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It is generally assumed that single cells in an isogenic population,
when exposed to identical environments, exhibit the same behav-
ior. However, it is becoming increasingly clear that, even in a
genetically identical population, cellular behavior can vary signif-
icantly among cells. Here we explore this variability in the gradient-
sensing response of Dictyostelium cells when exposed to repeated
spatiotemporal pulses of chemoattractant. Our experiments show
the response of a single cell to be highly reproducible from pulse
to pulse. In contrast, a large variability in the response direction
and magnitude is observed from cell to cell, even when different
cells are exposed to the same pulse. First, these results indicate that
the gradient-sensing network has inherent asymmetries that can
significantly impact the ability of cells to faithfully sense the
direction of extracellular signals (cellular asymmetry). Second, we
find that the magnitude of this asymmetry varies greatly among
cells. Some cells are able to accurately follow the direction of an
extracellular stimulus, whereas, in other cells, the intracellular
asymmetry dominates, resulting in a polarization axis that is
independent of the direction of the extracellular cue (cellular
individuality). We integrate these experimental findings into a
model that treats the effective signal a cell detects as the product
of the extracellular signal and the asymmetric intracellular signal.
With this model we successfully predict the population response.
This cellular individuality and asymmetry might fundamentally
limit the fidelity of signal detection; in contrast, however, it might
be beneficial by diversifying phenotypes in isogenic populations.

modeling � stochastic � Dictyostelium � chemotaxis � variability

The low number of molecules involved in biological systems
can lead to large stochastic effects and population hetero-

geneity even within a genetically identical population (1–3). For
example, the swimming behavior of Escherichia coli cells varies
greatly from cell to cell (4), and recent studies start to link this
variability in swimming behavior to concentration fluctuations in
regulatory proteins (5–7). It is an open question whether a
similar variability can be observed in eukaryotic chemotactic
cells, such as the slime mold Dictyostelium discoideum, which has
the exquisite ability to sense and respond to shallow gradients of
chemoattractants. In these spatially sensitive systems, signaling
errors might be introduced in two different ways. First, the
concentrations of intracellular signaling components might vary
from cell to cell; second, spatial inhomogeneities or asymmetries
in the cellular distributions of molecules might influence the
ability of cells to sense slight spatial differences in the extracel-
lular environment.

To explore this question, we employ a quantitative approach
to systematically study directional sensing in single Dictyostelium
cells. Recent experiments have demonstrated that an extracel-
lular signal induces spatial localization of several signaling
proteins along the plasma membrane (8–12). The localization of
these molecules at the membrane allows a cell to polarize and
move in the direction of the external signal. We quantitatively
monitored the spatial and temporal localization of one of the key
signaling proteins fused to GFP, which provides a convenient
reporter of directional sensing at the single cell level.

Upon exposure to the same extracellular signal, the GFP
localization varies greatly from cell to cell, whereas a single cell
will repeatedly give the same response. We find that the differ-
ence in response between the single cell and population is due
to asymmetries internal to each cell. Furthermore, this asym-
metry varies in magnitude from cell to cell, causing some cells to
accurately follow a moving stimulus, whereas others do not.
Although we find that most cells are strongly asymmetric in their
response, previous experimental and modeling studies have
focused mainly on explaining the response of symmetric cells.
Because the asymmetry can have a significant impact on the
ability of cells to sense external gradients, we developed a model
that combines intracellular asymmetries with extracellular sig-
nals. When combined with measured parameters, the model is
able to accurately predict the observed population response.

Results and Discussion
Starved Dictyostelium cells were immobilized and seeded into an
observation chamber containing a known concentration of caged
cAMP. The response of cells to a short pulse of cAMP was
quantified by monitoring the spatial and temporal localization of
the cytosolic regulator of adenylyl cyclase (CRAC) fused to GFP
(8–11). The CRAC–GFP fusion retains the wild-type activity
(12). During stimulation, the pleckstrin homology domain of
CRAC binds to the phospholipid phosphatidylinositol 3,4,5-
triphosphate [PI(3,4,5)P3], causing CRAC–GFP to translocate
to the leading edge of the cell. The GFP fluorescence along the
cell membrane therefore provides a reporter of directional
sensing at the single cell level (12–16). A spatiotemporal cAMP
gradient was formed by uncaging a known concentration of
cAMP with a circular UV beam (Fig. 1a). The cAMP gradient
was quantified by numerically integrating the diffusion equation
in an infinite, two-dimensional chamber (Supporting Text and
Fig. 6, which are published as supporting information on the
PNAS web site). A major advantage of using a caged compound
is the ability to reproduce the exact same spatiotemporal gra-
dient repeatedly, which allows us to measure the variability of the
response of a single cell to multiple identical cAMP pulses.

Fig. 1b illustrates the dynamic translocation of CRAC–GFP to
the membrane after stimulation with a 2-s UV pulse for a cell
with a depolymerized actin cytoskeleton. Directional sensing
does not require cell motility or morphological changes (12, 17,
18). Therefore, immobilized cells provide the advantage of
studying directional sensing in the absence of the more complex
downstream responses, such as changes in cell shape. The
relative CRAC–GFP concentration in the membrane with re-
spect to the prestimulus level was measured by subtracting the
images taken after the release of the stimulus from the image
taken just before the release of the stimulus (Fig. 1c). We defined
a response function, R(�, t), to quantify the relative CRAC–GFP
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concentration in the membrane. To determine R(�, t), first the
cell membrane was segmented in 20 subregions. Second, the
difference between GFP intensity at time t and at t � 0 (just
before uncaging) is computed for each of the 20 subregions.
Finally, we correct for the cell-to-cell variability in GFP levels by
normalizing R(�, t) by the average cytoplasmic GFP fluorescence
at t � 0 available to each subregion (1�20th of the total
cytoplasmic GFP fluorescence). This ratio defines the response
function R(�, t). For example an R(�, t) value at 100% for all 20
segments implies that every available CRAC–GFP molecule has
been recruited to the membrane. However, 10 adjacent subre-
gions having an R(�, t) value of 100% and the remaining 10
subregions having an R(�, t) value of 0% implies that 50% of the
total cytoplasmic CRAC molecules have been recruited to 10
subregions. Conversely, an R(�, t) value of 0% for a specific
segment means that the CRAC–GFP concentration in the
membrane is identical before and after cAMP uncaging. Fig. 1d
displays R(�, t) for the cell depicted in Fig. 1c. R(�, t) shows a
clear polarized response that is most pronounced �8 s after
uncaging.

We have characterized R(�, t) with three parameters: local-
ization, L; polarization, P; and polarization angle, �. These three
parameters are determined by fitting the experimentally ob-
tained response function R(�, t) with Rfit(�, t) �
L(t)�P(t)cos[� � �(t)] (Fig. 2a). Fig. 2 displays the dynamics of
L, P, and � for a single cell (Fig. 2 b, d, and f ) and a population
of 40 cells (Fig. 2 c, e, and g). After stimulation with a pulse of
cAMP, L and P increase and reach a maximum value, followed
by a return to their prestimulus level in�30 s. The time at which
L reaches its maximum is defined as Tmax. For a single cell, �
remains more or less constant during the response time (Fig. 2f ).
The error bars on the single-cell data reflect the variability from
pulse to pulse, which is significantly smaller than the variability
from cell to cell, denoted by the error bars on the population
data. Taken together these data suggest that when a single cell
is repeatedly stimulated with identical pulses, it responds in a
highly reproducible manner. From pulse to pulse, a single cell
recruits a very similar average CRAC–GFP concentration to the
membrane [reflected in L(t)] and creates a very similar CRAC–
GFP gradient at the membrane [reflected in P(t)], and this
gradient is oriented in the same direction from pulse to pulse
[reflected in �(t)]. However from cell to cell, a large variability
is observed in these three parameters.

In Fig. 3, we further quantify that the cell-to-cell versus
pulse-to-pulse variability of R(�, Tmax). R(�, Tmax) is highly
reproducible from pulse to pulse when a single cell is stimulated
with 10 identical pulses of cAMP (Fig. 3a). In contrast, R(�, Tmax)

for a population shows a large variability from cell to cell,
although cells are stimulated with the same identical pulse (Fig.
3b), consistent with the data presented in Figs. 2 b–g.

Fig. 1. Dynamic translocation of CRAC–GFP at the plasma membrane after stimulation with a 2-s pulse of cAMP. (a) The UV uncaging location is positioned
a distance r away from the cell center. The angle � defines the coordinate along the cell’s periphery, where � � 0 defines the position at the membrane that is
closest to the uncaging location. (b) Unprocessed epifluorescence images displaying CRAC–GFP as a function of time. The scale bar denotes 10 �m and r � 70
�m. (c) Subtracted images illustrate the relative change of CRAC–GFP concentration in the membrane with respect to the prestimulus level (t � �2 s). (d) Response
function R(�,t) as a function of time for the images in c.

Fig. 2. Definition of localization, L, polarization, P, and polarization angle, �,
and a comparison between the time dependence of these parameters for a single
cell (which is stimulated 10 times) and a population of 40 cells (which are
stimulatedonce). (a) TheresponsefunctionR(�,Tmax) (opencircles)andthefitting
function Rfit(�, Tmax) (red line). (b) Time dependence of L for a single cell. (c) Time
dependence of the average L for a population. (d) Time dependence of P for a
single cell. (e) Time dependence of the average P for a population. (f) Time
dependence of � for a single cell. The two dashed red lines indicate the dynamics
of � for two other single cells. � is very reproducible from pulse to pulse, even
when � � 0. (g) Time dependence of the average � for a population of 40 cells,
which averages to zero. Error bars denote standard deviations.
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In Fig. 3 c and d, we present P and � in a polar plot (Supporting
Text). For a single cell, � is observed not to vary significantly
from pulse to pulse (red dots in Fig. 3c), even when � � 90o

(green dots in Fig. 3c). In contrast, a pronounced cell-to-cell
variability of the polarization angle � is observed in the popu-
lation, although the cells are stimulated with the same pulse of
cAMP (Fig. 3d). The distribution of ��(Tmax)� is plotted in Fig.
3e, and shows a peak near � � 0. The same angular distribution
is obtained over a wide concentration range of caged cAMP,
which excludes the possibility that the variability is introduced at
the level of the cAMP-receptor binding (19–21) (Supporting
Text; see also Fig. 7, which is published as supporting information
on the PNAS web site). These experiments demonstrate that,
although there is a significant variability in �(Tmax) from cell to
cell, the population faithfully detects the direction of the cAMP
pulse. In contrast, the distribution of ��(Tmax)� for uniformly
stimulated cells is f lat (Fig. 8a, which is published as supporting
information on the PNAS web site).

We find that both the localization and polarization show a
strong correlation with the polarization angle as displayed in Fig.
3f. Cells that correctly detect the direction of the pulse (� � 0)
have, on average, a 2-fold larger localization and polarization
than cells that polarize in the opposite direction (� � 180o). We
will explain this correlation after we introduce the model. This
correlation is absent when cells are stimulated with a uniform
cAMP pulse (Fig. 8 b and c). The ratio of polarization and
localization P�L does not show a significant correlation with the
polarization angle (Fig. 3f ).

A few stochastic models have been developed to describe
random cell motility (22, 23); however, existing models of
eukaryotic directional sensing are commonly constructed from
spatially symmetric and deterministic systems of partial differ-
ential equations (24–30). Although the existence of an extra-
cellular gradient can break the symmetry, the polarization by
default will always occur along the direction of the extracellular
gradient, yielding � � 0 for all cells. Thus, for a cell to polarize
in a direction other than the direction of the extracellular
gradient, an additional source of symmetry breaking must be
present in the cell’s gradient-sensing network.

Rather than modifying existing models designed to capture
the full dynamics of directional sensing, we introduce a simple
linear model that allows for symmetry breaking and focuses on
cell-to-cell variability. To introduce a simple and general form of
asymmetry, we assume that a cell has a static intracellular signal,
Sint(�). The intracellular signal might be caused, for example, by
spatial inhomogeneities in any of the signaling molecules in the
gradient-sensing pathway or might include an inhomogeneous
distribution of cortical factors that remain bound to the mem-
brane after actin depolymerization. It is unlikely that the sym-
metry is broken by an inhomogeneous distribution of cAMP
receptors because the receptors are essentially uniformly dis-
tributed along the membrane (31). Our model accounts phe-
nomenologically for this randomly oriented intracellular asym-
metry without making statements regarding the molecular
origins of the asymmetry.

This intracellular signal in general could be a very complicated
function of the angle �. Because we observe that polarization is well
approximated by the lowest frequency cosine term, the lowest
frequency components of the intracellular signal are also assumed
to be the most dominant terms in producing polarization. Similarly,
the extracellular signal in our experiment can be approximated by
a single cosine function that describes how the extracellular cAMP
concentration varies along the cell membrane.

The main assertion of the model is that the extracellular
cAMP signal Sext(�) is combined multiplicatively with the intra-
cellular signal Sint(�) to produce an effective signal Seff(�). The
following equations can be used to describe the geometric model:

Sext � S0 � S1 cos� [1]

S int � 1 � �cos(� � ��) [2]

S � Sext � S int � � S0 �
�

2
S1cos���

� �S1 � �S0 cos�����cos� � ��S0sin�����sin� . [3]

In Eq. 1, we characterize the extracellular cAMP gradient
around the cell periphery by an average concentration S0 and an
amplitude S1. The coordinate � defines the position along the
membrane as defined in Fig. 1a. Similarly, in Eq. 2, the intra-
cellular signal is characterized by a magnitude of the intracellular
asymmetry � and an angle ��, which is the polar coordinate for
which the intracellular signal is largest (Fig. 4d). The total signal
S is a multiplicative function of the extracellular and the intra-
cellular signals (Eq. 3) and can be approximated as

S � L � Pxcos��� � Pysin��� , where [4]

L � S0 � (��2)S1cos�� [5]

Px � S1 � �S0cos�� [6]

Py � �S0sin�� [7]

� � arctan�Py�Px	 [8]

Fig. 3. Comparison between single cell and population response. (a and b)
R(�, Tmax) for a single cell that is stimulated 10 times (a) and a population of 40
cells that are stimulated once (b). (c and d) Polar plot of the polarization at Tmax

for three single cells (c) and a population of 100 cells (d). In these represen-
tations, one data point represents data from a single cell at Tmax. The distance
from a data point to the origin of the polar plot equals the polarization,
P(Tmax). The angle between the x axis and the line that connects the data point
to the origin of the polar plot is the polarization angle, �(Tmax). (e) Population
probability distribution of ��(Tmax)�, illustrating the fraction of cells displaying
a particular polarization angle at Tmax. ( f) Average of L(Tmax) and P(Tmax) (left
ordinate) and the ratio of P(Tmax)�L(Tmax) (right ordinate) as a function of
��(Tmax)�. (e and f ) Solid lines are predictions of the geometric model.
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When cells are stimulated with a uniform extracellular stimu-
lation, the effective signal retains the direction of the intracel-
lular signal and the direction of the effective polarization simply
matches the direction of the intracellular signal �� (Fig. 4a). Fig.
4b illustrates the case for which a cell is stimulated with a directed
pulse of cAMP. In this case, an effective signal whose polariza-
tion is biased by the direction of an intracellular asymmetry
causes a cell to polarize in a direction different from either the
intracellular or extracellular signal.

Eqs. 6–8 can be geometrically represented in a polar plot when
Px and Py are used as the x and y coordinates of the polar plot,
respectively (Fig. 4 c and d). The polarization vector of the cell
(Fig. 4d, black arrow) is proportional to the sum of a vector with
length S1 (Fig. 4d, red arrow) and a vector with length �So and
angle �� (Fig. 4d, blue arrow). The extracellular cAMP signal is
parameterized by Sext(�) � S0 � S1cos�, and the intracellular
signal is parameterized by Sint(�) � 1 � �cos(� � ��), where the
parameters S0 and S1 reflect the average cAMP concentration
and cAMP gradient, respectively. The parameters �� and �
define the orientation and relative strength of the intracellular
signal, respectively. This model predicts that for a uniform
stimulation (S1 � 0), the polarization angle � equals �� (Fig. 4c).
Experimentally we find that when a population is exposed to a
uniform stimulation the polarization angles � are uniformly
distributed from cell to cell (Figs. 4e and 8a), which implies that
the orientation of the intracellular signal �� follows the same
distribution. For a directed pulse (S1 � 0) � generally not does
equal ��. In this case, one would expect a nonuniform �
distribution with a maximum at � � 0 as was experimentally
observed (Figs. 3e and 4f ). These results demonstrate that not
only the direction of the intracellular asymmetry �� but also the
magnitude � varies from cell to cell.

The model also qualitatively explains the experimental
correlation between the polarization P and polarization angle
� (Fig. 3f ). Because �� is uniformly distributed (Fig. 4e), the
strongest polarization is expected for cells in which the intra-
cellular and extracellular signal line up (Fig. 4d, �� � 0). In
contrast, for cells in which the intracellular and extracellular
signal are oriented in opposite directions (�� � 180o), the
polarization P is expected to be the smallest possible. A similar
argument can be made to explain the correlation between
localization L and polarization angle �. Eq. 5 of the geometric
model predicts that the localization L is the strongest when the
intracellular and extracellular signals line up (�� � 0) and
smallest when the intracellular and extracellular signals are
oriented in opposite directions (�� � 180o).

Each data point in Fig. 4e (up to a constant S0) contains the
information about the magnitude and the direction of the
intracellular signal for each cell. The mean of the �S0 distribution
for a population of 137 cells is 6.3 
 0.4 with a standard deviation
of 4.4 
 0.3, leading to a coefficient of variation of 0.70 
 0.04,
which indicates that the strength of the intracellular signal is
highly variable from cell to cell (Supporting Text; see also Fig. 9,
which is published as supporting information on the PNAS web
site).

To test the model more directly, we stimulated a single cell
from multiple directions. We varied the stimulation angle, �s,
such that a cell was stimulated from eight different locations
separated by 45o while the orientation of the cell and the
direction of the intracellular signal remain fixed (Fig. 10, which
is published as supporting information on the PNAS web site).
Fig. 5a schematically illustrates the geometric model in the frame
of reference of a single cell, where the angle of the intracellular
signal is fixed at �� and the angle of the extracellular signal �s is
rotated around the cell.

For a cell with small � (��S1�S0), we expect the contribution
of the intracellular signal to the effective signal to be minimal,
causing the effective signal to follow the extracellular signal
exactly (� � �s, Fig. 5 b and c). In contrast, for a cell with large
� (��S1�S0), the contribution of the extracellular signal to the

Fig. 4. Schematic illustration of the geometric model. (a and b) The effective
signal (black line), which is a combination of the intracellular signal (blue line)
and the extracellular signal (red line), shown for a uniform cAMP stimulus (a)
and for a directed pulse of cAMP (b). (c and d) Graphical representation of the
geometric model and the polarization angle, �, when cells are stimulated with
a uniform pulse of cAMP and for a directed pulse of cAMP (d). The effective
polarization angle strongly depends on the direction of the intracellular
signal, ��. (e and f ) Experimentally measured polar plots, as defined in Fig. 3
c and d, for a uniform pulse of cAMP (e) and a directed pulse of cAMP ( f).

Fig. 5. Experimentally measured relation between the polarization angle,
�(Tmax), and the extracellular signal, �s, when the direction of the extracellular
signal is varied relative to the intracellular signal, �� and comparison to the
geometric model. (a) Schematic illustration of the geometric model in the
frame of reference of a cell with a fixed ��. (b) The difference image for a cell
with a small � (��1). Red dots on the images indicate the direction of
extracellular stimulation. (c) �(Tmax) versus �s for a cell with small � (��1). The
triangles and circles denote two independent experiments, demonstrating
the reproducibility of this assay. (d and e) �(Tmax) versus �s for a cell with an
intermediate � (�1) (d) and a large � (��1) (e). The red lines represent fits to
the geometric model with fitting parameters � and ��.
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effective signal is minimal; therefore, the effective signal will be
predominately in the direction of the intracellular signal (� � ��,
Fig. 5e). For a cell with � � S1�S0, the intracellular and
extracellular signals have equal strengths, which results in an
effective signal that is neither in the direction of the intracellular
signal nor in the direction of the extracellular signal (Fig. 5d).
The fits to the geometric model using the two parameters � �
�S0�S1 and �� are in good agreement with our experiments (Fig.
5 c–e, red lines; see also Supporting Text).

To further challenge the predictive power of the geometric
model, we tested whether the model combined with the single
cell data in Fig. 5 could predict the population experiments
summarized in Fig. 3 e and f. We experimentally found � for
20 cells (using the method outlined in Fig. 5), which had an
average value of � � 3.6. Using this experimental value for �,
the model successfully predicted the � distribution and the
ratio P�L without any fit parameters (Fig. 3 e and f, blue lines;
see also Supporting Text). To predict how L and P vary with �
(Fig. 3f ), we required one undetermined proportionality con-
stant ref lecting the ratio between the cAMP concentration and
the experimentally measured response function R(�). When
this factor is used as the sole fit parameter, the experimental
data closely match the model predictions (Fig. 3f, red lines). It
is encouraging that this simple linear model correctly captures
the key properties of the observed stochasticity in directional
sensing.

Our results show that cellular asymmetries and cell-to-cell
variability in the size of these asymmetries can have a significant
impact on the fidelity of directional sensing. Whereas some
individual cells correctly detect the extracellular cue, most cells
display a significant deviation from this direction due to an
intracellular asymmetry. However, this variability does not
hinder a population of many cells from accurately detecting the
direction of the extracellular cue (Fig. 3e). The model suggests
that the effective signal is the product of a randomly oriented
intracellular signal and the extracellular cue. Individual cells
that, by chance, have the intracellular signal aligned with the
extracellular cue will have a large effective signal and will
therefore display a larger polarization than cells in which the
intracellular and extracellular signal are counteracting. This
mechanism biases the net polarization of the population toward
the extracellular cue and furnishes a heterogeneous population
with a simple, yet effective, response strategy that provides an
isotropically sensitive direction sensor, even in the presence of
large cell-to-cell variability.

Materials and Methods
Materials. Adenosine 3,5-cyclic monophosphate, p1-(2-nitrophe-
nyl)ethyl ester (NPE-caged cAMP; Calbiochem–Novabiochem,

San Diego, CA) (32, 33) was used to create a controlled release and
measurable gradient of cAMP. Fluorescein bis-(5-carboxymethoxy-
2-nitrobenzyl) ether�dipotassium salt (Molecular Probes, Eugene,
OR) was used to verify the two-dimensional diffusion calculations
and visualize the gradient. Latrunculin A (Molecular Probes) was
used to depolymerize actin.

Cell Culture. A D. discoideum cell line expressing the CRAC–GFP
was constructed by electroporating plasmid pWF1 [a generous
gift from C. Parent (National Institutes of Health, Bethesda,
MD)] into wild-type AX3 cells. CRAC–GFP cells were cultured
and selected in HL5 medium with 20 �g�ml G418 and grown a
density of 5 � 106 cells per milliliter. Dictyostelium cells har-
vested by centrifugation were suspended in development buffer
(DB; 10 mM phosphate buffer�2 mM MgSO4�0.2 mM CaCl2, pH
6.5). Cells were starved for 5 h in DB by repeated pulses of 75
nM cAMP every 6 min (12). Subsequently, starved cells were
harvested and diluted 103-fold in DB to reach the density of 103

cells per milliliter and treated with 0.5 �M latrunculin A 10 min
before observation. Cells were then seeded into the observation
chamber, a round well with an inner diameter of 20 mm and a
1-mm depth adhered to a microscope slide (FW20 well; Grace
Bio-Labs, Bend, OR). The observation chamber was covered
with a coverslip and mounted on an inverted Nikon TE2000
microscope.

Data Analysis. In our image analysis, we treat the cells as quasi-
two-dimensional objects. Three-dimensional deconvolution
analysis demonstrated that latrunculin-treated cells resemble
spread-out droplets, with a maximum height of about one-fourth
of the cell’s diameter. The diameter of a typical cell is �10 �m;
therefore, the height is �2.5 �m. Cell were imaged with a �60
objective with a depth of field of �1 �m. Therefore, a small
contribution of the variability in the magnitude of the intracel-
lular signal may be due to the out-of-focus fluorescence. Cells
and their edges were determined with a nearest-neighbor-
cluster-finding algorithm on autothresholded images. Abnor-
mally shaped cells or cells that were touching were discarded for
analysis. All curve fittings are done with the least squares method
using MATLAB.
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