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ABSTRACT Ceramides are known to have a regulatory function in apoptosis, including the release of cytochrome c and other
proapoptotic factors from the mitochondrial intermembrane space. Ceramides can form large, stable channels in the outer
mitochondrial membrane, leading to the proposal that ceramide channels are the pathway through which these proteins are
released. Here, we report that sphingosine, a product of ceramide hydrolysis by ceramidase, is capable of destabilizing cer-
amide channels, leading to their disassembly. Sphingosine is directly responsible for the disassembly of ceramide channels in
planar membrane experiments and markedly reduces the ability of ceramide to induce the release of intermembrane space
proteins from mitochondria in vitro. Low concentrations of both L and D sphingosine potentiate the release of intermembrane
space proteins by long-chain ceramide and channel formation in liposomes. These results provide evidence for a mechanism by
which the disassembly of ceramide channels, as initiated by ceramidase, could be accelerated by the direct interaction of the
hydrolysis product with the ceramide channels themselves. This mechanism therefore could form a positive feedback loop for
rapid shut-down of ceramide channels. However, potentiation of ceramide channel formation is also possible and thus both
effects could influence the propensity for mitochondria-mediated apoptosis.

INTRODUCTION

Apoptosis, or programmed cell death, plays an important role

in the development of multi-cellular organisms and the re-

sponse to cellular damage. The mitochondrion is known to

act as a major hub for the regulation of apoptosis. The key

event of this mitochondrial pathway is the efflux of apoptosis-

inducing intermembrane space proteins such as cytochrome

c into the cytoplasm. The release of these proteins leads to the

activation of the caspases that carry out the execution phase

of apoptosis (1,2).

A number of mechanisms have been proposed for the

protein permeation pathway. Candidates for the composition

of this pore include Bax oligomers (3–5), the mitochondrial

apoptosis-induced channel MAC (6), lipidic pores induced

by Bax (7), lipidic pores induced by BH3/Bax/lipid inter-

actions (8,9), and ceramide channels (10–12).

Ceramide has been known, for a long time, to induce apo-

ptosis (13). The addition of ceramide to isolated mitochondria

results in the release of cytochrome c, apoptosis-inducing fac-
tor AIF, AK-2, and adenylate kinase (11,14–17). Both the

short-chainmodel compound,N-acetyl-D-erythro-sphingosine
(C2-ceramide), and a typical naturally occurring long-chain

ceramide, N-hexanoyl-D-erythro-sphingosine (C16-ceramide),

release these proteins. The mechanism of this release is most

likely the formation of large channels in the mitochondrial

outermembrane (MOM)since awhole rangeof intermembrane

space proteins are released up to a molecular mass cutoff of

;60 kDa (11). The exact nature of these large channels is

unknown but the same ceramides form large channels.10 nm

in diameter in phospholipids membranes lacking any proteins

demonstrating that these lipids are sufficient, but other compo-

nents are likely to be involved. The properties of ceramide

channels are consistent with a barrel-stave structure (10,12).

Bolstering the conclusion that channels formed in theMOM

are composed of ceramide molecules as opposed to ceramide

merely acting as a trigger for the formation of another pore

was the observation that the impermeability of the MOM to

proteins could be restored by removing ceramide. Fatty-acid-

depleted albumin effectively reversed the permeabilization of

the MOM by short-chain ceramide. Albumin binds this form

of ceramide and thus the reversal indicates a dynamic equi-

librium between ceramides in the channel with the rest of the

ceramide in the membrane and, when ceramide is removed by

binding to the albumin, the channels disassemble (11). The

fact that the same result was not achieved with C16-ceramide

is understandable due to the exceedingly low aqueous solu-

bility of long-chain ceramide. In many respects, C2-ceramide

and C16-ceramide behave similarly. For example, the perme-

abilization of the MOM was remarkably similar whether

C2-ceramide or C16-ceramide was used in the experiment (11).

One evidence of physiological relevance is the finding that

ceramide levels become elevated early in the apoptotic pro-

cess. The mitochondrial concentration of ceramide is known

to increase in response to apoptosis-inducing stimuli (18–20).

A typical level at the early stages is 4 pmol ceramide/nmole

phospholipids. At this molar ratio, ceramide effectively per-

meabilizes the outer membrane to cytochrome c (21). Finally,
the enzymes catalyzing the metabolic pathways leading to

both ceramide synthesis and breakdown are known to be pres-

ent in mitochondria (22–24). Taken together, these facts

indicate that the ceramide channel is the permeability pathway

through the mitochondrial outer membrane for protein flux.
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The structurally related lipid, sphingosine, has also been

shown to induce apoptosis (25–30). Although sphingosine

does have the ability to form channels, it was found that these

channels are not sufficiently large to allow the passage of in-

termembrane space proteins and that sphingosine itself may

not induce apoptosis by permeabilizing the outer membrane

to proteins (31). Experiments with whole cells indicate that

sphingosine induces apoptosis by acting on specific proteins

(32). Nevertheless, addition of sphingosine to mitochondria

results in rapid conversion to ceramide (24,31). Interestingly,

Siskind et al. (31) also noted that the ability of ceramide,

generated from added sphingosine, to cause the release of

cytochrome c was less than when the same quantities of cer-

amide were introduced into the mitochondrial membranes by

direct addition of ceramide to the medium (no exogenous

sphingosine). This observation suggested that sphingosine

destabilizes ceramide channels. If this were true, it would

provide evidence for a regulatory pathway in which sphin-

gosine, a product of ceramide hydrolysis by ceramidase, feeds

back to accelerate the closure of ceramide channels by directly

destabilizing them. The experiments described in this work

demonstrate that sphingosine is capable of directly disassem-

bling ceramide channels suggesting the existence of this novel

anti-apoptotic regulatory step.

MATERIALS AND METHODS

Electrophysiological recordings

Planar phospholipid membranes were produced by the monolayer method

(33) as modified (34), across a 100-mm-diameter hole in a Saran partition.

Monolayers were produced using a solution of 0.5% w/v asolectin, 0.5%w/v

DiPhyPC, 0.1% w/v cholesterol in hexane. This technique produces solvent-

free phospholipids membranes whose lipid composition (focusing on the

polar head-groups) is similar to that found in the mitochondrial outer mem-

brane. It differs from the natural membrane in lacking proteins.

The aqueous solutions contained 1 mM MgCl2, and 5 mM Pipes pH 6.8

with KCl varying from 0.10 M to 1.0 M. The KCl concentration on one side

of the membrane, referred to as the trans side, was always 0.10 M, whereas

the other side the cis side was adjusted as needed. The transmembrane volt-

age was electronically clamped and the current through the membrane was

recorded. The voltage values indicated are the voltage differences across the

membrane cis side minus trans side.

C2-ceramide was stirred into the aqueous solution on each side of the mem-

brane from a solution in DMSO, generally 0.5 mg/ml. Single or multiple

additions, typically 20 ml each, yielding a final concentration of 2 mg/ml,

were made to achieve a desired level of conductance. Sphingosine additions

of 5 ml were made from a solution in DMSO (4 mg/mL) yielding a final

concentration of 4 mg/mL.

Adenylate kinase release assay

Rat liver mitochondria were isolated by differential centrifugation of tissue

homogenate as described previously (35). The preparation yielded a mito-

chondrial suspension containing ;10 mg of protein per mL. 20 ml of mito-

chondrial suspension were diluted into 1.2 ml of 70 mM sucrose, 210 mM

mannitol, 0.1 mM EGTA, 1 mM Tris-HCl, pH 7.4 yielding a final protein

conc. of 0.15 mg/mL. The mitochondria were incubated for 10 min at room

temperature with varying amounts of ceramide added from a 4mg/ml DMSO

solution to determine the amount of ceramide that resulted in ;50% release

of adenylate kinase. The mitochondria were then pelleted at 14,000g for

5 min at 4� C and the supernatant was kept on ice until assayed. 100 ml of

supernatant was added to 700 ml of adenylate kinase reaction mixture:

50 mM Tris-HCl, pH 7.5, 5 mM MgSO4, 10 mM glucose, 5 mM ADP,

0.2 mMNADP, 10 units of hexokinase, and 10 units of glucose-6-phosphate

dehydrogenase (36). The enzymes were added to the rest of the reaction

mixture 1 min before the addition of the mitochondrial supernatant to allow a

trace of ATP to be consumed. The activity of adenylate kinase was detected

as an increase in absorbance at 340 nm. Since the activity of the kinase

decays with time, even on ice, experiments were performed in sets and the

activity of the first supernatant was assayed again at the end of the set. The

values were fitted to a first order decay and all values within the set were

corrected for the decay of the activity, based on the time delay before assay.

To determine the effect of sphingosine pretreatment on ceramide perme-

abilization of the mitochondrial outer membrane, mitochondria were in-

cubated at room temperature in the presence of varying concentrations of

sphingosine for 5 min before addition of ceramide and incubation for 10 min.

Untreated mitochondria and mitochondria hypotonically lysed (20 ml into

1.2 ml water) served as negative and positive controls, respectively.

Experiments with C16-ceramide were performed in a similar way except

as follows. The mitochondria were suspended in the above medium except

that the 1 mM Tris buffer was replaced by 5 mM HEPES. To 1.0 mL of this

medium at room temperature (RT) was added 17 mL of mitochondrial sus-

pension that had been kept on ice at a concentration of;4 mg/mL. The final

mitochondrial protein concentration during the experiment was;80 mg/mL.

In the case of shocked mitochondria, the 1.0 mL of medium was replaced

by water. Sphingosine was added, where appropriate, from a 0.25 mg/mL

solution in DMSO. Typically 4–7 incubations were run in parallel. All

samples were incubated for 5 min at RT. Then some received 0.4 mL of fatty

acid depleted bovine serum albumin (BSA), 25 mg/mL, followed immedi-

ately by 20 mL of C16-ceramide dissolved in isopropanol at 2 mg/mL. After a

10-min incubation at RT, 10 mL of 4 mM PMSF was added followed by

centrifugation. In these experiments 0.3 mL of mitochondrial supernatant

was added to the adenylate kinase reaction mixture.

Liposome experiments

The polar extract of soybean phospholipids (Avanti ½AQ1�Polar Lipids, Alabaster,

AL) and cholesterol (Sigma Chemical, St. Louis, MO) were mixed in a 93:7

molar ratio in chloroform and dried under nitrogen followed by drying in

vacuo overnight. This mixture resembles the lipid content of mammalian

mitochondrial outer membranes. Five mg of this mixture was dispersed in

1 mL of 39 mMNaCl, 6 mMDPX (Molecular Probes, Eugene, OR), 1.5 mM

carboxyfluorescein (Acros Organics, Geel,Belgium) and subjected to four

freeze-thaw/sonication cycles. After extrusion through a 0.2mmfilter (Avanti

Polar Lipids) for 13 passes it was run through a gel filtration column

equilibrated and eluted with 50 mMNaCl, 10 mMHEPES, 1 mMEDTA, pH

7.0. The liposomes were used within 30 h. Twenty-five microliters of

liposomes were dispersed into 2.0 mL of the elution buffer and placed into a

quartz fluorescence cuvette. The fluorescence was monitored using a Delta-

scan Spectrofluorometer (PhotonTechnology Instruments,West Sussex,UK)

using excitation at 495 nm and emission at 520 nm. Forty microliters of

C16-ceramide (2 mg/mL of isopropanol) were added while stirring. Sphin-

gosine was added from either a 1 mg/mL or a 0.1 mg/mL solution in DMSO.

RESULTS AND DISCUSSION

Sphingosine influences ceramide-dependent
release of adenylate kinase from
isolated mitochondria

Ceramide has been previously shown to increase the perme-

ability of the MOM to small intermembrane space proteins

such as cytochrome c and adenylate kinase (11,14–17).
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Sphingosine has been reported to form channels but these are

small and incapable of allowing proteins to cross membranes

(31). Thus the presence of both ceramide and sphingosine in

a membrane may result in hybrid structures that may or may

not be conductive. The release of adenylate kinase was used

as a measure of MOM permeabilization to small proteins.

To look for interaction between sphingosine and cer-

amide, isolated rat liver mitochondria were treated with

varying levels of sphingosine for 5 min, and then exposed to

ceramide for 10 min at RT. The mitochondria were sedi-

mented and the supernatant assayed for adenylate kinase

activity. The initial rates of these reactions were plotted in

Fig. 1 after normalization for the amount of adenylate kinase

activity released after hypotonic shock. Essentially total inhi-

bition was observed by exposure to 0.3–0.6 mg/mL sphin-

gosine, depending on the batch of isolated mitochondria. In

the concentration range of sphingosine examined (up to 6mg/

mL), sphingosine alone did not induce the release of ade-

nylate kinase (Fig. 1). Thus sphingosine could either desta-

bilize ceramide channels or convert them to much smaller

structures, incapable of allowing the passage of proteins.

These results, obtained with C2-ceramide, differ some-

what from the results obtained with C16-ceramide. As shown

in Fig. 2, the use of C16-ceramide resulted in a biphasic rela-

tionship for the permeabilization of the mitochondrial outer

membrane and release of adenylate kinase. At low concen-

tration, sphingosine potentiated the permeabilization effect

of ceramide whereas at higher concentrations it inhibited the

formation of the ceramide channels, as in the case of

C2-ceramide. Here the actual initial rate of NADPH

production was plotted and the rates observed with vehicle

alone and after hypotonic shock are shown as horizontal

lines.

The potentiation might arise from metabolic conversion

of sphingosine to ceramide by mitochondria. It has been

reported that nearly half of the added sphingosine is con-

verted to ceramide (31), probably by the action of reverse

ceramidase. Thus, the ceramide produced from the sphingo-

sine might combine with the added ceramide to reach a crit-

ical level resulting in channel formation. Excess sphingosine

overwhelms the system resulting in the same inhibition

observed with C2-ceramide.

This hypothesis was tested by determining whether sphin-

gosine converted to ceramide would be capable of perme-

abilizing the MOM to adenylate kinase. Mitochondria were

incubated with 2.4 mg/mL sphingosine for 5 min followed by

addition of 10 mg of fatty acid depleted bovine serum

albumin BSA to remove the unconverted sphingosine. The

release of adenylate kinase is evident in Fig. 3 (S versus SB)

indicating that the removal of excess sphingosine allowed

the ceramide formed to permeabilize the MOM. Note that the

combination of added ceramide and sphingosine converted

to ceramide (SBC. . .after BSA was used to remove excess

sphingosine) resulted in complete release of adenylate kinase.

The long-chain ceramide produced from sphingosine cannot

be removed from the mitochondrial membranes by BSA

addition (11). BSA alone did not result in any release of

adenylate kinase. The addition of BSA to intact mitochon-

dria or mitochondria treated with osmotic shock did not alter

the level of adenylate kinase activity (data not shown)

FIGURE 1 Sphingosine inhibits the ceramide-dependent release of aden-

ylate kinase from mitochondria. Mitochondria were isolated and prepared as

described in Materials and Methods. They were then incubated with the

indicated concentration of sphingosine for 5 min. C2-ceramide was added to

each aliquot (29 mg/mL final) and they were incubated for another 10 min.

Note: under these conditions only ;1% of this ceramide inserts into mito-

chondria (21,31). The release of adenylate kinase is expressed as a percent-

age of that released by hypotonic shock. The enzyme activity was recorded

as the initial rate of NADPH production. The experiment was repeated without

the addition of ceramide, and this data is also presented for comparison. The data

shown is one representative example of three independent experiments.

FIGURE 2 Sphingosine inhibits the release of adenylate kinase from

mitochondria induced by C16-ceramide. Adenylate kinase activity was

determined by measuring the initial rate of increase in the level of NADPH

in the medium. Mitochondria were preincubated with the indicated amount

of sphingosine for 5 min. This was followed by the addition of C16-ceramide

to a final total concentration of 40 mg/mL. After a 10-min incubation, the

supernatant was assayed for adenylate kinase activity as indicated in

Materials and Methods. The levels of adenylate kinase activity released by

hypotonic shock or after addition of the vehicle alone are indicated as

horizontal lines. This is a typical result of four experiments performed on

different batches of mitochondria.

Sphingosine and Ceramide Channels 1751
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showing that BSA does not influence either adenylate kinase

or the coupled enzyme assay.

An alternative hypothesis for the ability of low levels of

sphingosine to enhance ceramide permeabilization of the

MOM is a direct effect of low-levels of sphingosine on cer-

amide channel stabilization. To test this hypothesis, L-threo

sphingosine was used instead of the natural D-erythro sphin-

gosine. This optical isomer is not metabolized as readily as

the natural isomer. Preincubation with the L-threo sphingo-

sine resulted in the same biphasic effect on ceramide perme-

abilization of the MOM (Fig. 4). Thus the conversion to

ceramide may not be necessary for the potentiating effect of

sphingosine. Conversion was checked by removing excess

L-threo sphingosine with BSA to see if there was a perme-

abilization of the MOM as observed with the same treatment

with the D isomer. In this case, no permeabilization of the

MOM to adenylate kinase was observed. This is consistent

with the conclusion that the D but not the L isomer is con-

verted to ceramide and that both the L and D isomers act to

favor ceramide permeabilization of the MOM when present

at low concentrations.

Sphingosine enhances the ability of ceramide to
permeabilize liposomal membranes

If the ability of low levels of sphingosine to enhance cer-

amide channel formation is a direct action on the channels,

this influence should also be observed on ceramide channels

formed in liposomes lacking proteins. In these liposomes

there is no possibility of metabolism or indirect effects on

protein factors.

Fig. 5 A shows the fluorescence increase resulting from the

release of carboxyfluorescein from liposomes after the addi-

tion of C16-ceramide. Pretreatment with sphingosine causes a

biphasic enhancement of the ceramide-induced permeabili-

zation. At the low doses of sphingosine the formation of

sphingosine channels is sufficiently minimal, allowing cer-

amide channel formation to dominate. At the higher doses

the sphingosine-induced carboxyfluorescein release is high

enough to mask the expected inhibition of ceramide channel

formation. In any case, the biphasic enhancement is evident

and closely mirrors the results obtained with mitochondria.

The defined nature of the liposome experiments allows one

to conclude that the observed effects of sphingosine on

ceramide channel formation arise from a direct interaction of

sphingosine with the ceramide in the membrane.

The ability of sphingosine to potentiate channel formation

by long-chain ceramide but not by short-chain ceramide may

lie in the fundamental structure of the channel. Molecular

dynamics simulations (37) have provided evidence for dual

curvature in ceramide monomers packed into the channel.

Negative curvature in the plane of the membrane allows for

formation of the annulus. Positive curvature normal to that

plane allows for effective articulation between ceramides and

the phospholipid bilayer. This articulation involves distor-

tion of both ceramides and the phospholipids and would be

ameliorated by the presence of lipids with positive curvature.

Short-chain ceramide already has the low hydrocarbon bulk

that would aid in generating the positive curvature. Perhaps

low concentrations of sphingosine would serve the same

function. At the high concentrations, sphingosine may inter-

calate into the ceramide channels resulting in their destabi-

lization because sphingosine lacks the amide linkage (believed

FIGURE 3 Removal of sphingosine by BSA reverses the inhibition by

sphingosine of C16-ceramide permeabilization of the mitochondrial outer

membrane. The experiments were performed as in Fig. 2. BSA, fatty acid

depleted, was added just before addition of C16-ceramide. The treatments

were as follows: ‘‘shock’’, hypotonic shock only; ‘‘C’’, ceramide added

only 40mg/mL; ‘‘S’’, sphingosine 2.5mg/mL; ‘‘SC’’, sphingosine 2.5mg/mL

followed by C16-ceramide 40 mg/mL; ‘‘SB’’, sphingosine 2.5 mg/mL for 5

min followed by BSA 7 mg/mL; ‘‘SBC’’, sphingosine 2.5 mg/mL for 5 min

followed by BSA 7 mg/mL and C16-ceramide 40 mg/mL; and ‘‘vehicle’’,

instead of ceramide isopropanol was added. See Materials and Methods for

details. The error bars are mean 6 SE of three independent experiments

except for shock n ¼ 7, S n ¼ 5, and SB n ¼ 5. Student’s t-tests showed that

‘‘SC’’ and ‘‘SBC’’ differ at the 99% confidence level; ‘‘S’’ and ‘‘SB’’ at the

99.9% level; ‘‘C’’ and ‘‘SC’’ at the 95% level; and ‘‘C’’ and ‘‘SCB’’ at the

95% level.

FIGURE 4 Experiments were performed as described in Fig. 2 except that

the L isomer of sphingosine was used instead of the naturally occurring D

isomer. ‘‘Untreated’’ refers to the level of adenylate kinase detected in the

supernatant when no reagent was added. Otherwise the mitochondria were

handled in exactly the same way as those treated with sphingosine.
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to be critical to channel stability) and has a net charge that

would lead to electrostatic repulsion.

Sphingosine promotes disassembly of ceramide
channels in planar membranes

The observations of sphingosine induced suppression of

ceramide permeabilization of mitochondrial and liposomal

membranes could have a variety of mechanistic explanations.

The higher levels of sphingosine might prevent the formation

of ceramide channels from monomers (e.g., by forming non-

conducting complexes with these monomers) or sphingosine

might induce the disassembly of ceramide channels. Direct

demonstration of sphingosine-induced ceramide channel dis-

assemblywas achievedbyexperiments onchannel-formation in

planar phospholipids membranes. Ceramide channel conduc-

tance increases in a stepwise fashion, and these conductance

increases have been demonstrated to represent the growth of

a single channel in the membrane (12) as opposed to many

small channels acting in parallel (38). The increases in

conductance in the left half of Fig. 6 are thus increases in the

size of a single channel. The typical ceramide channel grows

in this way over a period of time until it reaches a fairly stable

size. At this point, sphingosine was added (Fig. 6) and the

membrane conductance decreased over the next 15–20 min.

The conductance declined until it reached the level of the

unmodified membrane, indicating that the ceramide channel

was completely disassembled. Six minutes later, the conduc-

tance increased once again but the nature of this conductance

differed from that of a typical ceramide channel.

The signal observed during the earlier half of this exper-

iment, representing the flow of current through the membrane,

is characteristic of ceramide channels. These characteristics

include the growth of the channel in a steady, stepwise fash-

ion and a relatively high signal/noise. These characteristics

continued through the phase of the experiment during which

the conductance was decreasing, with the channel shrinking

steadily, periodically punctuated with sharp decrements, and

with the current signal showing a low level of noise. In

contrast to this, the increase in conductance that followed

showed no large increments and was highly noisy. The ap-

pearance of this particular type of noise is characteristic of

sphingosine channels (31), reflecting the fact that sphingo-

sine forms multiple channels in the planar membrane and

that these channels exist only transiently, thus explaining the

wide fluctuations in the current.

Selectivity change corresponds to transition
from ceramide channel to sphingosine channels

To test the interpretation of Fig. 6, selectivity experiments

were performed to distinguish between ceramide conduc-

tance and sphingosine conductance. Ceramide and sphin-

gosine channels differ in their ion selectivities. Ceramide

FIGURE 5 Sphingosine influences ceramide channel formation in lipo-

somes in a biphasic fashion. (A) The release of carboxyfluorescein from

liposomes by C16-ceramide (80 mg) alone or after the liposomes (90 mg of

lipid) were pretreated with the indicated amounts of sphingosine (see

Materials and Methods). The release is expressed as a fraction of the release

achieved with 0.08% Triton X100. (B) The fluorescence level achieved in

the experiments described in A 100 s after ceramide addition. Results are

representative of two experiments.

FIGURE 6 Changes in conductance demonstrate ceramide channel dis-

assembly. A ceramide channel was allowed to form after the addition of

C2-ceramide (9 mg/mL) to each side of the membrane. Once channel growth

had slowed, sphingosine (4 mg/mL) was added to the cis side of the membrane,

at the time indicated. The figure shows the continuous recording of conductance

across the membrane. The applied voltage was clamped at 10 mV.

Sphingosine and Ceramide Channels 1753
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channels are weakly cation selective (12), and the magnitude

of this selectivity decreases as the channel size conductance

increases. Sphingosine channels, have a preference for an-

ions, likely owing to the positive charge on the sphingosine

molecule (31), and thus they exhibit a positive reversal

potential. Therefore by monitoring the reversal potential one

can distinguish between conductance arising from ceramide

channels and that due to sphingosine channels.

Fig. 7 shows an experiment where both the conductance

and the reversal potential were measured at regular intervals.

The applied voltage was changed in steps allowing the con-

ductance to be measured. The reversal potential was cal-

culated: reversal potential ¼ applied voltage � [current/

conductance]. The figure begins after the conductance of the

ceramide channel had stabilized and sphingosine was added.

The conductance declined with time reaching a minimum at

;20 min. Then the reversal potential changed rapidly from

negative to positive values indicating a change from cation

to anion selectivity and thus a change from ceramide chan-

nel conductance to the conductance of sphingosine channels.

Note that a further rise in conductance resulted in little change

in reversal potential because the selectivity of sphingosine

channels remained fairly steady irrespective of the number of

channels present or the magnitude of the overall conductance.

The timing of the change of reversal potential corre-

sponded with the point at which the conductance of the

membrane began to increase, as indicated by the dashed lines

in Fig. 7. This behavior is indicative of a changeover in the

primary source of the membrane selectivity from a single

ceramide channel to many sphingosine channels.

Other features of note in the Fig. 7 provide insight into the

process of channel disassembly. One would expect that the

gradual loss of ceramide conductance reflects the shrinkage

of the ceramide channel. As the channel becomes smaller the

ion selectivity should increase as previously described (12).

However, as the ceramide conductance declined the reversal

potential of the membrane stayed roughly constant, and

eventually moves toward zero. Therefore, the presence of

sphingosine in the membrane may somehow prevent the

expected selectivity increase. One possibility is that sphin-

gosine channels may have already begun to form in parallel

with the ceramide channel, and that the formation of these

anion selective channels negates and eventually overcomes

the increase in cation selectivity expected from the shrinking

ceramide channel. Another possibility is that some of the

sphingosine incorporates itself into the ceramide channels,

and thus not only destabilizes them, but also changes their

characteristic selectivity by introducing positive charge near

the inner wall of the channel. These two possibilities are,

of course, not mutually exclusive and could be occurring

simultaneously. The dominance of one over the other may

also depend on how much sphingosine was added.

These results demonstrate the ability of sphingosine to

markedly reduce the ceramide-induced permeability of the

outer mitochondrial membrane to intermembrane space pro-

teins. In whole mitochondria this could be due to a variety of

mechanisms but in view of the results obtained in planar

membranes, simple disassembly of ceramide channels is the

simplest explanation.

When experiments performed on mitochondria isolated

from different animals are pooled, the error bars are fairly

large because there is variability of the response from one

mitochondrial preparation to another. However, the changes

were always in the same direction and the reported effects are

statistically significant. The relative response under different

conditions also depended on the potency of the ceramide-

induced permeabilization, again this varied from one batch

of mitochondria to another.

The effects described here might be subject to a variety of

criticisms. First of all one might be concerned that sphin-

gosine might form micelles in the medium that would act as

sinks for the ceramide resulting in the trapping of ceramide

and thus inhibition of ceramide channel formation. However,

the published CMC for sphingosine is more than 30 mg/mL

(39), far greater than the amounts used. In addition, by using

FIGURE 7 Changes in reversal potential indicate changes in channel com-

position. A ceramide channel was formed after the addition of C2-ceramide

(3 mg/mL) to each side of the membrane. After channel growth slowed, KCl

was added to the aqueous solution on the cis side of the membrane to a

final concentration of 0.45 M. MgCl2 and Pipes concentrations remained

unchanged. The channel-containing membrane was then left undisturbed for

30 min. Sphingosine was added to a final concentration of 8 mg/mL at t ¼
0 min. The conductance and reversal potential of the channel was measured

periodically over the following 30 min. This is one of three independent

experiments.

1754 Elrick et al.

Biophysical Journal 91(5) 1749–1756



radiolabeled sphingosine we find that more than 80% of

added sphingosine partitions into mitochondria and thus the

amount of sphingosine in the medium is far less than that

indicated in the figures and text. Thus the possibility of an

artifact from sphingosine micelles is unrealistic. Another

criticism is the amounts of sphingolipids used in these ex-

periments as compared to levels found in cells. Again the use

of radioisotopes shows that most of the ceramide added does

not insert into mitochondria (21). The amount that does

insert is within the physiological range 4 pmoles ceramide

per nmole of phospholipids, the level measured early in apo-

ptosis in mitochondria. The physiological levels of sphin-

gosine in mitochondria during apoptosis are not well defined.

Cellular levels increase to an equivalent of 1.5–3 mg/mL (27)

but the level in the mitochondrial outer membrane is unclear.

However, the action of ceramidase would generate sphin-

gosine and local levels may indeed be high enough to favor

ceramide disassembly. Note that after correcting for differ-

ences in insertion of ceramide and sphingosine, the levels

used here are rather comparable as might be expected in the

mitochondrial membrane when active turnover is occurring.

CONCLUSION

The observed disassembly of ceramide channels in the pre-

sence of sphingosine provides evidence for a potential

amplification of the negative regulation of ceramide channels

through the action of ceramidase. This enzyme, found in

mitochondrial membranes, hydrolyzes ceramide to produce

sphingosine (22,24), thus reducing the concentration of cer-

amide in the membrane and leading to channel shrinkage or

disassembly. This disassembly process could be hastened by

the presence of the reaction product, sphingosine, which am-

plifies the effect of the decreasing concentration of ceramide

on the size of the ceramide channel by direct interaction with

the channel to destabilize it. It depends on the local sphin-

gosine level because if the level is too low there is poten-

tiation rather than inhibition. As ceramidase continues to act,

the concentration of sphingosine relative to ceramide con-

tinues to increase, thus accelerating the disassembly process.

This putative self-amplifying regulatory mechanism thus

becomes a candidate for an anti-apoptotic regulatory step.

The potentiating effect of sphingosine at lower concen-

trations may also be physiologically important and is con-

sistent with the reported pro-apoptotic effect of sphingosine.

The local concentration of sphingosine is key to knowing

how sphingosine will act.
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