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Very few examples of metabolic regulation are known in the gastric pathogen Helicobacter pylori. An
unanticipated case was suggested, however, upon finding two types of metronidazole (Mtz)-susceptible strains:
type I, in which frxA (which encodes a nitroreductase that contributes to Mtz susceptibility) is quiescent, and
type II, in which frxA is well expressed. Here we report that inactivation of the fdxA ferredoxin gene (hp277) in
type I strains resulted in high-level frxA expression (in effect, making them type II). However, fdxA null
derivatives were obtained from only 6 of 32 type I strains tested that were readily transformed with an
frxA::aphA marker. This suggested that fdxA is often essential. This essentiality was overcome in 4 of 20 strains
by inactivating frxA, which suggested both that frxA overexpression is potentially deleterious and also that fdxA
has additional, often vital roles. With type II strains, in contrast, fdxA null derivatives were obtained in 20 of
23 cases tested. Thus, fdxA is dispensable in most strains that normally exhibit (and tolerate) strong frxA
expression. We propose that restraint of frxA expression helps maintain balanced metabolic networks in most
type I strains, that other homeostatic mechanisms predominate in type II strains, and that these complex
results constitute a phenotypic manifestation of H. pylori’s great genetic diversity.

Helicobacter pylori, the gram-negative pathogen implicated
in peptic ulcer disease and gastric cancer, chronically infects
more than half of all people worldwide and is one of the most
genetically diverse bacterial species (for reviews see references
14, 19,and 38). Independent clinical isolates typically differ by
3% or more in DNA sequences of representative housekeep-
ing genes (2, 20) and by 5% or more in gene content (4, 5, 46).
Any two independent clinical isolates are usually distinguish-
able from one another by DNA fingerprinting (3) or by se-
quencing a few housekeeping genes (2, 20).

Inspection of the two fully sequenced H. pylori genomes had
revealed homologs of only a few of the regulatory genes known
from other bacterial species. This had suggested that H. pylori
might actually be relatively inflexible in a conventional regu-
latory sense; that is, it is hard wired for its special gastric niche
(5, 16, 52). It seemed, however, that H. pylori would achieve
phenotypic flexibility and diversity through mutation (56), in-
terstrain and interspecies gene exchange and recombination
(30, 51, 52), and frameshift mutations in repetitive sequences,
the hallmark of highly mutable contingency genes (47, 52).
More-recent studies have demonstrated considerable regula-
tion of gene expression in response to growth phase and envi-
ronmental parameters, such as acidity and concentrations or
availability of iron, nickel, and other metals, and have identi-

fied more than a dozen genes with regulatory activity (15).
Another case of metabolic regulation was suggested by our
studies of susceptibility to the clinically important anti-H. pylori
drug metronidazole (Mtz) (27, 28, 50). Susceptibility results
from the action of one or two related nitroreductases that each
mediate conversion of Mtz from harmless prodrug to hydrox-
ylamine, a bactericidal and mutagenic agent; RdxA, which is
abundant in essentially all Mtzs clinical isolates; and FrxA,
which is present at only very low levels in most isolates (des-
ignated type I strains) but at higher levels in others (type II
strains) (27, 28). RdxA and FrxA differ in substrate specificity
(49), but their normal substrates, products, and roles (e.g.,
whether purely metabolic or protective against reactive nitro-
gen and oxygen metabolites that are produced in the host
response to infection; see reference 40) are not known.

The two types of Mtzs strains can be distinguished provision-
ally in a forward mutation assay. Typically, Mtzr colonies are
found at frequencies of about 10�4 in cultures of type I strains
and are found at frequencies of �10�8 in cultures of type II
strains. This reflects the need to inactivate just one gene (rdxA)
rather than two genes (both rdxA and frxA) to achieve resis-
tance (27, 28). Although frxA inactivation does not affect Mtz
susceptibility when rdxA is functional, its inactivation in type I
strains that are already mutated in rdxA usually increases re-
sistance by about twofold (from 16 to 32 �g/ml). This illus-
trates that frxA is expressed, but only weakly, in type I strains.
In accordance with this fact, frxA transcripts were detected by
reverse transcriptase PCR (RT-PCR) in both type I and type II
strains, but Northern blot analysis showed that they were abun-
dant only in type II strains (27). In principle, the observed
patterns of frxA expression might reflect differences in a regu-
latory site or in a trans-acting regulatory factor.
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Here we identify a ferredoxin gene (fdxA; hp277 in the ge-
nome sequence) as a negative regulator of frxA gene expres-
sion and show that it is essential for many type I strains and
that part of this essentiality can involve restraint of nitroreduc-
tase gene expression.

MATERIALS AND METHODS

H. pylori culture conditions. H. pylori strains were grown on brain-heart infu-
sion agar (BHI; Difco) supplemented with 7% horse blood, 0.4% Isovitalex, and
the antibiotics amphotericin B (8 �g/ml) and trimethoprim (5 �g/ml) (this so-
lution is referred to hereafter as BHI agar) (27). Mtz was added to this medium
when needed at a concentration appropriate for the experiment, as detailed
below. The plates were incubated at 37°C under microaerobic conditions (5%
O2, 10% CO2, 85% N2). Transformation (electroporation) was carried out as
follows: exponentially growing H. pylori cells were harvested from BHI agar
(approximately 108 to 109 cells), washed twice in 10% glycerol, and suspended in
a final volume of 80 �l of 10% glycerol at 4°C. Five micrograms of purified
plasmid DNA or PCR fragment was added to the cells for 1 min on ice. The
suspension of cells and DNA was transferred to a prechilled 0.2mm-gap elec-
troporation cuvette and was subjected to single-pulse electroporation with an
initial voltage of 2.5 kV in a Bio-Rad Gene Pulser, spread on BHI agar, and
incubated for 24 h at 37°C. The cells were then transferred to BHI agar contain-
ing chloramphenicol (Cam) (15 �g/ml), kanamycin (Kan) (20 �g/ml), or Mtz (8
�g/ml), as appropriate, and were incubated for 3 to 10 days, as needed, to select
for transformants.

Determination of Mtz susceptibility and resistance. H. pylori cells growing
exponentially on Mtz-free BHI agar were suspended in phosphate-buffered sa-
line (PBS) buffer, a series of 10-fold dilutions of these cell suspensions was
prepared, and 10 �l of each dilution was spotted on freshly prepared BHI agar
containing various concentrations of Mtz (0, 0.2, 0.5, 1.5, 3, 8, 16, 32, 64, and 128
�g/ml) (essentially as described in references 27 and 28). The susceptibilities of
strains to Mtz are described here in terms of MIC, defined operationally as the
lowest of the Mtz concentrations listed above that reduces the efficiency of
colony formation by at least 10-fold. When Mtz-resistant mutants were rare
(�10�6) and accurate estimates of these frequencies were needed, culture ali-
quots were spread directly on the surface of an entire plate of Mtz-containing
BHI agar. We used this culture dilution protocol here because it is more sensitive
and reliable than traditional standard agar dilution or Etest methods for studying
Mtz susceptibility (MIC) in H. pylori, as detailed in reference 27.

H. pylori strains. The H. pylori strains used here were Mtzs clinical isolates
from diverse parts of the world. Most have been studied previously in other
contexts (27, 28, 31, 39). The type I (frxA quiescent) and type II (frxA expressed)
Mtzs H. pylori strains (as defined in references 27 and 28) that were used here
and their origins are as follows. Type I strains included 26695 (from the United
Kingdom) (52); TN2, GS3, HPK5, CPY6261, CPY6271, and CPY6311 (Japan);
HUPB48, HUPB57, HUPB63, HUPB71, HUPB72, and HUPB77 (Spain); Lit11,
Lit13, Lit50, Lit55, and Lit76 (Lithuania); Ind27, Ind66, Ind121, Ind92, Che5,
and Che13 (India); HK192 (Hong Kong); and PeCan9a (Peru). Type II strains
included SS1 (Australia); X47 (United States, mouse adapted, and ultimately
from a domestic cat; also known as X47-2AL [18]); 88-3887 (United Kingdom,
26695-related) (29 and Fig. 1); 98QM3 (from domestic cat; D. Dailidiene, K. W.
Simpson, and D. E. Berg, unpublished data); 2600, 2667, and 2714 (Texas) (32);
Lit5-34, Lit28-1, Lit43, Lit66-1, Lit75-1, Lit102, Lit113, Lit119, Lit120, and Lit122
(Lithuania); Alas219, Alas381, and Alas10103 (Alaska); Ind31 (India); R10
(South Africa); and HK152 (Hong Kong).

Five of these strains merit special comment. Strain 26695 (52) is nonmotile due
to a frameshift mutation in the fliP flagellar assembly gene and had come from
an initially mixed culture that also contained closely related motile cells, repre-
sented by strain 88-3887 (29). The relatedness of 26695 and 88-3887 is illustrated
in randomly amplified polymorphic DNA (RAPD) fingerprint data (Fig. 1; no
bands differed among some 25 scored in tests with four arbitrary primers). It was
important for the present study that mutational tests suggested that 88-3887
expressed frxA (type II Mtzs phenotype), whereas 26695 did not (type I). Most
critically, inactivation of strain 88-3887’s rdxA gene (transformation with an
rdxA::cat allele and selection for Camr, as described in references 21, 27, and 28)
left it vulnerable to Mtz: it formed colonies 103-fold and 106-fold less efficiently
on medium with 8 and 16 �g of Mtz per ml, respectively, than on medium with
no Mtz or only 3 �g of Mtz per ml (MIC � 8 �g/ml). In contrast, rdxA
inactivation in strain 26695 allowed this strain to form colonies with 100%
efficiency on medium with up to 16 �g of Mtz per ml (MIC � 32 �g/ml).
Inactivation of both rdxA and frxA resulted in a MIC of 64 �g/ml for both strains.

These data showed that the residual Mtz susceptibility of rdxA-deficient 88-3887
involves its frxA gene, not some other function. We also note that frxA expression
seemed weaker in 88-3887 than in several other type II strains in that rdxA
inactivation in this strain did confer low-level Mtz resistance; it allowed colony
formation with 100% efficiency on medium with 3 �g of Mtz per ml instead of
just 1 or 1.5 �g per ml, as had been seen with SS1 and several other type II strains
(27, 28). Also noteworthy are the type II strains X47 and 98QM3 because of
differences in ease of fdxA inactivation (see below). Strain X47 derives from an
H. pylori strain that had been isolated from a domestic cat and that was then
adapted to mice by several sequential passages (18). 98QM3 was isolated from a
member of the same cat colony some 5 years later by D. Dailidene, K. W.
Simpson, and D. E. Berg and seemed closely related or identical to X47 in
RAPD fingerprint (no bands differed among more than 25 scored in tests with
four arbitrary primers; as in Fig. 1). Fifth, HUPB57 was considered type I
because, even though rdxA inactivation resulted in an MIC of 64 �g/ml (higher
than that seen for most strains after rdxA inactivation), inactivation of frxA as well
as rdxA resulted in a higher level of resistance (MIC � 128 �g/ml).

DNA methods. H. pylori genomic DNAs were isolated from confluent cultures
grown on BHI agar by using a Qiamp Tissue kit (Qiagen Corporation, Chats-
worth, Calif.) or a standard cetyltrimethylammonium bromide phenol method
(4). RAPD fingerprint analysis was carried out essentially as described previously
(3) in 25-�l reaction mixtures containing either 5 or 20 ng of genomic DNA (to
assess reproducibility of patterns), 5 mM MgCl2, 20 pM concentrations of a given
primer, 0.25 mM concentrations of each deoxynucleoside triphosphate, and 1 U
of Biolase thermostable DNA polymerase (Midwest Scientific) in a solution
containing 10 mM Tris-HCl (pH 8.3) and 50 mM KCl under the following cycling
conditions: 45 cycles of 94°C, 1 min; 36°C, 1 min; and 72°C, 2 min. Gene-specific
PCR was carried out in 20-�l volumes containing 1 to 10 ng of genomic DNA, 10
pmol of each primer, 1 U of Biolase, and 0.25 mmol of each deoxynucleoside

FIG. 1. RAPD analysis of relatedness. RAPD tests were carried
out on the related strain pairs 88-3887 and 26695 and also on X47 and
98QM3, as discussed in the text, by using primers 1247 (left eight
lanes), 1254 (top right eight lanes), 1281 (bottom left), and 1283
(bottom right) (3). The first and second lanes in each set contain
products of duplicate RAPD tests, carried out with 5 and 20 ng of
template DNA, to ensure that any differences seen are reproducible
(or to learn when they are not). Lanes labeled m contain 1-kb marker
size standards from Gibco-BRL.
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triphosphate in standard PCR buffer. Gene-specific PCR entailed 2 min of
preincubation at 94°C followed by 30 cycles of 94°C, 40 s; 58°C, 40 s; and 72°C
for 1 min per kilobase pair, plus a final elongation step of 72°C for 10 min. The
genetic structures of transformants were checked by PCR to verify that they had
resulted from allelic replacement by using primers fdxA-F and fdxA-R, rdxA-F
and rdxA-R, or frxA-F1 and frxA-R1, as appropriate (see Table 1 for primer
sequences).

Mutant alleles used in strain construction. The rdxA::cat, rdxA�111, and
frxA::aphA alleles used to generate rdxA and frxA null mutant strains by DNA
transformation and selection for transformants by resistance to chloramphenicol,
metronidazole, and kanamycin, respectively, have been described previously (27,
28). An fdxA null allele was generated as follows: (i) PCR was used to amplify an
828-bp fdxA-containing DNA fragment from strain 26695 with primers fdxA-F1
and fdxA-R1 (Table 1); (ii) this fragment was cloned into a pBluescript plasmid
vector (Stratagene); (iii) the resultant clone was linearized by PCR with primers
fdxA-F2 and fdxA-R2 to delete 126 bp of fdxA; (iv) ligation of the linearized clone
DNA was performed with a minimal cat cassette (44); and (v) plasmids contain-
ing cat cassette inserts were selected and PCR was used to identify one in which
cat and fdxA are in the same orientation. This fdxA::cat DNA was used to
generate fdxA null H. pylori strains by DNA transformation. It is important to
note that the stem-loop structure that is just downstream of the open reading
frame in many cat cassettes has been removed here. This cassette is considered
nonpolar on distal gene expression, because its insertion between DNA segments
encoding the � and �� domains of the large �-�� RNA polymerase subunit
(normally fused in H. pylori) does not impair growth (44). An fdxA::aphA inser-
tion allele that is probably polar on distal gene expression, because fdxA and
aphA are in opposite orientations, was generated similarly by using the aphA
cassette from the frxA::aphA allele.

Measurement of survival in stationary phase. Concentrated suspensions of
H. pylori cells that had been growing exponentially as overnight cultures on BHI
agar medium were prepared in PBS buffer (about 2 	 109 cells per ml), and 20
�l (
4 	 107 cells) was spread uniformly on the surface of fresh BHI agar
(150-mm-diameter petri plate). The viability of this initial inoculum on each day,
beginning at day three, was determined by suspending aliquots of confluent
bacterial growth from these plates in PBS, measuring the optical density, and
determining viable counts by quantitative culture (CFU per optical density unit).

RT-PCR analysis of mRNA levels. Exponentially growing H. pylori strains were
spread on BHI medium alone or with Mtz (0.2 �g/ml for SS1; 1.5 �g/ml for
26695). Following 2 days of incubation, bacterial cells were collected and total
RNA was prepared by using a Qiagen RNeasy kit, as recommended by the
manufacturer (Qiagen Corp). After elution from the RNeasy column, the RNA
was treated with RNase-free DNaseI, extracted twice with phenol:chloroform,
and extracted once with chloroform-isoamyl alcohol. It was then precipitated
with ammonium acetate (final concentration of 2.5 M) and 2.5 volumes of
ice-cold ethanol, washed in 75% ethanol, and resuspended in RNase-free water.
The integrity of the 16S and 23S rRNA was checked on a 1% agarose gel.
Genomic DNA contamination was checked by PCR with Taq DNA polymerase
without RT. RT-PCR was carried out by using the One-Step RT-PCR kit

(Gibco-BRL) and primers frxRT-F and frxRT-R (for frxA mRNA), rdxRT-F and
rdxRT-R (for rdxA mRNA), and ureB-F and ureB-R (for ureB mRNA). RT-PCR
was carried out in a volume of 50 �l in a Perkin-Elmer GeneAmp PCR system
2400 thermal cycler with the following conditions: 50°C for 20 min; 94°C for 2
min; and then 35 cycles of 94°C for 15 s, 58°C for 30 s, 72°C for 40 s, with a final
incubation at 72°C for 10 min.

RESULTS

The fdxA gene (hp277 in the strain 26695 genome sequence
[52]) encodes a [Fe4 S4]-type ferredoxin (5, 52), a carrier of
reducing equivalents, that may variously accept, donate, shift,
and/or store electrons in key steps in central metabolism (8).
The possibility that this protein’s redox potential might be low
enough to reduce Mtz and thereby convert it from prodrug to
bactericidal agent motivated our interest in testing whether
fdxA inactivation affected Mtz susceptibility. Others (32) had
also sought to study fdxA but were not able to obtain fdxA null
mutant transformants in their laboratory strain (2600). They
therefore concluded that fdxA is essential for viability (32). The
cat resistance gene cassette they had inserted into fdxA was
probably polar on distal gene expression (44); however, we
suspected that one or more of the genes downstream of and
probably cotranscribed with fdxA, which were annotated as
guanosine pentaphosphate pyrophosphatase (hp278), lipopoly-
saccharide heptosyltransferase (hp279), and lipid A acyltrans-
ferase (hp280) (5, 52), might be essential. Accordingly, we
decided to reexamine fdxA’s importance for H. pylori.

A nonpolar fdxA null allele was generated in cloned DNA by
replacing much of the fdxA sequence with a chloramphenicol
resistance determinant (cat) that lacks transcription pause sites
(44), and the resulting fdxA::cat DNA was used to transform
the type I reference strain 26695. Hundreds of Camr transfor-
mant colonies were obtained, as is typical with other DNAs
and this strain, although the colonies were slow growing (4
days, instead of 3, were needed to detect them by eye). PCR
with fdxA-specific primers confirmed that these Camr transfor-
mants had resulted from replacement of a wild-type allele with
the fdxA::cat allele (data not shown). Equivalent slow-growing
fdxA null transformants were also obtained with the type II

TABLE 1. Primers useda

Primer Sequence Position of 5� end

RAPD
1254 5�-CCGCAGCCAA
1281 5�-AACGCGCAAC
1283 5�-GCGATCCCCA
1290 5�-GTGGATGCGA

Gene-specific
fdxA-F1 5�-CGCTTGTTCAAGGCTCTGATG 250 bp upstream of hp277 (fdxA)
fdxA-R1 5�-CGCTACAAACTCCAGCCGATT 300 bp downstream of hp277
fdxA-F2 5�-GCCTCGTTGCGTGAGCGTAT 144th nt of hp277 (fdxA)
fdxA-R2 5�-CGCACGCAATGCATTCATCA 18th nt of hp277
frxRT-F 5�-GGACAGAGAACAAGTGGTTGCTT 3rd nt of hp642 (frxA)
frxRT-R 5�-GCGAACCTAGAATTAGTGTCAT 319th nt of hp642
rdxART-F 5�-GCATGCTGTGGTTGAATCTCAC 367th nt of hp954 (rdxA)
rdxART-R 5�-CGAGCGCCATTCTTGCAAGATGT 42nd nt of hp954
ureB-F 5�-CGTCCGGCAATAGCTGCCATAGT 781st nt of hp072 (ureB)
ureB-R 5�-GTAGGTCCTGCTACTGAAGCCTTA 340th nt of hp072

a The genes are listed according to their numerical designations in the genome sequence database of strain 26695 (52). nt, nucleotide.

VOL. 185, 2003 FERREDOXIN-MEDIATED REGULATION IN H. PYLORI 2929



mouse-adapted strain SS1. In contrast, attempts to generate
fdxA-deficient derivatives of these strains with a different null
allele, fdxA::aphA, which is probably polar on distal gene ex-
pression because fdxA and aphA are in opposite orientations,
were unsuccessful (no transformant colonies were scored as
�0.01% of normal yield), presumably because of polarity on
distal gene expression. We conclude that fdxA is not essential
for viability in strains 26695 or SS1, although it probably con-
tributes to the vigor of their growth.

Three sets of results indicated that fdxA inactivation in-
creased nitroreductase gene expression in strain 26695. First,
Mtzr mutants were found in cultures of fdxA null derivatives of
strain 26695 at frequencies of �10�8 (Table 2). This contrasts
with a frequency of about 10�4, which is characteristic of 26695
wild type, in which just one gene (rdxA) needs to be inactivated
to achieve Mtz resistance (27, 28, 50). Second, 26695 deriva-
tives with null alleles of rdxA and fdxA (frxA functional) or of
frxA and fdxA (rdxA functional) each remained Mtzs but gave
rise to Mtzr mutants at frequencies of about 10�4 rather than
�10�8. A triple mutant, containing null alleles of both rdxA
and frxA as well as of fdxA (rdxA�111, frxA::aphA, fdxA::cat),
was Mtzr (Table 2). Thus, inactivation of frxA as well as rdxA
was needed to render the fdxA null derivative of 26695 resis-
tant to Mtz. Third, RT-PCR indicated that fdxA inactivation
increased the frxA mRNA level about fivefold relative to that
of a ureB internal standard (Fig. 2). The rdxA transcript level
also seemed to be increased about twofold in the fdxA-null
derivative, which suggested that fdxA might help regulate both
nitroreductase genes. In contrast, fdxA inactivation in SS1,
which normally expresses frxA at a high level, did not affect frxA
or rdxA mRNA levels (Fig. 2). Further tests revealed similar
mRNA levels in cultures grown with sublethal levels of Mtz
(see the legend of Fig. 2). Collectively, these outcomes support
the view that the nitroreductase gene expression level inferred
from Mtz susceptibility patterns reflects bacterial genotype
(fdxA status) per se but not induction of gene expression by
Mtz or the cellular damage that it causes.

It is noteworthy that the rdxA frxA double mutant derivative
of 26695 was fully resistant to 32 �g of Mtz per ml (100%
efficiency of colony formation), whereas the isogenic rdxA frxA
fdxA triple mutant exhibited full resistance only up to 16 �g of
Mtz per ml in each of three independent trials (Fig. 3). The
quantitative differences in efficiency of colony formation by
double and triple mutants on plates with the critical 32 �g of

Mtz per ml were seen when cells of each strain were spotted on
the same plate. The greater susceptibility of the triple mutant
might reflect either increases in other enzymes that also acti-
vate Mtz (28) or a nonspecific effect of the fdxA mutant’s less
vigorous growth.

fdxA is essential in most but not all type I Mtzs strains. The
generality of findings with strains 26695 was tested by using 31
additional transformable strains that had been classified as
type I by forward mutation tests (see Materials and Methods).
Expected yields of transformants (generally at least hundreds
of Camr colonies) were obtained with only two of them
(Ind121 and HUPB57) (Table 3). Mutational tests showed that
they each resembled 26695 in that fdxA inactivation in them
caused a decrease in the Mtzr mutant frequency from approx-
imately 10�4 to �10�8 and a need to inactivate both frxA and
rdxA, rather than only rdxA, to achieve Mtz resistance. Thus,
fdxA inactivation seemed to have turned on frxA expression in
these two type I strains.

Just a few Camr transformants were also obtained from 3 of
the other 29 type I isolates (Lit055, CPY6271, and HUPB48),
yields that were, in each case, less than 1% of those obtained
with frxA::aphA DNA used as an internal control in the same
transformation mixes. PCR tests indicated that some of these
rare Camr transformants still retained the wild-type fdxA allele,
suggesting that the fdxA::cat DNA had been inserted at an-
other locus, perhaps by an illegitimate (mutation-like) recom-
bination event (data not shown). However, at least one excep-
tional Camr transformant of each lineage was found by PCR to
contain fdxA::cat in place of the resident wild-type fdxA gene,
and these transformants were studied further. Inactivation of
fdxA in these three strains had also, in each case, caused re-
duction in frequencies of Mtzr mutants in young cultures from

10�4 to �10�8. The Mtzr mutant frequencies were increased

FIG. 2. RT-PCR analysis of mRNA levels. H. pylori cells were
grown, RNA was extracted, and RT-PCR was carried out as detailed in
Materials and Methods. Threshold deleterious levels of Mtz were
included in BHI agar where indicated (0.2 �g/ml for strain SS1; 1.5
�g/ml for strain 26695). WT, wild type.

TABLE 2. Efficiency of colony formation on
Mtz-containing mediuma

Strain Mtzr frequency

26695 wild type (type I)............................................................ 
10�4

26695 rdxA .................................................................................. 
1.0
26695 frxA................................................................................... 
10�4

26695 fdxA .................................................................................. �10�8

26695 fdxA rdxA......................................................................... 
10�4

26695 fdxA frxA.......................................................................... 
10�4

26695 fdxA rdxA frxA................................................................. 
1.0
SS1 wild type (type II).............................................................. �10�8

a Efficiency of colony formation on BHI agar containing 8 �g of Mtz per ml.
When this efficiency is less than 1.0 (which implies that the strain is fully resistant
to Mtz), this frequency generally corresponds to frequencies of new Mtzr mu-
tants, generated and selected by the mutagenic and bactericidal properties of
Mtz once activated.
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again (to 
10�4) by further derivatives in which frxA had been
inactivated. This indicated that fdxA also helped down-regulate
frxA expression in these three exceptional type I strains.

No Camr transformants of any of the other 26 type I strains
were obtained in repeated transformations with fdxA::cat
DNA. In each case, the use of frxA::aphA DNA as a parallel
control or as an internal control in the same transformation
mix resulted in 100 or more Kanr transformants (Table 3), and
PCR tests showed that each strain did contain an fdxA gene.
Thus, fdxA seemed to be essential in most type I strains. It also
seemed that this essentiality could be relieved by suppressor
mutations in at least some strains (Lit055, CPY6271, and
HUPB48). The ease of generating fdxA null derivatives of
strains 26695, Ind121, and HUPB57 suggested that possibly
equivalent suppressors already preexist at low frequency in
natural populations.

fdxA is dispensable in most type II Mtzs strains. Replace-
ment of resident fdxA alleles with the fdxA::cat null allele was
achieved readily in 20 of 23 type II strains tested (Table 3),

although in each case fdxA null transformant colonies grew less
rapidly than did colonies of their fdxA-proficient parents.
Among the type II strains in which fdxA was readily inactivated
were (i) strain 2600, in which fdxA-null derivatives had first
been sought but without success (32), probably because of
transcription polarity (noted above); (ii) 88-3887, a 26695-
related strain that, remarkably, is type II in its Mtz-susceptible
phenotype (26695 is type I); and 98QM3, but not X47, which is
closely related to 98QM3 (see Fig. 1 and Materials and Meth-
ods).

No Camr transformant colonies were obtained from 3 of 23
type II isolates in repeated trials with fdxA::cat DNA (nonpolar
null allele) (X47, a North American isolate, HK152 from Hong
Kong, and R10 from South Africa), despite obtaining many
Kanr transformants with frxA::aphA control DNA. Each of
these three strains was retested and was confirmed as type II;
their Mtzs phenotypes were changed from stable (�10�8 Mtzr)
to metastable (
10�4 Mtzr) by inactivation of either rdxA or
frxA, and they became Mtzr if both rdxA and frxA were inacti-
vated. Among these fdxA-requiring strains was X47, which is
remarkable because fdxA null derivatives of the closely related
strain 98QM3 were readily obtained. This indicates that small
differences in background genotype may determine whether
fdxA is essential or not.

Premature death in stationary phase. H. pylori cells began
dying soon after reaching stationary phase. Although death in

FIG. 3. Profiles of susceptibility to Mtz of strain 26695 wild type
(WT) and isogenic mutant derivatives of it. Each test was carried out
at least three times.

TABLE 3. Efficiency of recovery of fdxA::cat (null) transformants
depends on bacterial genotype

Frequency of recovery of
fdxA null transformants

Fraction
of

strains
Examples

Type I strains
Readily obtaineda 3 of 32 26695, Ind121, HUPB57
Obtained with difficultyb 3 of 32 Lit055, CPY6271,

HUPB48
Obtained only after frxA

inactivation
4 of 20 Ind27, Ind66, Chen13,

Lit050
Not obtained after frxA

inactivationc
16 of 20 Variousd

Obtained only after frxA
and rdxA inactivation

1 of 2 HK192e

Type II strains
Readily obtained 20 of 23 SS1, 98QM3, 88-3887 and

others f

Not obtained 3 of 23 X47, HK152, R10

a Readily obtained indicates that the yield of Camr fdxA null transformants was
similar to that of Kanr frxA null transformants generated with frxA::aphA DNAs
in the same transformation mix.

b Obtained with difficulty indicates that the yield of Camr fdxA null transfor-
mants was �1% that of Kanr frxA null transformants generated in the same trans-
formation mix. In these cases, some Camr transformants did not contain allelic
replacements of the wild-type fdxA allele by the null mutant allele and thus may
have resulted from illegitimate recombination or some other mutation event.

c Not obtained also indicates that the yield of Camr fdxA null transformants
was �1% that of Kanr frxA null transformants generated in the same transfor-
mation mix. We do not know if the not obtained class differs from the obtained
with difficulty class.

d These strains were TN2, GS3, HPK5, CPY6261, and CPY6311 (Japan);
HUPB63, HUPB71, HUPB72, and HUPB77 (Spain); A-11, A-13, and O76
(Lithuania); Ind92 and Chen5 (India); HK192 (HongKong); and PeCan9a (Peru).

e Incorporation of frxA::aphA and rdxA�111 null mutations into HK192 allowed
recovery of slow-growing fdxA null transformants in high yield, whereas incorpora-
tion of these mutations into PeCan9a did not allow fdxA null transformants.

f These additional strains were Lit5, Lit28-1, Lit43, Lit66-1, Lit75-1, Lit102, Lit113,
Lit119, Lit120, Lit122, Alas219, Alas381, Alas10103, 2600, 2667, 2714, and Ind31.
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stationary phase is not understood, we suspected that it might
be accelerated by disturbance of metabolic networks. Accord-
ingly, the survivals of the wild-type strains 26695 and 88-3887
were compared with those of their isogenic fdxA derivatives
(Fig. 4). In each case, fdxA null derivatives tended to die more
rapidly than their wild-type parents in stationary phase, but the
kinetics of death seemed strain specific. By the time that the
viabilities of wild-type 88-3887 and 26695 had declined to
about 1% of the initial level, the viabilities of their fdxA null
derivatives had declined another 
400-fold and 
20-fold, re-
spectively (Fig. 4). This was seen in each of two independent
trials, each with an independently constructed fdxA null trans-
formant. The fdxA null derivative of the unrelated SS1 strain
also died prematurely in stationary phase, with a severity sim-
ilar to that of strain 26695 but not 88-3887 (data not shown).
Given that 88-3887 and 26695 are closely related, it would
seem that effects of fdxA on fitness can also be strongly affected
by small differences in background genotype.

Lethality of fdxA inactivation can involve frxA. One expla-
nation for fdxA’s essentiality in many type I strains and dis-
pensability in most type II strains supposes that high FrxA
nitroreductase levels are deleterious in strains of particular
genotypes. This idea is based on indications that inactivation of
fdxA caused increased frxA expression in at least some type I
strains, that fdxA seemed to be essential in most type I strains,
and that fdxA was dispensable in most type II strains. To test
this idea, we made frxA null (frxA::aphA) transformants of 20
representative fdxA-requiring type I strains and transformed
frxA null derivatives of each lineage with fdxA::cat DNA. Camr

transformant colonies were obtained at normal frequency in
four lineages (Ind27, Ind66, Chen13, and Lit050) (Table 3). In

each case, the colonies obtained were much smaller and slower
growing than those made by the parental (frxA-deficient but
fdxA-functional) strain. PCR tests of two single-colony isolates
and of pools of 20 to 50 transformants from each lineage
demonstrated the expected allelic replacement (original fdxA
allele by fdxA::cat allele) in each case. This suggests that fdxA’s
essentiality in some type I strains reflects the ability of its gene
product to down-regulate frxA gene expression. However, the
inability to obtain fdxA null transformants of frxA null deriva-
tives of 16 of these 20 selected type I strains and the slow
growth of fdxA null transformants, when obtained, indicated
that fdxA must have additional role(s).

DISCUSSION

fdxA, an often essential regulatory gene. The possibility of
metabolic regulation of nitroreductase gene expression in H.
pylori emerged first with the finding of two types of Mtzs clin-
ical isolates: type I, in which frxA is relatively quiescent; and
type II, in which frxA is highly expressed (27, 28). Here we
report that (i) fdxA (hp277, ferredoxin gene) helped down-
regulate frxA expression in some type I H. pylori strains; (ii) the
fdxA gene was essential for viability in many of them; (iii) this
essentiality reflected a need to restrain frxA expression, at least
in some cases; and (iv) fdxA was dispensable in most type II
strains (which naturally express frxA). The complexity of these
results—the inability to predict with certainty how any one
strain will behave based on findings with other strains—pro-
vides a new phenotype-level illustration of H. pylori’s great
genetic diversity and may give insight into how this gastric
pathogen evolves and interacts with its human hosts during
long-term chronic infection.

The involvement of fdxA in down-regulating frxA expression
was most evident in six type I strains that tolerated fdxA inac-
tivation; in each case, this caused a need to mutate frxA (along
with rdxA) to achieve Mtz resistance. The repeated failure to
obtain fdxA null transformants of most other type I strains,
however, indicated that FdxA was often essential. Although a
failure to obtain fdxA null transformants of strain 2600 had also
been interpreted as indicating fdxA essentiality (32), that par-
ticular result can now be ascribed to polarity on distal gene
expression, because fdxA null derivatives of strain 2600 were
readily generated here by using a nonpolar fdxA::cat allele.

The requirement for fdxA was overcome in 4 of 20 strains by
inactivating their frxA genes. This suggested that FdxA protein
also regulated frxA expression in these strains and that keeping
frxA quiescent was an adaptive trait for them. Indications of
additional roles for fdxA included our inability to obtain fdxA
null transformants in most type I strains, even after making
them frxA deficient; the slow growth of fdxA null transformants
(although some of this might also be ascribed to residual po-
larity of the cat cassette used to inactivate fdxA); and their
premature death in stationary phase. This additional role(s)
may include carriage of reducing equivalents for multiple met-
abolic reactions and possibly also regulating expression of ad-
ditional genes (8, 9).

In light of fdxA’s essentiality in most type I strains, it was
striking that fdxA null derivatives were obtained in most type II
strains, the class that normally exhibits (and tolerates) strong
frxA expression. This might reflect either (i) the presence in

FIG. 4. Kinetics of death in stationary phase. Young exponentially
growing cells were spread on BHI agar and were incubated. Aliquots
were withdrawn daily, and efficiencies of colony formation, relative to
culture optical density, were determined. WT, wild type.
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them of genes with equivalent or compensatory functions (e.g.,
additional ferredoxins) and their absence from most type I
strains or (ii) the presence in them of naturally occurring
suppressor mutations, perhaps equivalent to the suppressors
invoked above to explain the rare fdxA null transformants of
three type I strains (Lit055, CPY6271, and HUPB48). An il-
lustration that rather small differences in background genotype
might determine whether fdxA is essential or not was provided
by studies of two closely related strains, X47 (fdxA requiring)
and 98QM3 (fdxA independent) (Fig. 1).

Consequences of increasing frxA expression and fdxA inac-
tivation. Although the normal role of FrxA nitroreductase is
not known (e.g., whether it is strictly metabolic or protective
against reactive metabolites produced in the host response to
infection), we suggest that the detrimental effect of excess frxA
expression in H. pylori strains of certain genotypes stems from
changes in metabolite pools. In one model, excess FrxA might
cause a potentially injurious metabolite to accumulate to toxic
levels, analogous to that seen with 2-ketobutyrate, sug-
ar phosphates, and 3�-phosphoadenoside 5�-phosphosulfate
(PAPS) in certain mutant strains of enteric bacteria (33, 34,
41). In an alternative model, excess FrxA might cause deple-
tion of a critical intermediate or end product, analogous to
starvation variously for succinyl-coenzyme A, caused by excess
glutamate dehydrogenase and a resultant siphoning of most
alpha ketoglutarate into glutamate synthesis (26); or for sev-
eral serine-derived metabolites, caused by excess serine deami-
nase and a resultant siphoning of most serine into pyruvate
synthesis (6). In our experiments, the tolerance of high nitrore-
ductase levels in most type II strains and a few type I strains
might stem from differences in levels of other metabolic en-
zymes that, in a toxicity model, consume the metabolite, inter-
fere with its synthesis, or produce an antidote or that, in an
intermediate depletion model, increase flux through undersup-
plied pathways or activate alternative modes of synthesis of the
essential end product. Such flexibility, the compensation of
deleterious effects of one metabolic alteration by changes in
other metabolic functions, is a familiar theme in traditional
biochemical genetics (see, for example, references 6, 10, 11,
and 26).

How FdxA might act. Two models for FdxA-mediated down-
regulation of frxA expression seem attractive. One invokes a
ferredoxin-mediated effect on a metabolite that itself is regu-
latory; e.g., ferredoxin-dependent synthesis of a corepressor or
consumption of an inducer. A second model envisions direct
action of FdxA itself and is suggested by studies of the FdI
ferredoxin of Azotobacter vinelandii. This ferredoxin interacts
with a pyruvate dehydrogenase subunit and enables it to bind
the fpr promoter and block fpr gene transcription (45). Other
useful precedents include various larger iron-sulfur proteins,
such as SoxR, aconitase-iron regulatory protein, and IscR,
which bind specific RNA or DNA sequences or participate in
protein-protein interactions in reactions that also depend crit-
ically on oxidation states and/or iron binding to their iron-
sulfur centers and that thus can respond sensitively to environ-
mental and intracellular cues (9, 48).

Evolutionary inferences. The complexity among H. pylori
strains of patterns of fdxA essentiality and frxA regulation
illustrates, at the phenotypic level, H. pylori’s extraordinary
genetic diversity. Much of this diversity may reflect accumu-

lation of numerous genetic differences, many of which may
have quantitative effects on metabolite flux in one or more
biochemical pathways. The following possible sources of this
diversity have been much discussed: general mutation (56),
frameshifts in repetitive sequences in contingency genes
(47), and recombination within and between strains (24, 29,
51, 52). We suggest that the present level of diversity also
reflects several additional features: (i) H. pylori’s mode of
transmission, which is preferentially intrafamilial and occurs
efficiently in early childhood (7, 13, 23, 36); (ii) the tendency
of infections to persist for decades; and (iii) the rarity of new
infections in adulthood (1, 37, 55). These three features
create a highly fragmented bacterial population and dimin-
ish competition among strains from unrelated persons and
selection for any one or few potentially most-fit genotypes
(selective sweeps [22]). These features would promote ge-
netic drift even if all people were identical physiologically.
Given human diversity in traits that may be important to
individual H. pylori strains (17, 24, 35, 43), we also imagine
that at least subtly different phenotypes may be selected in
different infected people. These features of H. pylori and of
human populations create, in effect, rugged evolutionary
landscapes (12, 53, 57). The chance of ingestion, especially
in infancy, as much as any near-ideal match between bacte-
rial genotype and particular host physiology may dictate
which H. pylori strain becomes established in any new hu-
man host. This feature should often result in selection for
adaptive changes that make each infecting strain better
suited for its present host. The selection for adaptive
changes may continue for years, in part because gastric
physiology changes with age and in response to chronic
infection. Adaptation will often involve many small steps
and operate along different trajectories in different strains
and infected people (12, 43, 54, 57)—Jacob’s concept of
evolution by tinkering (25). The resultant constellations of
quantitative trait determinants should, in turn, affect the
chance that a given strain will productively infect a partic-
ular human host and the chance that persistent infection will
lead to overt disease.
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