth under the governing constraints.

In previous studies researchers have focused on determining
if genes or reactions are essential using FBA (16, 48), elemen-
tary mode analysis (56), and extreme pathway analysis (51).
Methods for predicting suboptimal solutions in gene knockout
studies are being developed because an optimal solution might
not be biologically achievable due to regulatory or kinetic
effects. One such method, diagrammed in Fig. 2, has already
been developed and finds the solution in the knockout solution
space by minimizing the difference in fluxes between the wild-
type optimal solution and a solution residing in the knockout
solution space (54).

Application of additional constraints. Significant progress
has been made in the last 13 years towards building constraint-
based models of E. coli; they are now genome-scale models.
Enhancing the predictive capabilities of these models in the
future should be accomplished by broadening the scope of the
models (including other cellular processes), as well as explor-
ing the use of additional constraints. The utilization of other
physicochemical constraints, such as the conservation of en-
ergy, kinetic constraints, osmotic balances, or electroneutrality,
should further reduce the allowable solution space, resulting
in more accurate predictions. A framework for implement-
ing energy balance constraints (3, 44) has already been de-
veloped and applied to the central metabolic network of E.
coli (3).

Integrated models. Other cellular processes can be de-
scribed in a constraint-based modeling framework based on
the genome sequence, such as transcription (1), translation (1),
and DNA replication. These processes place direct metabolite
and energy demands (i.e., through the objective function) on
the metabolic network. These processes are coupled, and me-
tabolism affects the rates of transcription, translation, and rep-
lication; these processes, in return, direct metabolism (Fig. 4).
The development of constraint-based models that include me-
tabolism, regulation, and protein synthesis should allow simul-
taneous reconciliation of diverse “-omics” data (such as pro-
teomic, metabolomic, transcriptomic, and phenomic data) and
back-calculation of biological parameters (such as promoter
strengths).

CONCLUSION

A shift in biology from a component-based perspective to a
systems view of the cell is occurring as a result of high-through-
put data generation. This shift in thinking requires construc-
tion of in silico models in order to understand systemic behav-
ior of complete biological processes. Genome-scale models
need to be built to evaluate and study the intrinsic biological
properties that emerge from the system as a whole. The chal-
lenge is to develop methodologies to construct and study such
models. Constraint-based models are the first step towards
achieving this goal. Within this approach, models can be easily
scaled up, and “-omics” data can be integrated. E. coli has
proven to be a useful biological model organism, and con-

FIG. 3. Gene-protein-reaction associations. The association be-
tween the enzyme fumarate reductase and the genes which code for its
subunits is shown. All four gene products come together to make a
functional enzyme. This enzyme is capable of carrying out two reac-
tions, (i) the transfer of electrons from menaquinol (MKH2) to fuma-
rate (FUM) and (ii) the transfer of electrons from demethylmenaqui-
nol (DMKH2) to FUM. The products of both reactions are succinate
(SUCC) and either menaquinone (MK) or demethylmenaquinone
(DMK). Deletion of any of the subunits would eliminate the functional
enzyme. This is simulated by removing the two reactions from the
network (unless an isozyme exists).
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straint-based models have been developed for this organism
over the last 13 years. The current E. coli models already
include almost 1,000 genes, and 2,000-gene models are within
reach (Fig. 1). An integrated 2,000-gene model (Fig. 4), ac-
counting for the core functions of metabolism, transcription,
translation, and regulation, can serve as a foundation on which
other biological processes, such as growth and motility, can be
simulated. In the foreseeable future, such constraint-based in
silico models are expected to be commonly used in microbiol-
ogy for hypothesis building and testing, driving both in silico
and in vivo experimentation.
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