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Surfaces that locally minimize area have been extensively used to
model physical phenomena, including soap films, black holes, com-
pound polymers, protein folding, etc. The mathematical field dates to
the 1740s but has recently become an area of intense mathematical
and scientific study, specifically in the areas of molecular engineering,
materials science, and nanotechnology because of their many antic-
ipated applications. In this work, we show that all minimal surfaces
are built out of pieces of the surfaces in Figs. 1 and 2.

M inimal surfaces with uniform curvature or area bounds are
well understood, and the regularity theory is complete, yet

essentially nothing was known without such bounds. We discuss
here the theory of embedded (i.e., without self-intersections)
minimal surfaces in Euclidean space R3 without a priori bounds.
The study is divided into three cases, depending on the topology of
the surface. In case 1, the surface is a disk; in case 2, the surface is
a planar domain (genus zero); and case 3 is that of finite (nonzero)
genus. The complete understanding of the disk case is applied in
both cases 2 and 3. In all three cases, the surface is allowed to have
a boundary. This point is essential and makes the results particularly
useful. For instance, given any minimal surface, independent of its
topology, if a component of the intersection of the surface with a
Euclidean ball is a disk, then case 1 applies and gives a good
description of that component, and similarly, for cases 2 and 3. The
surface itself may then be thought of as built out of these snapshots
(or building blocks).

Summary
The helicoid, which is a ‘‘double spiral staircase,’’ was discovered to
be a minimal surface by Meusnier in 1776 (see Fig. 1). As we will
show, the helicoid is the most important example of an embedded
minimal disk. In fact, we will see that every such disk is either a
graph of a function or part of a double spiral staircase.

For planar domains, the fundamental examples are the catenoid
(see Fig. 2), also discovered by Meusnier in 1776, and the Riemann
examples discovered by Riemann in the early 1860se (see Figs. 3–6).
Finally, for general fixed genus, an important example is the recent
example by Weber et al. (1, 2) of a genus-one helicoid (see Fig. 7).
The genus-one helicoid is a complete minimal surface that on a
large scale, away from the genus, looks essentially like an ordinary
helicoid. This example illustrates that the helicoid is one of the basic
building blocks of general minimal surfaces. This property is also
true for the Riemann examples. The Riemann examples are a
two-parameter family of complete minimal surfaces. As the pa-
rameters degenerate, the Riemann examples look like either a
collection of catenoids stacked on top of each other or two
oppositely oriented helicoids (with parallel axes) glued together.

In the last section, we discuss why (complete) embedded minimal
surfaces are automatically proper (i.e., why divergent sequences of
points on the surface diverge in Euclidean space). This question was
previously known as the Calabi–Yau conjectures for embedded
surfaces. For immersed surfaces, there are counterexamples by
Jorge and Xavier (3) and Nadirashvili (4).

What Are the Possible Shapes of Natural Objects in Equilibrium and
Why? When a closed wire or a frame is dipped into a soap solution
and afterward raised up from the solution, the surface spanning the
wire is a soap film. The soap film is in a state of equilibrium. What
are the possible shapes of soap films and why? Or why is DNA like

a double spiral staircase? ‘‘What’’ and ‘‘why’’ are fundamental
questions that, when answered, help us understand the world we live
in. The answer to any question about the shape of natural objects
is bound to involve mathematics.

Soap films, soap bubbles, and surface tension were extensively
studied by the Belgian physicist and inventor (of the stroboscope)
Plateau in the first half of the 19th century. At least since then, it
has been known that the right mathematical model for a soap film
is a minimal surface:f the soap film is in a state of minimum energy
when it covers the least possible amount of area. There are several
other fields where minimal surfaces are actively used in under-
standing the shapes of physical phenomena. Even if one restricts the
discussion to the helicoid, minimal surfaces come up in the study of
compound polymers (dislocations), protein folding, etc.

We discuss here the answer to the following questions: What are
the possible shapes of embedded minimal surfaces in R3, and why?

Critical Points, Minimal Surfaces. Let � � R3 be a smooth orientable
surface (possibly with a boundary) with unit normal n�. Given a
function � in the space C0

�(�) of infinitely differentiable (i.e.,
smooth), compactly supported functions on �, consider the one-
parameter variation of surfaces

�t,� � �x � t��x�n��x� �x � �� . [1]

The so-called first variation formula of area is the equation (inte-
gration is with respect to the area of �)

d
dt
�

t�0
Area�� t,�� � �

�

�H , [2]

where H is the mean curvature of �, and the mean curvature is the
sum of the principal curvatures �1, �2. [When � is noncompact, �t,�
in Eq. 2 is replaced by 	t,�, where 	 is any compact set containing
the support of �.] The surface � is said to be a ‘‘minimal’’ surface
(or just minimal) if Eq 2 is zero for all ø, or, equivalently by Eq. 2,
if the mean curvature H is identically zero. Thus, � is minimal if and
only if it is a critical point for the area functional. Moreover, when
� is minimal, �1 � 
�2 (since H � �1 � �2 � 0), and the Gaussian
curvature K� � �1�2 is nonpositive.

Minimizers and Stable Minimal Surfaces. Because a critical point is
not necessarily a minimum, the term minimal is misleading, but it
is time-honored. The equation for a critical point is also sometimes
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called the Euler–Lagrange equation. A computation shows that if
� is minimal, then

d2

dt2�
t�0

Area�� t,�� � 
�
�

�L���. [3]

Here, L�� � ��� � �A�2� is the second variational (or Jacobi)
operator, �� is the Laplacian on �, and A is the second fundamental
form of �. So A is the covariant derivative of the unit normal of �,
and �A�2 � �1

2 � �2
2 � 
2�1�2 � 
2K�, where �1, �2 are the principal

curvatures (recall that because � is minimal, �1 � 
�2). A minimal
surface � is said to be stable if

d2

dt2�
t�0

Area�� t,�� � 0 for all � � C0
���� . [4]

One can show that a minimal graph is stable, and, more generally,
so is a multivalued minimal graph (see below for the precise
definition). Throughout, let x1, x2, x3 be the standard coordinates on
R3. For y � � � R3 and s 
 0, the extrinsic balls are Bs(y) � {x �
R3�x 
 y� � s}.

Embedded � Without Self-Intersections. Our surfaces will all be
without self-intersections, i.e., they will be embedded. By an em-
bedding, we mean a smooth injective immersion from an abstract
surface into R3.

Topology of Surfaces. The classification of minimal surfaces will
essentially only depend on the topology of the surface and on
whether or not the surface has a point where the curvature is large.

Compact orientable surfaces without boundaries are classified by
their genus, a nonnegative integer. Genus � 0 corresponds to a
sphere, genus � 1 to the torus, a model of which is the surface of
an object formed by attaching a ‘‘suitcase handle’’ to a sphere. A
surface of genus � k is modeled by the surface of a sphere to which
k-handles have been attached. A compact orientable surface with
a boundary is one formed by taking one of these surfaces and
removing a number of disjoint disks. The genus of the surface with
a boundary is the genus of the original object, and the boundary
corresponds to the edges of the surface created by disk removal. In
particular, a surface with genus 0 and nonempty boundary is a
planar domain, i.e., it can be obtained from the disk in the plane by
removing a number of disjoint subdisks. Such a surface is because
it can be obtained from the sphere by removing a number of disks,
and after removing the first disk from the sphere, we have a disk in
a plane. Sometimes we will talk about surfaces that are simply
connected, i.e., every loop on the surface can be shrunk (without
leaving the surface) to a point curve. One can easily see that the only
simply connected surfaces are the disk and the sphere.

Disks
Study of the shapes of natural objects in equilibrium, really surfaces
in equilibrium, goes back a long, long way. There are questions of
existence of solutions, uniqueness of equilibria, and the global
structure of the space (or spaces) of examples. At the intersection
of all of these questions is the question of what the (shape of the)
natural building blocks are. In a broad sense, we will see that graphs
and helicoids are in a fundamental way the key building blocks of
embedded minimal surfaces.

There are two local models for embedded minimal ‘‘disks.’’ One
model is the plane (or, more generally, a minimal graph), and the
other is a piece of a helicoid.

Minimal Graphs and the Helicoid. The derivation of the equation for
a minimal graph goes back to Lagrange’s 1762 memoir. [Note that
if � is a simply connected domain in R2 and u is a real valued
function, the graph of u, i.e., the set {(x1, x2, u(x1, x2))�(x1, x2) � �},

is a disk.] Minimal graphs over proper simply connected domains
in R2 give a large class of embedded minimal disks, although by a
classical theorem of Bernstein (5) from 1916, entire (i.e., where � �
R2) minimal graphs are planes.

The second model comes from the helicoid, which was discov-
ered by Meusnier in 1776.g The helicoid is a ‘‘double spiral
staircase’’ given by sweeping out a horizontal line rotating at a
constant rate as it moves up a vertical axis at a constant rate (see
Fig. 1). Each half-line traces out a spiral staircase, and together the
two half-lines trace out (up to scaling) the double spiral staircase.

Anyone who has climbed a spiral staircase knows that the stairs
become steep in the center. The tangent plane to the helicoid at a
point on the vertical axis is a vertical plane; thus, the helicoid is not
a graph over the horizontal plane. In fact, as we saw earlier, any
minimal surface has nonpositive curvature; for the helicoid the
curvature is most negative along the axis and converges asymptot-
ically to zero as one moves away from the axis. This decay
corresponds to the fact that as one moves away from the axis, larger
and larger pieces of the helicoid are graphs.

For the results on embedded minimal disks (see Structure of
Embedded Minimal Disks), it is important to understand a sequence
of helicoids obtained from a single helicoid by rescaling as follows.

Consider the sequence �i � ai� of rescaled helicoids where ai3
0. (That is, rescale R3 by ai, so points that used to be distance d apart
will in the rescaled R3 be distance aid apart.) The curvatures of this
sequence of rescaled helicoids are blowing up (i.e., the curvatures
go to infinity) along the vertical axis. The sequence converges (away
from the vertical axis) to a foliation by flat parallel planes; that is,
it converges to the collection of planes x3 � constant. The singular
set (the axis) then consists of removable singularities.

Multivalued Graphs, Spiral Staircases, and Double Spiral Staircases.
To be able to give a precise meaning to the statement that the
helicoid is a double spiral staircase, we will need the notion of a
multivalued graph; each staircase will be a multivalued graph.
Intuitively, a multivalued graph is a surface covering an annulus,

gMeusnierhadbeenastudentofMonge.Healsodiscoveredthat thesurfacenowknownasthe
catenoid is minimal in the sense of Lagrange, and he was the first to characterize a minimal
surface as a surface with vanishing mean curvature. Unlike the helicoid, the catenoid is not
topologically a plane but rather a cylinder. (The catenoid will be explained later; see Eq. 6.)

Fig. 1. The helicoid is a double spiral staircase given by sweeping out a
horizontal line rotating at a constant rate as it moves up a vertical axis at a
constant rate. Each half-line traces out a spiral staircase, and together the two
half-lines trace out (up to scaling) the double spiral staircase

�s cos t, s sin t, t�, where s, t � R. [5]
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such that over a neighborhood of each point of the annulus, the
surface consists of N graphs. To make this notion precise, let Dr be
the disk in the plane centered at the origin and of radius r, and let
P be the universal cover of the punctured plane C�{0} with global
polar coordinates (�, �) so � 
 0, and � � R. An ‘‘N-valued graph’’
on the annulus Ds�Dr is a single-valued graph of a function u over
{(�, �)�r � � 	 s, ��� 	 N
}. For working purposes, we generally
think of the intuitive picture of a multisheeted surface in R3, and we
identify the single-valued graph over the universal cover with its
multivalued image in R3.

The multivalued graphs that we will consider will all be embed-
ded, which corresponds to a nonvanishing separation between the
sheets (or the floors). If � is the helicoid, then ��{x3 
 axis} � �1
� �2, where �1, �2 are �-valued graphs on C�{0}. �1 is the graph
of the function u1(�, �) � �, and �2 is the graph of the function u2(�,
�) � � � 
. (�1 is the subset where s 
 0 in Eq. 6 and �2 the subset
where s � 0.) In either case, the separation between the sheets is
constant, equal to 2
. A ‘‘multivalued minimal graph’’ is a multi-
valued graph of a function u satisfying the minimal surface
equation.

Structure of Embedded Minimal Disks. All of our results, for disks as
well as for other topological types, require only a piece of a minimal
surface. In particular, the surfaces may well have boundaries, and
when we, for instance, say in the next theorem, ‘‘Any embedded
minimal disk in R3 is either a graph of a function or part of a double
spiral staircase,’’ then we mean that if the surface is contained in a
Euclidean ball of radius r0 and the boundary is contained in the
boundary of that ball, then in a concentric Euclidean ball with
radius a fixed (small) fraction of r0, any component of the surface
is either a graph of a function or part of a double spiral staircase.
That the surfaces are allowed to have boundaries is a major point
and makes the results particularly useful. Note also that because the
conclusion is for a ‘‘fixed fraction of the surface,’’ this theorem is an
interior estimate.

The following is the main structure theorem for embedded
minimal disks.h

Theorem 1. Any embedded minimal disk in R3 is either a graph of a
function or part of a double spiral staircase. In particular, if for some
point the curvature is sufficiently large, then the surface is part of a
double spiral staircase (it can be approximated by a piece of a rescaled
helicoid). On the other hand, if the curvature is below a certain
threshold everywhere, then the surface is a graph of a function.

As a consequence of this structure theorem we get the following
compactness result.

Corollary 1. A sequence of embedded minimal disks with curvatures
blowing up (i.e., going to infinityi) at a point mimics the behavior of
a sequence of rescaled helicoids with curvature going to infinity (see the
discussion of rescaled helicoids at the end of Minimal Graphs and the
Helicoid).

A Consequence for Sequences that Are Uniformly Locally Simply
Connected (ULSC). Sequences of planar domains that are not simply
connected are, after passing to a subsequence, naturally divided
into two separate cases depending on whether or not the topology
is concentrating at points. To distinguish between these cases,
we will say that a sequence of surfaces �i

2 � R3 is ULSC if for each
x � R3, there exists a constant r0 
 0 (depending on x), so that for
all r 	 r0, and every surface �i

each connected component of Br�x� � � i is a disk. [7]

For instance, a sequence of rescaled helicoids is ULSC, whereas a
sequence of rescaled catenoids where the necks shrink to zero is not.
The catenoid that plays an important role in the next section is the
minimal surface in R3 given by rotating the curve s 3 (cosh s, s)
around the x3-axis (see Fig 2).

Applying the above structure theorem for disks to ULSC se-
quences gives that there are only two local models for such surfaces.
That is, locally in a ball in R3, one of following holds.

Y The curvatures are bounded, and the surfaces are locally graphs
over a plane.

Y The curvatures blow up, and the surfaces are locally double spiral
staircases.

Both of these cases are illustrated by taking a sequence of rescalings
of the helicoid; the first case occurs away from the axis, whereas the
second case occurs on the axis. If we take a sequence �i � ai� of
rescaled helicoids where ai3 0, then the curvature blows up along
the vertical axis but is bounded away from this axis. Thus, we get the
following:

Y The intersection of the rescaled helicoids with a ball away from
the vertical axis gives a collection of graphs over the plane
{x3 � 0}.

Y The intersection of the rescaled helicoids with a ball centered
on the vertical axis gives a double spiral staircase.

Two Key Ideas Behind the Proof of the Structure Theorem for Disks.
The first of these key ideas says that if the curvature of such a disk
� is large at some point x � �, then near x a multivalued graph forms
(in �), and it extends (in �) almost all of the way to the boundaryj

of �. Moreover, the inner radius, rx, of the annulus where the
multivalued graph is defined is inversely proportional to �A�(x), and
the initial separation between the sheets is bounded by a constant
times the inner radius.

An important ingredient in the proof of Theorem 1 is that general
embedded minimal disks with large curvature at some interior point
can be built out of N-valued graphs. In other words, any embedded
minimal disk can be divided into pieces, each of which is an
N-valued graph. Thus, the disk itself should be thought of as being
obtained by stacking these pieces (graphs) on top of each other.k

The second key result (Theorem 2) is a curvature estimate for
embedded minimal disks in a half-space. As a corollary (Corollary

hSee refs. 6–9 for the precise statements, as well as proofs, of the results of this section.

iRecall that for a minimal surface in R3 the curvature K � 
1

2
�A� 2 is nonpositive, so that by

the curvatures of a sequence is going to infinity, we mean that K3 
� or, equivalently,
�A�23 �.

jRecall that our results require only that we have a piece of a minimal surface, and thus it
may have boundary.

kThe parallel to the helicoid is striking. Half of the helicoid, i.e., (s cos t, s sin t, t), where s 


0 and t � R, can be obtained by stacking the N-valued graphs, (s cos(kN2
 � t), s sin(kN2


� t), kN2
 � t), where s 
 0, N2
 
 t � 0, and k is an integer, on top of each other.

Fig. 2. The catenoid is the minimal surface in R3 given by rotating the curve
s3 (cosh s, s) around the x3-axis, i.e., the surface

�cosh s cos t, cosh s sin t, s�, where s, t � R. [6]
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2 below) of this theorem, we get that the set of points in an
embedded minimal disk where the curvature is large lies within a
cone, and thus the multivalued graphs, whose existence were
discussed above, will all start off within this cone.

The curvature estimate for disks in a half-space is the following
(in this theorem r0 is a scaling factor, which after rescaling can be
taken to be one).

Theorem 2. There exists � 
 0 such that for all r0 
 0, if � � B2r0
�

{x3 
 0} � R3 is an embedded minimal disk with �� � �B2r0
, then

for all components �� of Br0
� � that intersect B�r0

sup
x���

�A��x� �2 	 r0

2. [8]

This theorem has an equivalent formulation that may be easier
to appreciate. Namely, for � 
 0 sufficiently small, Eq. 8 is
equivalent to the statement that �� is a graph over (a domain in) the
plane {x3 � 0}.

Theorem 2 is an interior estimate where the curvature bound (Eq.
8) is on the ball Br0

of one-half the radius of the ball B2r0
containing

�. This interior estimate is just like a gradient estimate for a
harmonic function where the gradient bound is on one-half of the
ball where the function is defined.

We will often refer to Theorem 2 as ‘‘the one-sided curvature
estimate’’ (because � is assumed to lie on one side of a plane). Note
that the assumption in Theorem 2 that � is simply connected (i.e.,
that � is a disk) is crucial, as can be seen from the example of a
rescaled catenoid. Rescaled catenoids converge (with multiplicity
two) to the flat plane. Likewise, by considering the universal cover
of the catenoid, one sees that Theorem 2 requires the disk to be
embedded and not just immersed.

In the proof of Theorem 1, the following (direct) consequence of
Theorem 2 (with the 2-valued graph playing the role of the plane
{x3 � 0}) is needed.

Corollary 2. If an embedded minimal disk contains a 2-valued graph
over an annulus in a plane, then away from a cone with axis orthogonal
to the 2-valued graph the disk consists of multivalued graphs over
annuli in the same plane.

By definition, if 
 
 0, then the (convex) cone with vertex at the
origin, cone angle (
�2 
 arctan 
), and axis parallel to the x3-axis
is the set

�x � R3�x3
2 � 
2�x1

2 � x2
2�� . [9]

Uniqueness Theorems. Using the above structure theorem for disks,
Meeks and Rosenberg (10) proved that the plane and the helicoid
are the only complete properly embedded simply connected min-
imal surfaces in R3 (the assumption of properness can in fact be
removed by ref. 11; see Embedded Minimal Surfaces Are Automat-
ically Proper). Catalan had proved in 1842 that any complete ruled
minimal surface is either a plane or a helicoid. A surface is said to
be ‘‘ruled’’ if it has the parameterization

X�s, t� � ��t� � s
�t�, where s , t � R, [10]

and � and 
 are curves in R3. The curve �(t) is called the ‘‘directrix’’
of the surface, and a line having 
(t) as direction vector is called a
‘‘ruling.’’ For the helicoid in Eq. 5, the x3-axis is a directrix, and for
each fixed t the line s 3 (s cos t, s sin t, t) is a ruling.

For cylinders, there is a corresponding uniqueness theorem.
Namely, combining refs. 12, 13 (see also ref. 14), and 11, one has
that any complete embedded minimal cylinder in R3 is a catenoid.

Conjecturally similar uniqueness theorems should hold for other
planar domains and surfaces of fixed (nonzero) genus (1, 15).

Planar Domains
We describe next two main structure theorems for ‘‘nonsimply
connected’’ embedded minimal planar domains. (Precise state-
ments of these results and their proofs are in ref. 16.)

The first of these asserts that any such surface without small
necksl can be obtained by gluing together two oppositely oriented
double spiral staircases. Note that when one glues two oppositely
oriented double spiral staircases together, then one remains at the
same level if one circles both axes.

The second gives a ‘‘pair of pants’’ decomposition of any such
surface when there are small necks, cutting the surface along a
collection of short curves. After the cutting, we are left with
graphical pieces that are defined over a disk with either one or two
subdisks removed (a topological disk with two subdisks removed is
called a pair of pants).

Both structures occur as different extremes in the two-parameter
family of minimal surfaces known as Riemann examples.

The Catenoid and the Riemann Examples. When the sequence is no
longer ULSC, then there are other local models for the surfaces.
The simplest example is a sequence of rescaled catenoids.

A sequence of rescaled catenoids converges with multiplicity two
to the flat plane. The convergence is in the C� topology except at
0, where �A�23�. This sequence of rescaled catenoids is not ULSC
because the simple closed geodesic on the catenoid, i.e., the unit
circle in the {x3 � 0} plane, is noncontractible, and the rescalings
shrink it down to the origin.

One can get other types of curvature blow-up by considering the
family of embedded minimal planar domains known as the Ri-
emann examples (see Figs. 3–6). Modulo translations and rotations,
this family is a two-parameter family of periodic minimal surfaces,
where the parameters can be thought of as the size of the necks and
the angle from one fundamental domain to the next. By choosing

lBy ‘‘without small necks,’’ we mean that the intersection of the surface with all extrinsic
balls with sufficiently small radii consists of simply connected components (compare the
notion of ULSC for sequences above).

Fig. 3. The Riemann examples are a two-parameter family of periodic
complete minimal surfaces, where the parameters can be thought of as the
size of the necks and the angle from one fundamental domain to the next. By
choosing the two parameters appropriately, one can produce sequences of
Riemann examples that illustrate both structure theorems. As the parameters
degenerate, the Riemann examples look like either a collection of catenoids
stacked on top of each other or two oppositely oriented helicoids (with
parallel axes) glued together. Figs. 3–6 show various stages of degeneration.
The first two (Figs. 3 and 4) are where the necks are far apart and the surface
looks like a collection of catenoids stacked on top of each other; in Fig. 5, the
necks have moved closer to each other, and in Fig. 6, the necks are almost on
top of each other, and the surface looks like two oppositely oriented helicoids
glued together.
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the two parameters appropriately, one can produce sequences of
Riemann examples that illustrate both structure theorems:

1. If we take a sequence of Riemann examples where the neck size
is fixed and the angles go to 
�2, then the surfaces with angle
near 
�2 can be obtained by gluing together two oppositely
oriented double spiral staircases (Fig. 6). Each double spiral
staircase looks like a helicoid. This sequence of Riemann
examples converges to a foliation by parallel planes. The con-
vergence is smooth away from the axes of the two helicoids
(these two axes are the singular set where the curvature blows
up). The sequence is ULSC because the size of the necks is fixed
and thus illustrates the first structure theorem (Corollary 3).

2. If we take a sequence of examples where the neck sizes go to
zero, then we get a sequence that is not ULSC. However, the
surfaces can be cut along short curves into collections of
graphical pairs of pants (see Fig. 3). The short curves converge
to points, and the graphical pieces converge to flat planes except
at these points, illustrating the second structure theorem (Cor-
ollary 4 below).

Structure of Embedded Planar Domains. We describe next (Theorems
3 and 4 below) the two main structure theorems for nonsimply

connected embedded minimal planar domains. Each of these
theorems has a compactness theorem as a consequence. The first
structure theorem deals with surfaces without small necks.

Theorem 3. Any nonsimply connected embedded minimal planar
domain without small necks can be obtained from gluing together two
oppositely oriented double spiral staircases. Moreover, if for some point
the curvature is large, then the separation between the sheets of the
double spiral staircases is small. Note that because the two double spiral
staircases are oppositely oriented, then one remains at the same level
if one circles both axes.

The following compactness result is a consequence.

Corollary 3. A ULSC (but not simply connected) sequence of embed-
ded minimal surfaces with curvatures blowing up has a subsequence
that converges smoothly to a foliation by parallel planes away from two
lines. The two lines are disjoint and orthogonal to the leaves of the
foliation, and the two lines are precisely the points where the curvature
is blowing up.

This corollary is similar to the case of disks, except that we get two
singular curves for nondisks as opposed to just one singular curve
for disks. Moreover, locally around each of the two lines the
surfaces look like a helicoid around the axis, and the orientation
around the two axes are opposite.

Despite the similarity of Corollary 3 to the case of disks, it is worth
noting that the results for disks do not alone give this result. Namely,
even though the ULSC sequence consists locally of disks, the
compactness result for disks was in the global case where the radii
go to infinity. One might wrongly assume that Corollary 3 could be
proven by using the results for disks and a blow-up argument.
However, one can construct local examples that show the difficulty
of such an argument.

Fig. 6. See Fig. 3 legend for details.

Fig. 7. The genus-one helicoid is a (complete and embedded) minimal
surface of genus one that is asymptotic to the helicoid.

Fig. 4. See Fig. 3 legend for details.

Fig. 5. See Fig. 3 legend for details.
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The second structure theorem deals with surfaces with small
necks and gives a pair of pants decomposition.

Theorem 4. Any nonsimply connected embedded minimal planar
domain with a small neck can be cut along a collection of short curves.
After the cutting, we are left with graphical pieces that are defined over
a disk with either one or two subdisks removed (a topological disk with
two subdisks removed is called a pair of pants). Moreover, if for some
point the curvature is large, then all of the necks are very small.

The following compactness result is a consequence.

Corollary 4. A sequence of embedded minimal planar domains that are
not ULSC, but with curvatures blowing up, has a subsequence that
converges to a collection of flat parallel planes.

Genus-One Helicoid: Structure Results for General
Finite Genus
In a very recent paper, Weber et al. (1) constructed a new complete
embedded minimal surface in R3. They showed that there exists a
properly embedded minimal surface of genus one with a single end
asymptotic to the end of the helicoid. We will refer to this minimal
surface � as the genus-one helicoid (see Fig. 7). Under scalings, the
sequence of genus one-surfaces ai�, where ai3 0, converges to the
foliation of flat parallel planes in R3 just like a sequence of rescaled
helicoids with curvatures blowing up. This convergence is in fact a
consequence of a general result that the theorems in the previous
section, stated for planar domains, also hold for sequences with
fixed genus with minor changes (see ref. 16).

Embedded Minimal Surfaces Are Automatically Proper
Implicit in all of the results mentioned above was an assumption
that the minimal surfaces were proper. However, as we will see
next, it turns out that embedded minimal surfaces are, in fact,
automatically proper. This properness was the content of the
Calabi–Yau conjectures that were proven to be true for embed-
ded surfaces in ref. 11.

What Is Proper? An immersed surface in R3 is ‘‘proper’’ if the
preimage of any compact subset of R3 is compact in the surface. For
instance, a line is proper, whereas a curve that spirals infinitely into
a circle is not.

The Calabi–Yau Conjectures: Statements and Examples. The Calabi–
Yau conjectures about surfaces date back to the 1960s. Their
original form was given in 1965 (17) where Calabi made the
following two conjectures about minimal surfaces.m

Conjecture 1. ‘‘Prove that a complete minimal surface in R3 must be
unbounded.”

Calabi continued: ‘‘It is known that there are no compact
minimal surfaces in R3 (or of any simply connected complete

Riemannian 3-dimensional manifold with sectional curvature 	 0).
A more ambitious conjecture is [as follows]’’:

Conjecture 2. ‘‘A complete [nonflat] minimal surface in R3 has an
unbounded projection in every line.’’

The immersed versions of these conjectures turned out to be
false. Namely, Jorge and Xavier (3) constructed nonflat minimal
immersions contained between two parallel planes in 1980, giving
a counterexample to the immersed version of the more ambitious
Conjecture 2. Another significant development came in 1996, when
Nadirashvili (4) constructed a complete immersion of a minimal
disk into the unit ball in R3, showing that Conjecture 1 also failed for
immersed surfaces (see ref. 21 for other topological types).

The main result in ref. 11 is an effective version of properness for
disks, giving a chord-arc bound.n Obviously, intrinsic distances are
larger than extrinsic distances, so the significance of a chord-arc
bound is the reverse inequality, i.e., a bound on intrinsic distances
from above by extrinsic distances.

Given such a chord-arc bound, one has that as intrinsic distances
go to infinity, so do extrinsic distances. Thus, an immediate con-
sequence is the following:

Theorem 5. A complete embedded minimal disk in R3 must be proper.
Theorem 5 gives immediately that the first of Calabi’s conjectures

is true for embedded minimal disks. In particular, Nadirashvili’s (4)
examples cannot be embedded.

Another immediate consequence of the chord-arc bound to-
gether with the one-sided curvature estimate (i.e., Theorem 2) is a
version of that estimate for intrinsic balls.

As a corollary of this intrinsic one-sided curvature estimate, we
get that the second, and more ambitious, of Calabi’s conjectures is
also true for embedded minimal disks. In particular, Jorge and
Xavier’s examples (3) cannot be embedded. The second Calabi
conjecture (for embedded disks) is an immediate consequence of
the following half-space theorem:

Theorem 6. The plane is the only complete embedded minimal disk in
R3 in a half-space.

Note that Theorem 6 is a by-product of the proof of Theorem 5.
However, given Theorem 5, Theorem 6 follows from the half-space
theorem of ref. 22.

The results for disks imply both of Calabi’s conjectures and
properness also for embedded surfaces with finite topology. A
surface � is said to have finite topology if it is homeomorphic to a
closed Riemann surface with a finite set of points removed or
‘‘punctures.’’ Each puncture corresponds to an end of �.

nA chord-arc bound is a bound above and below for the ratio of intrinsic to extrinsic
distances.
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