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Major advances in large-scale yeast two-hybrid screening have
provided a global view of binary protein–protein interactions
across species as dissimilar as human, yeast, and bacteria. Remark-
ably, these analyses have revealed that all species studied have a
degree distribution of protein–protein binding that is approxi-
mately scale-free (varies as a power law) even though their
evolutionary divergence times differ by billions of years. The
universal power law shows only the surface of the rich information
harbored by these high-throughput data. We develop a detailed
mathematical model of the protein–protein interaction network
based on association free energy, the biochemical quantity that
determines protein–protein interaction strength. This model re-
produces the degree distribution of all of the large-scale yeast
two-hybrid data sets available and allows us to extract the distri-
bution of free energy, the likelihood that a pair of proteins of a
given species will bind. We find that across-species interactomes
have significant differences that reflect the strengths of the pro-
tein–protein interaction. Our results identify a global evolutionary
shift: more evolved organisms have weaker binary protein–protein
binding. This result is consistent with the evolution of increased
protein unfoldedness and challenges the dogma that only specific
protein–protein interactions can be biologically functional.

protein–protein interactions � yeast two-hybrid

Gaining a global view of protein–protein interaction (PPI)
networks gives a new perspective to the understanding of all

biological organisms (1–3). Advances in yeast two-hybrid (Y2H)
interaction have provided high-throughput readouts that gener-
ate maps of PPI networks in several organisms including man
(4–11). These large-scale interactomes revealed an approxi-
mately scale-free-like topology that is shared by each studied
species. This means that in all organisms most proteins have one
or two partners, but a few (so called hubs) have many partners.
Thus the probability p(k) that a protein interacts with k others
follows an approximate power-law distribution: p(k) � 1�k�. This
conserved cross-species PPI property is not surprising because
networks with power-law distributions are ubiquitous appearing
in systems as diverse as the internet, the citation index, and
societies (12–14).

The discovery of a common topology of diverse systems whose
functions are so strikingly different initiated the search for
universal models to explain scale-free networks (13, 15). The
concept of preferential attachment, in which in growing net-
works new vertices link preferentially to older nodes that are
already highly connected (13), is very popular. Analysis of
species separated by billions of years of evolution showed that
this mechanism could also be involved in evolutionarily expand-
ing protein–protein networks (16). Another newer idea of
intrinsic fitness, in which two nodes are connected when the link
is mutually beneficial, was proposed to explain scale-free net-
works (15). This class of models shows that intrinsic fitness is an
essential property that underlies the power-law distribution and
also allows the prediction and measurement of other properties.

In particular, an exponential distribution of the fitness leads to
a power law degree distribution of a network.

Protein–protein binding is determined by free energy of
association as well as the concentrations of participating mole-
cules (17). The biochemical manifestation of intrinsic fitness for
protein–protein binding is that each protein has an inherent
propensity for association. This idea opposes the view that PPIs
are determined solely by a ‘‘lock-and-key’’ mechanism involving
complementarity. This article uses the properties of PPI net-
works to quantitatively explore the unorthodox view of protein
interaction promiscuity.

The Y2H method reports binary results for protein–protein
binding under a controlled setting (18). We assume that a Y2H
measurement is an efficient way to measure a binary PPI, just as
one can do for a pair of proteins in a test tube. Thus, the
association reaction of two proteins, say A and B, is determined
by the free energy difference �G0 (19) between the state A � B
and the AB final state (Fig. 1). The large-scale Y2H data sets
report the presence of an AB complex.

We discuss this in more detail. In Y2H screens, two fusion
proteins are generated: one protein is constructed to have a
DNA-binding domain attached to its N terminus, and its poten-
tial binding partner is fused to a transcriptional activation
domain (18). Binding of the two proteins will form an intact and
functional transcriptional activator. This newly formed transcrip-
tional activator complex will then transcribe a reporter gene
whose protein product can be assayed. Thus the presence of the
reporter gene product generated is a measure of the association
between two proteins. The probability of two proteins forming
a complex is determined by their association constant, Ka, which
is in turn related to the free energy measured in unit of RT.

In the large-scale Y2H screens concentrations of all expressed
hybrid proteins are expected to be approximately the same.
Hence, the factor of protein concentrations, which surely plays
a role in vivo, is negated in the binary interactions measured in
the Y2H system. This is in contrast to PPI measurements using
mass spectroscopy that depend on the native protein concen-
trations in cells (20). In this report, we focus on the data derived
from Y2H screens and hence on the strength of protein–protein
binding alone. The physical origin of PPI strength can be
complex: hydrogen bonding, van der Waals, hydrophobic, and
electrostatic interactions all play a role. However, a thermody-
namic model can be developed irrespective of the nature of the
free-energy difference, �G0. In this study we developed a
quantitative model using both exact simulation technique and
semianalytic approximation to test whether the current large-
scale Y2H binding data sets obtained for multiple species can be
interpreted in terms of a distribution of �G0 of an organism, and
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furthermore whether distributions of free energy of interactions
differ across species.

Results and Discussion
The overall strategy used to derive an organism’s free-energy
distribution of binary PPI is illustrated in Fig. 1 and detailed in
Methods.

Large-scale Y2H screens of protein interactions have been
completed for several organisms including the bacteria Helico-
bacter pylori (8), the malaria parasite Plasmodium falciparum (6),
yeast Saccharomyces cerevisiae (5, 11), worm Caenorhabditis

elegans (7), fruit f ly Drosophila melanogaster (4), and human (9,
10). For all of the organisms examined the distribution of Y2H
PPIs approximately follows a power law (4–6, 8–11) form. We
sidestep the issue of whether the PPI topology is exactly scale-
free. Instead we apply our model, which uses free energy as the
basis of the of PPI in a thermodynamic approach to understand-
ing PPIs, to describe the Y2H data available for the different
species. In this approach the power-law behavior of networks is
derived from an exponential distribution giving the probability
of variations in the free energy contributed by a protein. Our
starting point is the PPI and the additivity principle (21).

Fig. 1. Strategy used to derive free-energy distribution of binary PPI from large-scale Y2H data sets.
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Simulation and semianalytic strategies were used in a comple-
mentary fashion (see Methods).

The computer-simulated fit and semianalytically derived
curves superimposed on the Y2H data for each organism are
shown in Fig. 2. Modeling the data obtained from the large-scale
Y2H screens (4–6, 8–11) using our approach yielded two
parameters, � and �, for each species (Table 1). The high-
throughput Y2H maps represent a partial sample of the inter-
actomes. Questions have been raised about the accuracy of
inferring a complete PPI topology from only a partial sample
(22). In our model, the nearly identical � and � parameters
derived for the two independent human high-throughput Y2H

screens not only provide independent validation of those large-
scale data sets but also support the current model. The analyt-
ically derived curves for the different species data sets reveal that
the degree distribution resembles but does not strictly follow a
power law. Importantly, unlike the prior analysis (10), the
current model reveals species differences in the parameters that
control the degree distribution. The value of � ranges from 0.64
to 1.53 and is closely related to the slope of the curves repre-
senting p(k) (Fig. 3A). The value of � reflects the tightness of the
fluctuations of the free-energy difference, with a smaller value
indicating increased fluctuation of the ability to interact. There
is no obvious correlation between � and divergence times among
these organisms. The parameter � is closely related to the height
of the curves representing p(k) (Fig. 3B).

Parameter � is a measure of the average association free-energy
difference and therefore can be regarded as an indicator of the
average strength of all of the binary PPIs of an organism. The value
of � differs across species and unlike � is positively correlated with
divergence times (Fig. 4). This means that � is lowest for H. pylori
and progressively increases with increased evolutionary time. In
other words, the average strength of binary PPIs is strongest in the
least complex organism.

Recently, Deeds et al. (23) proposed a physical model for PPIs
based on number of exposed hydrophobic residues that similarly
recapitulates power-law distribution in yeast. Their model is a
specific example of the ‘‘intrinsic fitness model’’ advanced by
Caldarelli et al. (15), with the fitness number of each node having
Gaussian distribution and the probability of interaction p(g, g�)
taken as a step function. Our model and their model each obtain
degree distributions that are approximately scale-free. Whereas
their approach based on the Gaussian distribution only holds for
a small range of parameters, our model based on exponential

Fig. 2. Degree distribution of Y2H PPIs. Number of proteins, N, with a given
number of links from Y2H screen of H. pylori (8), the malaria parasite P.
falciparum (6), yeast S. cerevisiae (5, 11), worm C. elegans (7), fruit fly D.
melanogaster (4), and human (9, 10) proteins, shown as dots, was used to
model by simulation (open circles) and semianalytical approaches (solid line).

Table 1. Summary of derived parameters

Species DT N � � �2

H. pylori 3 732 0.88 7.06 0.44
P. falciparum 1 1,310 0.93 7.77 0.49
S. cerevisiae 1 4,386 1.18 7.94 1.72
C. elegans 0.7 2,800 1.29 8.19 0.61
D. melanogaster 0.7 2,806 1.53 8.89 0.06
Human (ref. 9) 0.1 1,494 0.64 10.6 0.72
Human (ref. 10) 0.1 1,705 0.67 10.2 0.60

DT, divergence times (billion years); N, number of proteins. 1�� is the
standard deviation from the mean of binary PPI for a given species. � reflects
the mean strength of binary PPI for a given species.

Fig. 3. Dependence of degree distributions on the parameters � (A) and �

(B). (A) Effects of varying �. Solid line, � � 1; short dashes, � � 1.5; long dashes,
� � 2. The value of � is fixed at 10. (B) The parameter � is held fixed at 1.0 while
� is varied between 7 (upper curve) and 10 (lower curve) in steps of unity. Solid
line, � � 7; short dashes, � � 8; intermediate dashes, � � 9; long dashes, � �
10. The value � is fixed at 1.
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distribution yields a nearly scale-free distribution for almost any
set of parameters � and �. We have not been able to use their
model to reproduce the measured degree distributions of all of
the species (data not shown).

Our statistical model, as well as those of others (23), under-
estimates the number of proteins with single partners. This is
seen in Fig. 2 by comparing the empirical and predicted values
of p(k) at k � 1. There are many classical biochemistry ‘‘lock-
and-key’’ PPIs that involve highly specific pairs of proteins. Such
interactions are not included in our statistical model that as-
sumes additivity of free energy. Hence, the experimental obser-
vation of p(1) is always much greater than the predicted value.
In fact, the traditional paradigm for structurally based protein
recognition always emphasizes the complementarity between
interactive pairs. This has led to the important concept of
specificity in biochemistry. The intrinsic fitness-based model
illustrates that ‘‘nonspecific’’ interactions where one protein can
have multiple partners play an important role in the large-scale
PPI. And more importantly, our result shows that such interac-
tions can be biologically functional.

We can quantify the strong and weak interactions by comput-
ing the probability h(�g) for the association energy of a pair of
proteins, �G0�RT, to take the specific value �g. A straightfor-
ward computation yields the result

h��g� � �2�� � 2�� � �g�e�����2/���g�. [1]

The distribution h(�g) peaks when �g � � � (1��). The mean
value of the distribution is �. The parameters � and � for each
species were used to generate the different energy distributions,
h(�g), shown in Fig. 5.

The cross-species comparison of the free-energy distributions
shown in Fig. 5 reveals a progressive left-to-right shift of
free-energy distribution with evolutionary time. This shifts to-
ward weaker interactions mirrors changes in � (Fig. 4). There
was a disproportionably larger difference between human and
fly�worm free-energy distribution with respect to divergence
time than the differences between fly�worm and the unicellular
organisms. The Plasmodium protein complexes network has
diverged from those of yeast, f ly, and worm (24). Yet, we find
that the free-energy distribution for this malaria pathogen is
similar to these other early organisms (Fig. 5).

What could be the evolutionary changes needed to account for
the weaker interactions that seem to typify the human interac-
tome compared with those of the lower organisms? Comparative
genomic analysis reveals dramatic differences in the human

proteome compared with lower metazoans such as the fly or the
nematode (25).

Disordered protein regions are common, particularly in reg-
ulatory factors (26). These domains can bind a diversity of
protein partners (26, 27). It has recently been recognized that
there is an increased trend toward protein unfoldedness from
lower to highly complexed organisms (28). The unstructured
protein domains are often modified posttranslationally. These
unfolded domains also permit multilateral binding and complex
interactions required by highly evolved organisms. This evolu-
tionary change expands a protein’s repertoire of partners and is
a way for factors to assume new functions. The interactions
involving disordered proteins are intrinsically weak. The ability
to more readily dissociate a complex is considered an important
attribute because it allows PPIs to be regulated by covalent
modification and by other molecules.

Comparative genomic analysis also reveals other significant
proteome changes that evolved in more complex organisms (25).
For example, Src homology 2 (SH2) and Src homology 3 (SH3)
bearing proteins are some of the most frequently represented
families of factors in man, but their frequency in earlier species
is orders of magnitude lower (25). The SH3 and SH2 interaction
typically exhibit lower affinities and are also highly regulated.

These evolutionary changes are embodied in the hnRNP K. This
protein contains three structured RNA-binding KH domains that
are well conserved in fly, nematode, and yeast. KH domains are also
found in bacteria (27). Mammalian K protein contains a large
disordered KI region that contains several SH2- and SH3-binding
sites that are absent in fly and worm. The K interaction region
mediates association with many protein partners, interactions that
are highly regulated by phosphorylation (29–31). In vitro, many K
protein binary interactions are weak (29–31). Yet, within cells K
protein is a component of many and functionally diverse complexes
(27, 32). These observations may reflect multilateral molecular
cooperativity of binding that is amiable to regulation by intra- and
extracellular signals. K protein ability to interact in a regulated
fashion with a diversity of other factors and nucleic acids explains
its involvement in multiple processes that compose gene expression
(27, 33). There are many mammalian proteins that exhibit similar
properties (26).

Sequencing of many genomes revealed that the number of
protein coding genes is surprisingly similar for organisms as
disparate as human, fly, and even yeast (25). Yet, the differences
in the complexity of these organisms are immense. The large-
scale Y2H screens across species provide opportunities to gain
global views of the interactomes and their evolutionary trends.
Our free-energy model of PPIs identifies a global evolutionary
tendency toward weaker binary protein–protein Y2H interac-

Fig. 4. Differences in the indicator of mean strength of binary PPI �, across
evolution. � is plotted as a function of divergence times.

Fig. 5. Cross-species comparison of free-energy distribution of Y2H PPIs. The
analytically derived fit of the Y2H PPI data was used to generate association
free-energy distribution for each species.
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tions. The result of this analysis is consistent with the notion that
in high-complexity organisms disordered regions assumed a
greater role (28). These weaker interactions became more
important for human PPI networks than for the networks of
lower organisms, as viewed by Y2H screens. The evolution of
weaker interaction, which is more easily modulated, provides
new insight how cellular complexity could have evolved while
maintaining genomic simplicity.

Undoubtedly, the future will bring many more large-scale
Y2H studies. The model developed here should be useful for
following interactome changes that evolved between more
closely related organisms, and also for studying differences
between the free-energy distributions of diverse tissues. In this
regard it would be particularly interesting to compare the Y2H
global view of the brain interactome to that of less complex
organs. Comparing the free-energy distribution of PPIs in nor-
mal and malignant tissues could also be very fruitful.

Methods
There are thousands of proteins in a typical PPI network and
millions of possible binary interactions. Therefore, a statistical
treatment of PPI networks, based on the concept of free energy
of association—�G0 � �RT ln Ka, where Ka is the association
constant—is used to derive the degree distribution of Y2H
binary protein interactions for an organism.

Derivation of the Model. Our basic ideas and assumptions were as
follows. There is a mean association free energy among all of the
protein pairs in an organism: 	�G0
. For a particular pair of
proteins, say A and B, their association free energy deviates from
the 	�G0
, and the deviation is contributed by both proteins A
and B additively:

�GAB
0 � 	�G0
 � RT�gA � gB), [2]

where the gA and gB represent the fluctuations of the values of
the free-energy difference, measured in RT units, due to the
respective contributions of protein A and B. We assume addi-
tivity following the theoretical work (23, 34) and molecular
studies (35, 36). For general discussion of additivity principles in
biochemistry, see ref. 21. The empirical support for additivity
assumption is also provided by the scale-free nature of Y2H PPI
networks (4–11). The scale-free phenomenon suggests that if AB
has strong interaction, then AC is likely to have strong associ-
ation. Conversely, if XY is a weak complex, then XZ is more likely
to be weak. The physical basis for this intrinsic property of
proteins to interact with others remains to be better defined.
However, there is a correlation between the number of inter-
actions by a given protein and the fraction of hydrophobic amino
acids on its surface (23), suggesting one potential mechanism.
Conventionally, one would assume that gA and gB are Gaussian-
distributed with zero mean. But it has been shown that the
Gaussian distribution is inconsistent with networks exhibiting
power-law topology (15). Rather, Caldarelli et al. (15) have
shown that the robust power-law topology essentially dictates the
gA and gB to be exponentially distributed; thus it is asymmetric.
The exponential distribution leading to power law behavior is
also seen in the kinetic study of protein folding (37, 38).
Therefore, we take the mathematical expression for the distri-
bution of both gA and gB to be

��g� � Cexp���g� , � 	 0, �1 
 �g 
 � � , [3]

where C is a normalization factor whose value can be determined
to be ��e. The distribution of Eq. 3 has a mean of zero and
standard deviation of 1��. In summary, the Y2H PPI power law
topology (4–11) suggests using an exponential distribution (15)
to define an organism’s free-energy distribution of binary PPIs;

the actual numerical value of the power seems to be related to
the fluctuations of the PPI.

We now ask, for a given protein A, what is the probability of
it being associated with a protein B? This is a standard question
of bimolecular association, and the probability is given by

p��GAB
0 � �

Ka,AB�B

1 � Ka,AB�B
, [4]

where Ka,AB is the association constant between A and B, and [B]
is the concentration of molecule B. We assume that in all of the
Y2H experiments, the concentrations of the expressed hybrid
proteins are essentially the same. Then Eq. 4 can be simplified
into

p��GAB
0 � �

e�
�GA B

0

RT �B

1 � e�
�GA B

0

RT �B

�
egA�gB��

1 � egA�gB��,

where gA and gB are exponentially distributed according to Eq.
3, and the parameter � � (	�G0
�RT) � ln [B] contains
information on the average binding strengths of all of the binary
PPI of a given organism. Its value is expected to be different for
different species. Since we assume that all of the Y2H measure-
ments essentially have the same [B], the lower the mean asso-
ciation energy, the greater the association constant, and the
smaller the value of �. The [B] in Eq. 4, the concentration of all
of the protein B with its binding site for A being free and
independent of other binding sites, is a function of the concen-
trations of the other proteins that compete for the A binding site
of B. We do not take this effect into consideration in the present
model.

In this article, we shall denote (egA�gB��)�(1� egA�gB��) �
p(gA, gB). It is graphically convenient to use a simpler notation
in which the g-values of the protein-pair A, B are denoted by g
and g�. Then for two interacting proteins with g-values g and g�,
the interaction probability p(g, g�) of Eq. 5 is determined solely
by the quantity g � g� � �, with a positive value indicating a
significant interaction probability.

p�g, g�� �
eg�g���

1 � eg�g��� [5]

Eq. 5 gives the probability of a protein A forming a complex with
another protein A� leading to functional transcriptional activa-
tor. The relation between this probability and eventual expres-
sion of reporter gene is the complex transcription activation
process. This is the least understood step of the Y2H measure-
ment. There are essentially two types of transcriptional activa-
tion responses: graded and all-or-none (39–41). The latter leads
to a step function as used in ref. 23. Reporter gene systems have
revealed that at a single-cell level expression is either maximal
or not expressed at all, but the probabilities of expression are a
function of the amount of transcriptional activators. This leads
to graded responses in a cell population. We have adopted such
a graded response in our simulations.

Computer Simulation. The use of random sampling techniques is
appropriate for any system that can be described statistically, so we
simulate the protein interaction network using the parameters �, �,
and N. The technique is to generate an N � N matrix with each
element representing a chosen pair of proteins. A matrix element
is 1 if the pair interacts or 0 if not. The first step in calculating the
matrix element is to assign each protein a ‘‘g-value’’ according to the
exponential probability distribution �(g) (Eq. 3). The second step is
to calculate the probability of interaction p(g, g�) from Eq. 5.
Increasing the value of � decreases the value of p(g, g�) and
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therefore decreases the interaction probability, thus � can be taken
as an indicator of the strength of the interaction. Then a number q
(0 
 q 
 1) is generated randomly from a uniform distribution. If
p 	 q, we say that there is an interaction between the two proteins,
and the matrix element corresponding to these two proteins is set
to be unity. Otherwise, this element is set to zero. This procedure
is repeated for all of the (N(N � 1))�2 pairs of proteins in the
network. The sum of the number of ones in each row of the matrix
represents the number of partners (or degree) of the chosen
protein. Tabulating the degree of each protein allows us to deter-
mine p(k) the probability that a protein has k partners. Carrying out
this procedure five times is sufficient to achieve a stable degree
distribution.

Semianalytic Approach. We developed an average probability
approximation to the exact formulation of ref. 34. One of the
consequences of the model represented by Eq. 5 is that the
probability distribution of interaction free energy between pro-
tein A and all of the other proteins is in fact different for different
proteins. However, if we neglect this difference, and are only
interested in the average distribution of interaction free energy
between two proteins, a simple expression for p(k), the degree
distribution, can be derived. This is done by approximating the
p(g, g�) by its average.

p� �g� ��
�

1
�

�

��g��p�g, g��dg� [6]

Using the distribution given in Eq. 6, we built a network by
assuming that a single protein with given a g-value binds another

protein with a probability p�(g). For a number of proteins, N
(including itself), the probability of having k actually bind is given
by a binomial distribution.

p�k� � �
�

1
�

�

��g��N
k��1 � p� �g��N�kp� �g�kdg [7]

Eqs. 6 and 7 give essentially the same degree distribution as the
simulation procedure discussed above. Furthermore, if one
replaces the probability of interaction of Eq. 5 by a step function,
this model reduces to the intrinsic fitness models of refs. 15 and
34. In that case the approximate Eqs. 6 and 7 give the same
results as an exact treatment.

Y2H Data Fitting. The parameters �, � were varied so as to
minimize the �2 parameter defined to minimize the difference
between the logarithms of the theory p(k) of Eq. 7 and the
experimentally measured pexp(k).

�2 � �k� log p�k�

log pexp�k�
� 1� 2

[8]

The sum is over those values of k for which p(k) � 0. The
parameters from these fits were used in the simulation.
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