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ABSTRACT The chromophore conformations of the red and far red light induced product states ‘‘Pfr’’ and ‘‘Pr’’ of the N-terminal
photoreceptor domain Cph1-N515 from Synechocystis 6803 have been investigated by NMR spectroscopy, using specific 13C
isotope substitutions in the chromophore. 13C-NMR spectroscopy in the Pfr and Pr states indicated reversible chemical shift
differences predominantly of the C4 carbon in ring A of the phycocyanobilin chromophore, in contrast to differences of C15 and C5,
which were much less pronounced. Ab initio calculations of the isotropic shielding and optical transition energies identify a region for
C4-C5-C6-N2 dihedral angle changes where deshielding of C4 is correlated with red-shifted absorption. These could occur during
thermal reactions on microsecond and millisecond timescales after excitation of Pr which are associated with red-shifted absorption.
A reaction pathway involving a hula-twist at C5 could satisfy the observed NMR and visible absorption changes. Alternatively, C15

Z-E photoisomerization, although expected to lead to a small change of the chemical shift of C15, in addition to changes of the
C4-C5-C6-N2 dihedral angle could be consistent with visible absorption changes and the chemical shift difference at C4. NMR
spectroscopy of a 13C-labeled chromopeptide provided indication for broadening due to conformational exchange reactions in the
intact photoreceptor domain, which is more pronounced for the C- and D-rings of the chromophore. This broadening was also
evident in the F2 hydrogen dimension from heteronuclear 1H-13C HSQC spectroscopy, which did not detect resonances for the
13C5-H,

13C10-H, and
13C15-H hydrogen atoms whereas strong signals were detected for the 13C-labeled chromopeptide. The most

pronounced 13C-chemical shift difference between chromopeptide and intact receptor domain was that of the 13C4-resonance,
which could be consistent with an increased conformational energy of the C4-C5-C6-N2 dihedral angle in the intact protein in the Pr
state. Nuclear Overhauser effect spectroscopy experiments of the 13C-labeled chromopeptide, where chromophore-protein
interactions are expected to be reduced, were consistent with a ZZZssa conformation, which has also been found for the biliverdin
chromophore in the x-ray structure of a fragment of Deinococcus radiodurans bacteriophytochrome in the Pr form.

INTRODUCTION

Phytochromes are red and far red light receptors in plants and

cyanobacteria that have various physiological roles (2,3). The

fundamental spectroscopic changes, which are associated with

receptor activation, are similar in most kinds of phytochromes.

A red light (;650 nm) absorbing state, called ‘‘Pr’’, is trans-

formed with relatively low quantum yield (10%) into a far red-

absorbing ‘‘Pfr’’ form, which can be retransformed with similar

quantum yield using far red light (;710 nm) (4–8). An ex-

ception is the biliverdin-containing bacteriophytochrome

photoactive yellow protein-phytochrome related from Rho-
dospirillum centenum, which has strongly overlapping Pr and

Pfr absorption spectra with maxima at 702 nm but with a lower

extinction for the Pfr state (9). The Pr states of most phyto-

chromes and bacteriophytochromes (Bphs) are thermally the

most stable forms, as has also been found for the cyanobac-

teriophytochrome Cph1 from Synechocystis 6803 (10). This

observation has been cited in relation to the expected ZZZ

(C4,C10,C15) conformation of all three bridging carbon atoms

of the linear tetrapyrrole chromophores of phytochromes (11).

In particular, free tetrapyrrole compounds such as phyco-

cyanobilin are known to adopt helical ZZZ conformations in

solution (12–16). However, the biliverdin-containing bacter-

iophytochrome AtBphP2 from Agrobacterium tumefaciens
thermally relaxes to a Pfr-like ground state in the dark (17),

as do also other bacteriophytochromes (18,19), indicating that

the lowest energy conformation available to the free tetrapyrrole

chromophores does not necessarily dictate the thermally most

stable conformation when bound to phytochrome light receptors.

The phototransformation from the Pr state to the Pfr state

has been proposed to involve a Z/E isomerization at the

C15¼C16 bond between the C- and D-rings of the linear

tetrapyrrole chromophore (20–22). Time-resolved and low

temperature trapping experiments are consistent with an initial

photoisomerization reaction of both Pr and Pfr, followed by a

number of slow thermal reactions. Cph1 shows optical and

kinetic properties which are representative for many phyto-

chromes, which include a slightly red-shifted lumi-R photo-

product of Pr formed 100 ps after excitation (8). Five

subsequent kinetic components are observable on slower

timescales (t1–t5: 5 and 300 ms and 3, 30, and 300 ms), which

together are responsible for the red-shifted absorption of the

Pfr product state (7). Similarly, low temperature trapping of

the initial photoproduct lumi-R of Pr below 210 K produced

less red-shifted absorption compared to the Pfr state that is

produced at high temperature (23). Transient and steady-state

protonation studies showed that the chromophore is fully
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protonated in both Pr and Pfr states (7). Therefore, the thermal

transformations producing red-shifted products which occur on

microsecond and millisecond timescales are likely to result

from chromophore configurational changes, additionally consid-

ering that many phytochromes show similar spectroscopic and

kinetic properties despite having different amino acid sequences.

NMR experiments suggested that a chromopeptide pre-

pared from oat phytochrome in the Pfr form has the C15-E

configuration, whereas a peptide derived from the Pr form has

a C15-Z configuration (20). Resonance Raman spectroscopy

has identified a strong peak of Pfr at 820 cm�1 belonging to

the C15-H hydrogen out of plane mode, which was argued to

be consistent with a nonplanar conformation of the C- and

D-rings in the Pfr state and supporting the C15¼C16 Z/E

isomerization (21). A similar mode was identified in the

spectra of Cph1 as well, suggesting the same reaction model

(22). Calculations of Raman frequencies and intensities of

molecular models of the phytochromobilin chromophore of

oat phytochrome have refined this reaction model further

and invoke an initial ZZZasa (C4-Z,C10-Z,C15-Z,C5-anti,C10-
syn,C15-anti) to ZZEasa photoisomerization of Pr transition to

the lumi-R photocycle intermediate, followed by a partial

thermal ZZEasa to ZZEssa C5-C6 bond rotation producing the

Pfr state (24–26). Recently the x-ray structure of a fragment of

Deinococcus radiodurans bacteriophytochrome DrBphP was

reported in the Pr state with the biliverdin chromophore

modeled in the ZZZssa conformation (1). Evidence for C15 Z-E

photoisomerization from this structure includes the proxim-

ity between Tyr-167 and the D-ring of the chromophore,

which in the homologous cyanobacterial phytochrome Cph1

was shown to abolish Pr phototransformation and increase

the fluorescence quantum yield when mutated to histidine

(27). Here, we use 13C direct detection NMR spectroscopy of

cyanobacterial phytochrome Cph1 with 13C-labeled phyco-

cyanobilin chromophore to probe the structural changes

associated with the Pr to Pfr transition and discuss reaction

models that would be consistent with the nuclear magnetic

shielding and transient and stable absorption changes.

MATERIALS AND METHODS

Sample preparation and NMR spectroscopy

A fragment containing the 515 N-terminal amino acid residues of Cph1 from

Synechocystis 6803 (Cph1-N515), kindly provided by J. Clark Lagarias, was

expressed together with heme oxygenase and bilin reductase, as previously

described (28), following a similar procedure (29). A hemA aminolevulinic

acid auxotrophic BL21(DE3) strain lacking the glutamyl-tRNA reductase gene

(30) was used together with 0.5 mM 5-aminolevulinic-5-13C acid (Isotec,

Miamisburg, OH) in the expression medium for the expression of 13C-labeled

material, as described previously (28). The resulting holo Cph1-N515 was iso-

topically labeled at C4, C5, C9, C10, C11, C15, and C19 (Fig. 1), and no unlabeled

material could be detected using mass spectrometry. The labeling pattern

resulting from the heme biosynthesis pathway has been established (28,31–

33). Globally 15N-labeled material was prepared as described previously (28).

Intact protein was purified and used at 200-mM concentration in 4 mM

deuterated Tris/HCl pH 7.8, 10% D2O. Protein concentration was estimated

using an extinction coefficient of 85 mM�1 cm�1 at 655 nm after saturating

illumination with far red light (.710 nm) (7,34). NMR spectroscopy of the

Pr/Pfr mixed state was performed after saturating illumination with 640-nm

light of the concentrated sample in a capillary. Visible spectroscopy of NMR

samples after data acquisition confirmed the presence of ;50% of the Pfr

state remaining even after several days, due to some dark reversion, in

agreement with previous results obtained at lower concentration (10).

Illumination of the NMR sample with far red light (.710 nm) produced the

stable Pr form. A chromopeptide was prepared starting with the Pr/Pfr-

mixed state by digesting Cph1-N515 at 200 mM with 5 mg/mL trypsin for

20 h, which was partially purified by repeated centrifugation and washing of

the pellet in water. Mass spectrometry could not determine the mass of the

chromopeptide, which was estimated at ;5 kDa from sodium dodecyl

sulfate-polyacrylamide gel electrophoresis and 1H-NMR spectroscopy. The

chromopeptide was dissolved in a volume identical to the starting volume in

10% dimethylsulfoxide (DMSO)-d6, 10% D2O, and 0.1% (w/v) HCl.

NMR spectra were recorded on a Varian (Palo Alto, CA) UNITY

INOVA 500 (1H-frequency of 500 MHz, 13C-frequency of 125 MHz) with a

probe temperature of 23�C for intact protein or 25�C chromopeptide sam-

ples. One-dimensional 13C-NMR spectra were recorded on the unlabeled and
13C-labeled intact protein and chromopeptide with broadband 1H-decoupling,

a spectral width of 31.4 KHz, a recycle delay of 2 s, and collecting 230,000

scans. Spectra shown were processed with a 10-Hz exponential line-

broadening function, whereas line widths were fitted using spectra that were

not processed with apodisation. Two-dimensional 1H-13C HSQC spectra

were recorded on both the 13C-labeled intact protein and chromopeptide.

Two-dimensional nuclear Overhauser effect spectroscopy (NOESY) spectra

were recorded on the 13C-labeled chromopeptide using a 400-ms mixing

time, 512 complex points in t1, and 124 scans per t1 increment and pro-

cessed using unshifted cosine-bell functions in both dimensions. A 13C refo-

cusing pulse was used during the t1 delay, with or without 13C-decoupling

during t2. Thus, 1Hs attached to 13C appeared as a singlet in F1 and either a

singlet or doublet in F2. A three-dimensional 1H-13C NOESY-HSQC was

attempted on the 13C-labeled chromopeptide, but the signal/noise ratio was too

poor for use. A 1H-15N transverse relaxation optimized spectroscopy-heteronuclear

single quantum correlation (TROSY-HSQC) spectrum was recorded on uni-

formly 15N-labeled intact protein on a 750 MHz NMR spectrometer.

Computational details

A molecular model for the phycocyanobilin chromophore in the ZZZasa

geometry was taken from the 1.45-Å resolution x-ray structure of

C-Phycocyanin from Synechococcus elongates, PDB 1JBO (35) from the

protein data bank. (36) A ZZZssa phycocyanobilin model was based on the

ZZZssa biliverdin structure of the D. radiodurans bacteriophytochrome

fragment, PDB 1ZTU (1). The sulfur linkage was replaced with a hydrogen

atom, and all pyrrole nitrogen atoms were protonated. The propionate carboxyl

groups were replaced with hydrogen atoms. All calculations were performed

using Gaussian 03 (37). In vacuo density functional theory (DFT) (38,39)

geometry optimization calculations, guage including atomic orbital (GIAO)

isotropic chemical shielding calculations (40–43), and time-dependent DFT

(TDDFT) excited state calculations (44,45) of the cation models were all

performed at the DFT MPW1PW91 6-31G(d,p) level (46). All isotropic

shielding calculations are given relative to the values calculated for tetra-

methylsilane (TMS) calculated at the same level of theory. TDDFT results

given are the lowest lying transition energies with significant oscillator

strengths, which in all cases provided the isolated HOMO-LUMO transition.

RESULTS

13C-NMR direct detection of labeled chromophore
in intact Cph1-N515 and chromopeptide

Of the C4, C5, C9, C10, C11, C15, and C19 carbon atoms

replaced with 13C isotopes, only the bridging C5, C10, and C15

methine carbons have hydrogen atoms attached (Fig. 1). 13C

1812 van Thor et al.
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direct detection of intact protein in the mixed Pr and Pfr state

with labeled chromophore showed a series of broad peaks in

addition to the broad envelope of superimposed signals at

natural abundance of the unlabeled 58-kDa polypeptide. For

the intact protein the peak widths were 30–40 Hz, typical of

resonances of high molecular mass compounds, whereas

chromopeptide peak widths were ;15 Hz. From the expected

dominant 13C-1H dipolar interactions, contributions to the line

widths could correspond to rotational correlation times in the

order of 30 ns and 12 ns, respectively (47). Comparison of the
13C-spectra of unlabeled and labeled protein was required to

unambiguously identify the peaks belonging to the phycocya-

nobilin chromophore (Fig. 1 A). Assignment of the peaks was

aided by isotropic chemical-shielding calculations (see below)

and substantiated by the multiplicity and 1JCC-coupling analy-

sis, which was in agreement with local bond orders (Table 1)

and previously published assignments of bilin compounds (14).

The chromophore is in intermediate
conformational exchange in both the Pr and Pfr
forms in the intact Cph1-N515 sample

1H-13C HSQC spectra of isotopically labeled Cph1-N515

failed to show crosspeaks for the 13C5-H-, 13C10-H-, and
13C15-H-chromophore hydrogens, in agreement with a recent

study (48). The possibility of paramagnetic contamination

was excluded from electron paramagnetic resonance spec-

troscopy at cryogenic temperature and by proton-induced

x-ray emission (MicroPIXE) measurements (not shown).

Aggregation was similarly excluded from the line widths

of 1H-NMR spectra. In the range between 100 mM and

1 mM, no significant changes in line widths of the 1H-NMR

spectra of Chp1-N515 were observed, which could be

characteristic of a monomeric, or of a rapidly exchanging

FIGURE 1 1H-broadband decoupled 13C-NMR spectra of labeled (solid lines) and unlabeled (dashed lines) intact Cph1-N515 (A) and chromopeptide (B)

identify signals belonging to 13C4, 13C5, 13C9, 13C10, 13C11, 13C15, and 13C19. Labeled and unlabeled Cph1-N515 and derived chromopeptides were at 200-mM

concentration, and spectra shown for comparison are not scaled in intensity.

TABLE 1 13C-NMR parameters for the intact protein and

the chromopeptide

Intact

(mult; JCC)/ppm (/Hz)

Chromopeptide

(mult; JCC) ppm/(/Hz)

Chromopep—

Intact/ppm

C19 175.3 (s) 177 (s) 11.5

C4 (Pfr) 151.9 (d; 65)

C4 (Pr) 148.9 (d; 74) 152.9 (d; 81) 14.0

C9 134.7 (d; 70) 133.8 (d; 72) �0.9

C11 133.5 (d; 61) 132.6 (d; 70) �0.9

C10 115.8 (t; 60) 118.8 (t; 71) 13.0

C15 96.5 (s) 98.5 (s) 12.0

C5 94 (d; 60) 92.5 (d; 79) �1.5

13C-NMR chemical shifts are reported relative to TMS. Multiplicities and

JCC values are given in brackets.

NMR and DFT Calculations of Cph1 1813
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dimeric, 58-kDa polypeptide. For both Pr and Pfr, concen-

trations used were in excess of homodimerization dissoci-

ation constants reported, (49) but line widths were less than

expected for the rigid dimer. Therefore no light-induced

changes of populations are expected, which is also corrob-

orated by the similar 13C line widths in both Pr and Pfr states

(Fig. 1). After trypsin digestion of the 13C-labeled receptor,

the same sample at identical concentration showed strong

doublet, triplet, and singlet peaks, for the 13C5-H-, 13C10-H-,

and 13C15-H-protons, with 1H chemical shifts of 5.55, 7.22,

and 6.15 ppm, respectively, whereas no peaks were observed

in unlabeled material at the same concentration (Fig. 2, B and

D). The multiplicity and 1JCC couplings of the observed

peaks matched those that were determined from the

13C-NMR experiments (Figs. 1 and 2; Table 1). The one-

dimensional 13C-spectra showed that the resonances of, in

particular, C15 and C10 increased multiplefold in intensity

relative to the peptide peaks upon digestion with trypsin (Fig.

2, A and C). This was also observed for the C4, C5, C9, C11,

and C19 peaks (not shown) and was most pronounced for the

C15 and least pronounced for the C5 peak (Fig. 2 A). 1H and
1H-15N TROSY-HSQC spectra of intact 15N globally labeled

Cph1-N515 at the same concentration were characteristic of

a 58-kDa monomeric polypeptide, but the heteronuclear ex-

periment showed considerable broadening of selected reso-

nances (not shown). Together, the data are consistent with the

presence of equilibrium conformational exchange reactions

in the chromophore in the intact protein on the timescale of

FIGURE 2 Conformational exchange reactions of the chromophore in the intact protein. (A) 13C-NMR spectra of the 13C5 and 13C15 carbons in Cph1-N515

(solid line) and chromopeptide (dashed line) under identical experimental conditions and concentration. Arrows indicate chromophore peaks. (B) 1H-13C

HSQC crosspeaks for the 13C5-H and 13C15-H protons in the labeled chromopeptide. No peaks were observed in this region in unlabeled chromopeptide under

identical conditions. (C) 13C-NMR spectra of the 13C10 triplet in Cph1-N515 (solid line) and chromopeptide (dashed line), indicated with arrows. (D). 1H-13C

HSQC crosspeaks of the 13C10-H triplet in the labeled chromopeptide (light contours) shown together with the unlabeled chromopeptide, which shows

contributions from superimposed resonances at natural abundance in this region (dark contours).
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the carbon and proton or nitrogen resonance frequency

changes accompanying the reaction. The exchange effect

was notable in the 13C-spectra and therefore inferred in 1H

and 15N experiments. This broadening of the chromophore

resonances in the intact protein is less pronounced proximal

to the covalent attachment site at C39, indicating that the

change in frequency of these resonances is smaller, leading

to faster exchange.

The chromopeptide-bound phycocyanobilin
chromophore is in the ZZZssa conformation

To determine the molecular geometry of the phycocyanobi-

lin chromophore in the chromopeptide, NOESY spectra were

recorded on the 13C-labeled material. Crosspeaks were seen

between the C5-1H-resonance, observed in these experiments

at 5.68 ppm, and peaks at 2.02, 3.18, and 3.35 ppm, assigned

to C79-
1H, C3-1H, and C39-

1H, respectively (Fig. 3). The

C15-1H-resonance at 6.29 ppm showed a strong crosspeak to

a resonance at 2.14 ppm, assigned either to C139-
1H or

C179-
1H (Fig. 3). The 2.14-ppm resonance consists of two

closely spaced peaks, with a separation of 8 Hz (Fig. 3), very

similar to the peak shapes of the three methyl resonances at

2.02, 2.08, and 2.14 ppm in purified phycocyanobilin in

pyridine (not shown). The origin of this peak doubling is

uncertain but could be due to gauche and anti-gauche
conformations and is observed in purified phycocyanobilin

as well as in the chromopeptide spectra. The chromopeptide

spectra therefore did not indicate heterogeneity beyond that

observed for the purified chromophore.

Pr to Pfr photoransformation results in
decreased shielding of C4

Illumination of Cph1-N515 with far red light produces the

pure Pr state, which is the stable form in the dark.

Subsequent illumination of NMR samples in thin capillaries

with 640-nm light re-forms the Pfr state, which is metastable

for several days under conditions used for 13C direct detec-

tion (see Materials and Methods; (10)). Repeated Pr/Pfr

and Pfr/Pr phototransformations confirmed reversible

changes in the frequency of the 13C4-carbon resonance (Fig.

4). In the mixed Pr/Pfr state two doublets are visible for the
13C4-carbon, at 151.9 and 148.9 ppm, respectively, whereas

after illumination with far red light, only the doublet at 148.9

ppm is observed and increases in intensity (Fig. 4). Changes

of the other peaks are much less pronounced. A possible

reduction in intensity and perhaps change in frequency of the
13C5-doublet at 94 ppm is observed, whereas no change is

observed for the frequency of the 13C15-resonance at 96 ppm.

A small reduction in the intensities of peaks belonging to
13C9, 13C10, 13C11, 13C15, and possibly 13C19 in the Pr state

relative to the Pfr state (not shown) may indicate a change in

conformational dynamics.

DISCUSSION

Conformational exchange reactions and
protein interaction of the chromophore

The conformational exchange reactions of the intact photo-

receptor domain hampered 1H-13C HSQC spectroscopy, but

resonances for the seven carbons labeled with 13C could be

observed by 13C-NMR spectroscopy. Line broadening was

observed beyond that expected from slow tumbling,

manifested by a much reduced intensity relative to chromo-

peptide resonances at the same concentration. MicroPIXE

(50) measurements and ESR spectroscopy at ambient and

cryogenic temperatures confirmed that the broadening in the

intact protein is not caused by paramagnetic contamination,

and aggregation of the intact receptor was also excluded

from 1H-NMR spectra. Additionally, the increased broad-

FIGURE 3 1H-1H-NOESY traces parallel to F2 at

5.68 and 6.29 ppm of the 13C-labeled chromopeptide.

NOESY experiment was run without 13C-decoupling in

F2 to demonstrate the JCH coupling in the C5-H and

C15-H bonds. The brackets and arrows indicate the

position of collapsed diagonal peaks as seen in fully

decoupled experiments. Artifacts are marked with

‘‘X’’, and NOE crosspeaks are marked with small

arrows.

NMR and DFT Calculations of Cph1 1815
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ening was removed by proteolytic digestion of the intact

material. Hence, conformational exchange reactions are

occurring that affect the line width mostly in the 1H- but also

in the 13C-frequency domain.

Trypsin digestion removed conformational exchange

broadening of the chromophore resonances and strong
1H-13C HSQC crosspeaks were subsequently observed for the

C5,-H, C10-H, and C15-H chromophore atoms (Fig. 2). The

pronounced gain of intensity of, in particular, the 13C15-

carbon resonance after trypsin digestion suggests that the

exchange broadening in the intact protein is greatest at the

D-ring end of the molecule. This indicates that the confor-

mational change results in larger changes in chemical shift

at the D-ring (these resonances are thus in intermediate

exchange) and smaller changes in chemical shift at the A-ring

end of the molecule (thus in faster exchange). We note that the

binding site proximal half, comprising rings A and B, with the

exception of C4 become deshielded upon interacting with the

protein, whereas the distal end, comprising rings C and D,

becomes more shielded (Table 1). The chromopeptide sample

contains 10% DMSO-d6, which may contribute to some of the

chemical shift changes, but the general trend is noteworthy.

We speculate that aromatic stacking on the distal end of the

chromophore causes the shielding effect. The conformational

exchange of the chromophore observed by NMR spectros-

copy may be directly related to the temperature dependence of

fluorescence of Cph1, which was interpreted to reflect

conformational heterogeneity (51). Additionally, multiple

decay phases of the picosecond absorption changes with

excitation of the Pr state of Cph1 was interpreted in terms of

heterogeneity, or substates, by fitting a distribution of rate

constants to the data (8). Conformational exchange reactions

of parts of the polypeptide was also observed by 1H-15N

TROSY-HSQC spectroscopy of uniformly 15N-labeled intact

Cph1-N515, which showed broadening of a substantial

portion of the amide resonances (not shown). The slow

conformational exchange reactions which are occurring in the

intact material, but not in the digested material, strongly affect

the NMR spectroscopy observations and to some extent

possibly also the optical properties. The occurrence of closely

lying ground state conformations which are separated by

thermal barriers result from chromophore-protein interactions

which may also affect the phototransformation properties of

the intact receptor.

ZZZssa chromophore conformation
in the chromopeptide

The observed NOESY peaks from the C5-H proton in the
13C-labeled chromopeptide dictate a C4-Z, C5-syn confor-

mation, which fixes the relative positions of rings A and B.

The observed single nuclear Overhauser effect (NOE)

between C15-H and either, but not both, the methyl protons

on rings C or D dictates either a C14-anti, C15-Z or a C14-syn,

C15-E conformation. Considering the possible C14-syn, C15-

E structures, a ZZEsss conformation is not possible for steric

reasons, but a ZEEsas structure could be consistent with the

NOE data. Considering possible C14-anti, C15-Z structures,

the ZZZssa is most likely to be the lowest energy confor-

mation. The ZZZssa and ZEEsas geometries were optimized

using DFT and found to be, respectively, 17 and 67 kJ/mol

higher in energy than the most stable ZZZsss conforma-

tion for the fully protonated state. Therefore, the ZZZssa

conformation is most likely to exist in the chromopeptide,

where stabilizing protein interactions are expected to be

reduced. This conformation is tentatively supported by the

ZZZssa biliverdin conformation, which was found in the

x-ray structure of the homologous bacteriophytochrome frag-

ment (1). The ZZZssa structure of the chromopeptide-bound

phycocyanobilin at low pH deviates significantly from the

helical ZZZsss conformation found for the purified chromo-

phore (14,16). 1H, 1H-NOE enhancements were reported for

C2-H and C18$-H and also for C29-H and C189-H, proposed to

belong to two separate helical conformations (16). We con-

firmed the helical ZZZsss conformation of phycocyanobilin

in pyridine but from the NOE enhancement observed for

C189-H and C3$-H (not shown). Interestingly, full proton-

ation of 2,3-dihydrobilindiones was reported not to change

FIGURE 4 13C-NMR spectroscopy of Pr and Pfr states.

The Pr state was obtained in pure form after saturating

illumination with .705 nm far red light. A mixture of Pfr

and Pr states was obtained after illumination of the con-

centrated sample in a thin capillary with red light, 640 nm.
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the ZZZsss helical conformation as determined from rotating

frame Overhauser effect spectroscopy (ROESY) experiments

(14), whereas full protonation was suggested to induce extended

structures such as observed in protein-bound forms (52).

Apparently, remaining chromophore-protein interactions in

the chromopeptide stabilize the ZZZssa conformation, but

this is not necessarily taken as evidence for the conformation

in the intact receptor. NMR experiments with the chromo-

peptide in the first instance substantiate assignments (Fig. 1)

and characterize conformational exchange reactions (Fig. 2).

Additionally, the ZZZssa conformation gives confidence that

chemical shift differences are not likely to arise from gross

configurational differences between chromopeptide and intact

protein, assuming similar structures in Cph1 and DrBphP (1).

Considering the observation that Cph1, like most phyto-

chromes, relaxes to Pr in the dark in addition to the blue-

shifted absorption of the chromopeptide and the ZZZssa

chromophore structure in the D. radiodurans bacteriophy-

tochrome DrBphP in the Pr state, it is assumed that the Cph1

chromopeptide is in a Pr-like state (Table 1).

Chromophore conformation and light-induced
changes in the intact Cph1-N515 protein

The 13C4-resonance shows the largest reversible change in

frequency with phototransformation in the intact protein

(Fig. 4), which suggests that bond angle changes occur close

to C4. In the more upfield region near 95 ppm, where the C15

and C5 resonances are observed, less pronounced changes

are visible (Fig. 4). These are interpreted to show an intensity

change of the C5-resonance, leaving the C15-resonance

mostly unchanged. This view would also fit with the observed

changes at C4, which shares p-orbital valence electrons with

C5. Recent evidence suggests that the initial photoisomeri-

zation occurs at the C15¼C16 bond (24–26,53). One study

using sterically locked biliverdin derivatives implied a Z-anti

and E-syn conformation for the C15-carbon of the Pr and Pfr

states, respectively (53), which has been confirmed for the Pr

state of the biliverdin chromophore of D. radiodurans
DrBphP (1). Persuasive evidence for C15¼C16 bond photo-

isomerization is the lack of phototransformation and high fluo-

rescence quantum yield of a Y167H mutant of Cph1 (27),

considering that the conserved tyrosine 167 at that position

in the homologous D. radiodurans Bph is in 4 Å distance of

the D-ring (1). Raman spectroscopy studies and mode cal-

culations of phytochromobilin containing oat phytochrome

(24,25) and biliverdin-containing Agp1 bacteriophytochrome

(26), both concluded that the Pr to Pfr transformation is

initiated by a ZZZasa to ZZEasa photoisomerization fol-

lowed by a partial anti to syn thermal C5-C6 bond rotation.

We note that the NMR data independently suggest bond

angle changes at C5.

Ab initio isotropic chemical shielding calculations were

performed for ZZZasa, ZZEasa, and ZZEssa chromophore

models in vacuum (Table 2). The GIAO calculations con-

sistently indicated that in energy-minimized conformations a

C5-anti to -syn rotation is expected to lead to increased

shielding of the C4-carbon atom, in both the C4-E and

C4-Z configurations (Table 2). This was also confirmed at

the GIAO DFT B3LYP 6-311G1(2d,2p), GIAO HF

6-311G1(2d,2p), and CSGT B3LYP cc-PVDZ levels as

well as with solvent reaction field modeling using the

polarizable continuum method (37). The calculations per-

formed at different levels of theory all indicated similar

changes of the 13C4-resonance frequency resulting from

C4-C5-C6-N2 dihedral angle changes. We note that the ab-

solute values of calculated shielding values do not identify

conformations, but the differences calculated with bond angle

changes are interpreted.

C15 Z-E photoisomerization is calculated to lead an

;2-ppm downfield shift of the C15-resonance (Table 2),

which was also confirmed for geometry-optimized ZZZssa

TABLE 2 Conformational energies, optical transition energies, and isotropic 13C-NMR shielding values calculated for several

chromophore models

ZZZssa (1) ZZEssa (2) ZZZsss ZZZasa ZZEasa ZZEssa ZZZssa (3) EZZssa EZZasa (4)

Constrained dihedral

angle/�
N3-C14-C15-

C16 204

N3-C14-C15-

C16 204

C4-C5-C6-

N2 275

C4-C5-C6-

N2 275

energy /kJ/mol 31.1 48.2 0 30.1 52.0 40.3 48.6 58.5 38.9

HOMO / LUMO

(oscillator strength)

2.16 eV,

574 nm,

f ¼ 0.82

2.11 eV,

586 nm,

f ¼ 0.75

2.04 eV,

607 nm,

f ¼ 0.32

2.28 eV,

541.7 nm,

f ¼ 1.42

2.28 eV,

543.1 nm,

f ¼ 1.36

2.12 eV,

585.9 nm,

f ¼ 0.74

2.37 eV,

522.5 nm,

f ¼ 0.74

2.41 eV,

515.0 nm,

f ¼ 0.63

2.29 eV,

540.9 nm,

f ¼ 1.41

C19 162.9 161.5 169.3 162.3 161.4 161.3 162.4 162.4 162.4

C4 154.3 154.1 159.3 157.4 157.9 154.0 153.1 152.7 158.4

C9 128.5 128.9 127.9 126.5 126.7 129.0 125.0 124.7 126.4

C11 127.6 128.2 126.4 126.6 126.2 127.8 126.8 126.5 126.5

C10 112.0 112.4 110.0 112.8 113.1 113.0 115.6 115.8 112.6

C15 88.2 90.3 92.6 87.0 87.7 89.4 86.7 86.6 87.0

C5 86.6 86.8 86.2 83.6 83.6 87.4 81.2 81.4 84.8

Dihedral angle restraints used in the geometry optimization are listed, and none were used if not listed. Conformational energies are given relative to the

lowest energy ZZZsss model. Optical transition energies as calculated by TDDFT are given in eV, with corresponding wavelength, including the oscillator

strengths. NMR shielding is reported for all 13C-labeled chromophore atoms, relative to TMS (ppm). 1), Conformation based on the D. radiodurans Bph

x-ray structure; 2), ZZEssa structure based on 1); 3), structure shown in Fig. 6 C; and 4), structure shown in Fig. 6 D.
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and ZZEssa conformations in vacuum as well as for ZZZssa

and ZZEssa phycocyanobilin conformations based on the

D. radiodurans Bph x-ray structure, by including a 204�
N3-C14-C15-C16 dihedral angle restraint (Table 2). N3-C14-

C15-C16 dihedral angle changes would lead to further, more

pronounced, chemical shift changes of C15 (not shown).

TDDFT calculations show that C15 Z-E isomerization could

be responsible for red-shifted absorption of the photoproduct

but could explain neither the observed C4 chemical shift

changes (not considering possible environmental rearrange-

ments near ring A) nor the absence of chemical shift changes

of C15 (Table 2). The NMR data and calculations can there-

fore not easily be reconciled with a C15 Z-E isomerization in

the Pr to Pfr photoreaction without additional low order bond

rotation(s) at C5 and possibly C14. One note of caution con-

cerns the low intensity of the 13C15-resonance in the intact

protein relative to the chromopeptide, which shows that not

the entire population is observed in 13C direct experiments

comparing Pr and Pfr states in the intact protein (Fig. 2). Our

data therefore do not rule out changes at C15, in case its

resonance is specifically broadened in the Pfr state as a result

of conformational exchange dynamics.

Both fast and slow optical changes in the Pr to Pfr pathway

would ideally be reconciled with proposals for the reaction

pathway. Notably, the primary photoproduct lumi-R of Pr

observed 100 ps after excitation of Cph1 is only slightly red-

shifted (8), whereas TDDFT calculations suggest that C15

Z-E isomerization would lead to a considerable red-shift

(Table 2). The optical changes occurring during thermal

reactions on microsecond and millisecond timescales after

excitation of Pr are responsible for the main absorption

difference between Pr and Pfr of Cph1 (7,22), implying that

these occur as a result of low order bond rotation(s).

A scan of the C4-C5-C6-N2 dihedral angle in both the

ZZZ(s)sa and EZZ(s)sa was performed, with constrained

geometry optimization for each configuration, to compute

the 13C4-NMR and optical properties (Fig. 5). These cal-

culations identify a region in the ZZZssa (as well as in the

EZZssa) geometry between 275� and 360� (Fig. 6 C) where a

decrease of the TDDFT excitation energy is correlated with

the deshielding of C4 (Fig. 5, B and C). In one possible

model, C15 Z-E photoisomerization followed by C4-C5-C6-

N2 dihedral angle rotation between 275� and 360�, or by

relaxation of the stretched conformation by reduction of the

C4-C5-C6 bond angle, might explain the NMR results and

possibly the optical and kinetic properties. This reaction

model would be very similar to the reaction model proposed

on the basis of Raman spectroscopy (24–26). However, the

apparent absence of C15 chemical shift differences and the

calculated red-shift of the primary photoproduct are not

strongly supportive of this possibility, although conforma-

tional exchange and environmental effects may play a role in

the NMR and optical properties, respectively.

Alternatively, photoisomerization could occur at C4,

followed by C4-C5-C6-N2 dihedral angle rotation. C4 Z-E

photoisomerization with a 275� dihedral angle leads to only

very small optical changes, which would be consistent with

the slightly red-shifted primary photoproduct lumi-R of Pr

observed 100 ps after excitation of Cph1 (8). A thermal

activation barrier between 275� (syn) and 150� (anti)
conformations subsequently might separate the lumi-R and

the Pfr states, which could be consistent with the red-shifted

reaction products which are formed on the microsecond and

millisecond timescales after excitation of Pr (7,22). The Z-E

isomerization and thermal bond rotation together would

constitute a hula-twist motion, which would be more likely

given the constraint of covalent attachment of ring A.

Cryotrapping of the first metastable ‘‘meta-Ra’’ intermediate

of Pr occurs at 233 K (23), which would be consistent with

the existence of a rotational barrier in the reaction pathway.

Fluorescence measurements of Cph1 at low temperature

indicated that the primary photochemical reactions were

inhibited below 170 K (51), which together with the low

photochemical quantum yield of phototransformation at

ambient temperature indicates the presence of a substantial

barrier for the initial photoisomerization reaction. Such a

barrier may be the result of conformational restraint of the

chromophore via covalent linkage on ring A close to the

isomerization site.

The models including specific C4-C5-C6-N2 dihedral angle

changes do not use the conformations with the lowest possible

conformational energies as optimized and computed in

vacuum in the absence of specific interactions (Fig. 5). The

associated energy as determined by DFT calculations is

reasonable. In addition, the ZZZssa biliverdin chromophore

in the x-ray structure of D. radiodurans Bph is present in a

higher energy conformation, considering the 204� N3-C14-

C15-C16 dihedral angle and the 130� and 135�methine C5 and

C10 bridge angles. DFT geometry optimization indicated that

;73 kJ/mol is associated with the stretched conformation as

refined from the x-ray data increasing the C5 and C10

methine bond angles by more than 10� and 8 kJ/mol with the

twisted N3-C14-C15-C16 dihedral angle. These calculations

assume full protonation on all nitrogens also in the case of

D. radiodurans Bph biliverdin. This stretching also causes

chemical shift and optical differences. Geometry optimization

using redundant coordinates for the 130� and 135�methine C5

and C10 bridge angles indicates a blue-shifted absorption from

subsequent TDDFT calculations. Similarly, intermediate con-

figurations taken from the optimization indicate that stretch-

ing could be associated with 3 ppm increased shielding of C4

and a 0.11 eV increase of the TDDFT excitation energy. This

stretching, possibly only locally at C5, could therefore

produce similar NMR and optical changes as C4-C5-C6-N2

dihedral angle rotation between 275� and 360�. It is possible

that conformational stretching and relaxing, rather then

low order bond rotations, contribute to the observed

NMR and optical changes but in the absence of further

molecular information on the Pfr state is not explicitly

considered.
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FIGURE 5 Molecular properties with C4-C5-C6-N2 dihedral angle changes. A relaxed C4-C5-C6-N2 dihedral angle scan was performed of the ZZZ(s)sa

(A–C) (d) and EZZ(s)sa (D–F) (:) geometries. DFT conformational energies (/kJ/mol) (A and D) are given relative to the lowest conformation. Isotropic

chemical shielding values are given for the 13C4-carbon relative to TMS (/ppm) (B and E). TDDFT optical transition energies computed for the pure HOMO-

LUMO transition (/eV) (C and F).
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CONCLUSIONS

The reaction models that are discussed aim to satisfy

the NMR measurements, as well as the optical and kinetic

properties of the phototransformation of Cph1. These neglect

effects of specific protein interactions with the chromophore

but could provide a generally valid mechanism for the light-

induced changes in phytochromes, which have common

spectroscopic characteristics despite different polypeptide

sequences. The chromophore heterogeneity in the intact re-

ceptor domain, which is apparent from the exchange broad-

ening and which is also suggested from transient absorption

and fluorescence studies (8,51), adds additional complexity.

Evidence favoring C15 Z-E photoisomerization is taken from

the recent x-ray structure of the D. radiodurans Bph fragment

together with the fluorescent Y167H mutant of Cph1. To

satisfy NMR and optical properties, additional C4-C5-C6-N2

dihedral angle or possibly C4-C5-C6 bond angle changes are

expected, supporting details from previous models based on

Raman spectroscopy (24–26). C15 Z-E photoisomerization

would be expected to lead to rapid optical changes and NMR

frequency changes of C15, both of which are not observed and

would have to be explained by environmental tuning effects or

twisted p-bond geometry and Pfr state-specific conforma-

tional exchange, respectively. Alternatively, a C4 Z-E photo-

isomerization and a C5 syn-anti bond rotation could explain the

data and might be at the basis of the photoreaction of the

cyanobacterial phytochrome Cph1 and also other (bacterio)-

phytochromes. Since the chromophore is covalently bound to

the protein via the C39 carbon on ring A, hula-twist motions of

the C4¼C5 and C5-C6 bonds are perhaps more likely, which

future calculations may address.
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