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ABSTRACT Our focus is on an appropriate theoretical framework for describing highly denatured proteins. In high concen-
trations of denaturants, proteins behave like polymers in a good solvent and ensembles for denatured proteins can bemodeled by
ignoring all interactions except excluded volume (EV) effects. To assay conformational preferences of highly denatured proteins,
we quantify a variety of properties for EV-limit ensembles of 23 two-state proteins.We find that modeled denatured proteins can be
best described as follows. Average shapes are consistent with prolate ellipsoids. Ensembles are characterized by large correlated
fluctuations. Sequence-specific conformational preferences are restricted to local length scales that span five to nine residues.
Beyond local length scales, chain properties follow well-defined power laws that are expected for generic polymers in the EV limit.
The average available volume is filled inefficiently, and cavities of all sizes are found within the interiors of denatured proteins. All
properties characterized from simulated ensembles match predictions from rigorous field theories. We use our results to resolve
between conflicting proposals for structure in ensembles for highly denatured states.

INTRODUCTION

The development of an accurate theoretical framework for

describing denatured-state ensembles of proteins has been a

topic of long-standing interest (1–12). Denatured states

figure prominently in a variety of studies on proteins es-

pecially as reference states for estimating protein stability

(4,5,13–18). Accurate models for denatured states also

impact a range of areas, including quantitative studies of in

vitro folding pathways (10,19–24), protein design (25,26),

studies of protein aggregation (27–29), and understanding

preferential interactions in cosolute mixtures (1,3,30–36).

Our focus in this work is on conformational ensembles

accessible to proteins under strongly denaturing conditions.

Theory and experiment make it unequivocally clear that the

ensemble accessible under these harshly denaturing condi-

tions need not bear resemblance to the nonnative states acces-

sible to proteins under more physiological conditions. As will

be discussed below, we expect our results to be valid for the

strict limit of maximally denatured proteins. This limit is of

interest in light of data that suggest the presence of residual

structure even under strongly denaturing conditions.

As noted by Chan and Dill in their influential review (37),

theories drawn from the polymer physics literature (38–44)

are well-suited to describe heterogeneous conformational en-

sembles such as those of denatured states. For example, scal-

ing of chain size with chain length can provide a direct probe

of the nature of chain-solvent interactions (37,38,42,44,45).

Flory showed that a quantity such as the average radius of

gyration (Rg) will scale with chain length (N) according to a

power law of the form Rg ¼ RoN
n (45). Values of Ro and n

will vary with solution conditions. If n � 0.6, it means that a

chain will swell to make favorable contacts with the sur-

rounding solvent and the chain is in a good solvent. This is

the case if at least one major component of the surrounding

solvent is chemically equivalent to the main repeating unit of

the polymer making chain-solvent contacts preferable to

chain-chain contacts (4,37). Conversely, if n � 0.34 the chain

is in a poor solvent and forms a compact globule by min-

imizing contacts with the surrounding solvent.

Proteins in high concentrations of denaturants, such as 8 M

urea or 6 M GdnCl, behave like chains in good solvents (3).

This conclusion has been reached through quantitative

studies of the scaling of hydrodynamic radii (46) and radii

of gyration (11,47) with chain length under harshly dena-

turing conditions. Wilkins et al. (46) used pulse-field

gradient NMR to quantify effective hydrodynamic radii for

seven denatured proteins, the lengths of which varied from

16 to 247 residues. The hydrodynamic radii (Rh) for

denatured proteins scale with chain length (N) as: Rh ¼
2.21N0.57. Recently, Kohn et al. (11) used small-angle x-ray

scattering (SAXS) to measure Rg as a function of N for 28

different chemically denatured proteins, with chain lengths

varying from 8 to 549 residues. They showed that the scaling

of Rg with N follows a power law of the form Rg ¼
RoN

0.59860.028 with Ro ¼ 1.983 6 0.1. The data of Kohn et al.

and those of Wilkins et al. are in general agreement with each

other and reinforce Tanford’s hypothesis (3) that highly

denatured proteins behave like chains in a good solvent.

A good solvent can also be a ‘‘perfect’’ solvent (38). The

latter refers to conditions under which the conformational

ensemble can be modeled by ignoring all interactions except

‘‘two-body’’ repulsive (steric) interactions of the excluded

volume (EV) kind. The idea is that in a perfect solvent,
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chain-solvent interactions exactly counterbalance all non-EV

intrachain interactions (38). Hence, the limit of a perfect

solvent is also referred to as the EV limit (39). The scaling

exponent n � 0.59 and the value of the intercept Ro assumes

its maximum possible value in the EV limit. As solvent

quality deviates from that of a perfect solvent—toward a

good solvent—the value of Ro will decrease without

changing the scaling exponent, n.

In the EV limit, the N0.59 scaling law is obeyed by both

short and long chains (39). If the solvent is not a perfect sol-

vent, it takes very long chains to realize the power law

behavior for quantities such as Rg. The goodness of solvent

can be assessed by comparing the measured scaling of chain

size with chain length (N) to that obtained by assuming the

EV limit. Of particular interest is the value of Ro, which is

related to the persistence length and also provides a measure

of the goodness of the solvent because R3
o quantifies the

average volume per residue set aside by the chain for

interactions with the surrounding solvent (38,41).

Do harshly denaturing environments such as 8 M
urea or 6 M GdnCl mimic perfect solvents?

In previous work, we developed a fast and accurate way to

generate thermal, self-avoiding distributions for proteins

with atomistic detail (48). For the 28 proteins studied by

Kohn et al. (11), we obtained a scaling exponent of n ¼ 0.62

6 0.01 and Ro ¼ 2.08 6 0.02. Deviations from the accurate

field-theoretic exponent of n ¼ 0.5885 (49) are mainly due to

the finite lengths of the proteins we studied. With this caveat

in mind, we assert that both the scaling exponent n and the

intercept Ro calculated in the EV limit show statistically

significant agreement with estimates from SAXS data (11). It

is also noteworthy that the observed scaling behavior is valid

for a range of chain lengths that includes short chains (11).

The preceding discussion suggests that harshly denaturing

(as opposed to mildly denaturing) conditions can be thought

of as close mimics of ‘‘perfect’’, rather than just good,

solvents (50). The implication is that EV-limit ensembles for

proteins are likely to be close facsimiles of conformational

ensembles in high concentrations of chemical denaturants.

Accordingly, the remainder of this work focuses on a de-

tailed characterization of protein conformational distribu-

tions in the EV limit.

What is the appropriate theoretical framework
for describing conformational ensembles of
proteins in the EV limit?

Two very different theories have been advanced to explain

how the scaling exponent of n � 0.59 comes about for

polymers in the EV limit. The widely-known theory is that of

Flory (44). In this model, the polymer is treated as a cloud of

uncorrelated monomers in a mean field. There are two terms

in the expression for the mean-field free energy, which is

parameterized in terms of Rg. The first term mimics the

chain’s drive to swell to maximize chain-solvent interac-

tions. The second term provides an estimate of the confor-

mational entropy, which opposes chain swelling. Minimization

of the mean-field free energy with respect to Rg yields a

power law with a scaling exponent of n ¼ 0.6. This widely-

cited result provides the theoretical basis for the assertion

that denatured proteins are Flory-like random coils

(3,4,11,12,17,37,30). For reasons to be discussed below,

this assertion is in fact inaccurate.

Modern polymer theories have established that the use of

Flory’s mean-field model is flawed when it comes to

predicting detailed properties of conformational ensembles

in the EV limit (38,39,41,42). In Flory’s approach, a range of

chain properties includingRg, the average end-to-end distance

(Re), the hydrodynamic radius (Rh), the second virial coeffi-

cient (B2), and the osmotic pressure (P) are calculated as

series expansions in terms of the parameter z ¼ NðT �Q=TÞ
(39,40,45). Here, T is the desired temperature and Q is the

theta temperature, where polymers behave like ideal chains,

and N is the chain length. It is assumed that the chain swells

uniformly vis-à-vis its theta state. The use of theories based on

perturbations around theQ state is only valid in the limit T/
Q or small N. For polymers in the EV limit, z / N and

Flory’s model is not applicable in this regime. As a con-

sequence, several special characteristics of conformational

ensembles for polymers in the EV limit—and, by extension,

of highly denatured proteins—are not anticipated by Flory’s

theory. This observation is not new and several treatises on the

subject are available in the polymer literature (39–42).

Departures from Flory’s random-coil model are based on

field-theoretic approaches (39–42) that explicitly account for

the effects of correlations in a self-repelling chain. The goal

in these theories is to explain why chain properties such as

Rg, Re, Rh, P, B2, scattering functions, and internal cor-

relations obey nontrivial power laws in the EV limit (39).

Interestingly, the scaling exponent n � 0.59 features prom-

inently in all of these power laws. An important prediction of

field theory is that all power laws are the result of cor-

relations imparted by repulsive, steric (EV) interactions. The

effects of these correlations are present on all length scales.

Consequently, in the EV limit, a range of chain properties

show so-called scale invariance. Simply stated, chain prop-

erties for long chains can be predicted by scaling the

corresponding properties for short chains and vice versa. It is

on the basis of this invariance to ‘‘spatial dilatations’’ (39)

that polymers in the EV limit are said to be renormalizable

entities. The availability of an accurate theoretical frame-

work for explaining scale-invariant properties of polymers in

the EV limit has important ramifications for developing

accurate theoretical descriptions for denatured proteins.

As for specific predictions, a polymer in the EV limit is

best described in terms of two distinct length scales (39). All

sequence-specific effects are restricted to a single local

length scale, denoted as ls. If one were to examine chain
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properties at length scales that go above ls, properties of

denatured proteins for different sequences should become

indistinguishable from each other. Scale invariance applies

to a variety of chain properties that go beyond chain size

(39). In the EV limit, the average shape of the chain should

be that of a prolate ellipsoid. Internal distances between

residues that are beyond ls should show the same power law

dependence on sequence separation as does Rg (or Re) on

chain length (N). The average volume occupied by the chain

will be filled inefficiently, and cavities of all sizes l . ls
should be found readily within the interior of a denatured

protein. Finally, the ensemble-averaged topology should be

invariant with sequence or chain length and the chain is best

described as a fractal object of dimension 1.7 (38–40).

In this work, we show that we can simulate conformational

ensembles, with atomistic detail, such that ensemble charac-

teristics match the predictions for polymers in the EV limit.

We demonstrate this by comparing static, equilibrium prop-

erties of the simulated ensembles to those predicted by

rigorous field theories. The development of an accurate EV

limit description for denatured proteins mirrors the use of the

hard-sphere fluid as a reference state for van der Waals liquids

(51,52).

Our presentation is organized as follows. First, we present

a detailed description of the methods used in our work. Next,

we describe six major results to show that characteristics of

the simulated EV-limit ensembles are in accord with the

predictions of field theories and hence inconsistent with

Flory’s random coil model. Finally, in the discussion section,

we place our results in the context of ongoing debates

regarding denatured-state ensembles.

MATERIALS AND METHODS

Potential functions

In the EV limit only the effects of steric interactions are considered. Accord-

ingly, interatomic interactions were modeled using purely repulsive, inverse

power potentials (48,53). In our formalism, distinct conformations are

specified by a unique set of backbone and side-chain torsion angles, viz., f,

c, and x. The inverse power potential energy (U) for a given conformation is

a sum of pairwise interactions. The sum, which runs over all nonbonded

pairs of atoms, is written as

U ¼ +
i

+
j, i

eij

sij

rij

� �n

: (1)

In Eq. 1, sij is the hard-sphere contact distance (54), rij is the interatomic

separation, and the dispersion parameters eij are determined by static

polarizability values for individual atoms (55,56).

The values we use for sij and eij have been published previously (48). The

parameters were chosen to reproduce heats-of-fusion data for model com-

pounds (55). In our EV model, there is only one free parameter, namely the

exponent n. For n/N, the formula in Eq. 1 resembles the traditional hard-

sphere potential (57). For small n, we obtain softer repulsive potentials. A

twofold advantage underlies our choice of soft-core repulsions. First, small

values of n lend robustness in that our results do not become overly sensitive

to the specific choices for values of sij. Second, unlike hard-sphere

potentials, which stipulate that all sterically allowed conformations are

isoenergetic, soft-core potentials encode the requisite conformational spec-

ificity (48,53,58). This has been demonstrated by the generation of quanti-

tative conformational propensities for a range of peptide sequences (48). In

this work, we set n ¼ 14. This choice is based on previous work (48), where

we showed that conformational propensities for a series of host-guest pep-

tides are insensitive to the choice for n so long as it is in the range n ¼ 9–25.

Degrees of freedom

Bond lengths and bond angles are fixed at equilibrium values taken from the

work of Engh and Huber (59). The peptide unit is always transwithv¼ 179.5�.
The degrees of freedom in all of our calculations are the backbonef,c, and side-

chain x-angles. All sequences are acetylated and N-methylamidated at the

N- and C-termini, respectively. If the EV interactions, shown in Eq. 1, are turned

off, we obtain Flory’s freely rotating chain model (43), albeit with a constraint

that the peptide units are all in a trans configuration.

Generation of conformational ensembles

We have adapted conventional Markov-chain Metropolis Monte Carlo

simulation strategies (60,61) to generate equilibrium ensembles for each of

the protein sequences in the EV limit. Our algorithm is as follows:

1. For a given sequence, N residues long, we start with a random, sterically

allowed conformation for the chain and calculate the inverse power

potential energy U according to the formula shown in Eq. 1.

2. We then ‘‘roll an N-sided die’’ to choose a residue whose torsion angles

are to be altered.

3. We then ‘‘flip a two-sided coin’’ to decide if the trial move is going to

be a backbone or side-chain move.

4. Depending on the choice in step 3, the backbone f,c, or side-chain

torsions are set to random values in the interval [�180�,180�]. Trial

moves that set backbone torsions are pivot moves because these lead to

large-scale conformational changes. Conversely, side-chain moves lead

to local conformational changes. The proposed torsions are used to

compute new Cartesian coordinates for the molecule.

5. Given a new set of Cartesian coordinates from step 4, we calculate the

energy for the new conformation. This is referred to as U9. The energy

difference DU ¼ U – U9 is evaluated. This energy difference is used

with the Metropolis criterion (61) to accept or reject the proposed move.

In detail, if DU , 0, the proposed move is accepted. Alternatively, if

DU . 0, and a random number that is drawn from the interval [0,1] is

less than exp[�bDU], the proposed move is accepted. For all other

cases, the move is rejected. Here, b ¼ 1/RT, where R ¼ 0.00199 kcal/

mol-K is the ideal gas constant and T ¼ 298 K is the simulation

temperature. If the move is accepted, we set U ¼ U9, return to step 2,

and iterate until convergence.

In the algorithm described above, steps 2–5 constitute a single trial move.

For a given amino acid sequence, a complete simulation consists of 107 trial

moves. For the longest sequence in our data set—the sequence of villin—for

which N ¼ 126, generation of the desired conformational ensemble takes

;20 h on a single 2.4-GHz Intel Xeon processor. Snapshots were saved for

analysis once every 103 trial moves. As a result, for each sequence, we

generated an ensemble consisting of 104 uncorrelated conformations. The

large-scale motion generated by backbone pivot moves ensures a lack of

correlation between saved snapshots.

For each of the amino acid sequences shown in Table 1, ensemble averages

and conformational distributions were obtained from an ensemble with a

sample size of 104 and the ensembles were generated as discussed above. We

have carried out a systematic analysis to assess the quality of data obtained

using the protocol described above. Details of these tests for convergence of

the simulations and the sample size are presented in the Appendix.

The major bottleneck to overcome in the design of efficient Monte Carlo

simulations is the O(N2) complexity associated with computing energies for
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each new conformation. To speed up these calculations, we take advantage

of the short range of inverse power potentials (53). Specifically, we ignored

the interactions between atoms in residues whose Ca-Ca distance exceeds

15 Å because the inverse power potential energy for these distances is nearly

zero. In addition, a 10-Å distance-based cutoff was applied between all

nonbonded atoms. We have compared our results to those from previous

work (48,58) where no cutoffs were used. We were unable to find any

statistically significant differences between results with and without cutoffs.

This is mainly because of the short spatial range of EV interactions.

CALCULATION OF SCATTERING PROFILES

The scattering form factor P(q) for a single chain conforma-

tion as a function of scattering wave number q is calculated

as (62–64)

PðqÞ ¼ 1

N
2 +

N

i¼1

+
N

j¼i11

sinðqRijÞ
qRij

: (2)

In Eq. 2, N is the number of residues, and Rij is the distance

between atoms i and j. To calculate the form factor we used

the positions of a-carbon atoms for each residue. For each

amino acid sequence, the form factor was calculated for each

snapshot generated from the Monte Carlo simulations. The

ensemble-averaged form factor, i.e., the average over all 104

conformations, was used to compute the average Kratky

profile. The wave numbers used in the calculations range

from q ¼ 0 to q ¼ 0.5 Å�1.

Calculation of shape parameters

The shape of a polymer can be quantified in terms of

eigenvalues of the radius of gyration tensor. These eigen-

values tell us if a protein in a specific conformation is akin to a

sphere, an ellipsoid, or a rod, and, if the polymer is ellipsoidal,

is it a prolate or an oblate ellipsoid? We quantify polymer

shapes in terms of two parameters, viz., asphericity (d) and

a shape parameter, S. The former quantifies the degree of

sphericity and the latter quantifies the principle axis direction

in which the deviation from spherical geometry occurs. We

follow the prescription of Schäfer (39) and Steinhauser (65) to

calculate d and that of Dima and Thirumalai (66) to calculate

S. First, we define the radius of gyration tensorT, compute the

eigenvalues of this tensor, and use these eigenvalues to

compute d and S. The prescription is as follows:

d ¼ 1 � 3
l1l2 1 l2l3 1 l1l3

ðl1 1 l2 1 l3Þ2

� �
;

S ¼ 27

Q3

i¼1ðli � �llÞ
ðl1 1 l2 1 l3Þ3

� �
;

Here; �ll ¼ l1 1 l2 1 l3

3
: (3)

In Eq. 3, li (i¼ 1, 2, 3) denote eigenvalues of the radius of

gyration tensor, T, for a specific conformation. The tensor is

computed for each conformation in the ensemble and then

diagonalized. The ensemble average in Eq. 3 is computed as

an average over all 104 snapshots. For a given conformation

in the ensemble, the gyration tensor is computed as

T ¼ 1

N
+
N

i¼0

ðsi5siÞ: (4)

In Eq. 4, si ¼ (ri – rCM), where rCM is the position vector

of the center of mass and ri denotes the position vector of the

a-carbon for residue i. The gyration tensor is computed as an

outer product of the radius of gyration vector.

RESULTS

In this work, we focus on two-state proteins because the

hypothesis is that only two well-defined macrostates—

native and highly denatured states—are accessible to these

systems (67–70). The underlying assumption is that the

highly denatured-state ensemble for two-state proteins can

be mimicked using our EV model. Table 1 lists relevant

information for the 23 protein sequences (68) used in this

study. For each of the sequences shown in Table 1, we used

Metropolis Monte Carlo simulations to generate representa-

tive conformational ensembles in the EV limit.

Identification of distinct length scales

SAXS (62,63) and small-angle neutron scattering (64)

measurements are useful for quantifying the average sizes,

TABLE 1 Protein sequences for which ensembles in the EV

limit were generated*

Protein Data

Bank ID No. residues Name Rg, EV limit (Å)

2PDD 43 PSBD 21.8 6 0.1

1CQU 56 N-terminal L9 27.1 6 0.2

3GB1 56 Protein G 26.6 6 0.1

1SHF:A 59 fyn SH3 27.5 6 0.2

1CIS 66 CI-2 30.6 6 0.2

1CSP 67 CspB 29.0 6 0.2

2HQI 72 MerP 30.7 6 0.2

1UBQ 76 Ubiquitin 33.5 6 0.2

2PTL 78 Protein L 32.6 6 0.3

1PBA 81 ADA2h 34.8 6 0.3

1HDN 85 HPr 34.8 6 0.2

1IMQ 86 Im9 35.5 6 0.2

2ABD 86 ACBP 35.0 6 0.2

1TEN 90 TnFNIII 36.6 6 0.3

1LMB:3 92 lambda repressor 36.9 6 0.3

1WIT 93 Twitchin 37.7 6 0.3

1URN:A 97 U1A 38.3 6 0.3

1APS 98 mAcP 38.2 6 0.3

1TIT 98 titin, 127 38.4 6 0.3

1HRC 104 Cytochrome cy 39.7 6 0.3

1APC 106 Cytochrome b562 40.2 6 0.3

1FKB 107 FKBP 40.3 6 0.3

2VIK 126 Villin 45.2 6 0.4

*Taken from a list of single domain, two state folders (68).
yThe heme group was not included in our calculations. Only the primary

sequence information of cytochrome c was used.
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shapes, packing densities, and presence of distinct length

scales in polymeric solutions. The form factor p(q) or its close

counterpart, the Kratky profile (64), q2p(q), provides average

structural information across a range of wavelengths. Here, q
is in units of inverse wavelength. For each of the sequences

shown in Table 1, we computed an ensemble-averaged

Kratky profile. The results are shown in Fig. 1. The Kratky

profiles reveal the presence of three distinct regimes for each

sequence. The first regime 0 # q , 0.08 is the long

wavelength regime typically used to quantify the average

molecular weight of the polymer. The second, intermediate q
regime lies in the interval 0.08# q, 0.25. The high q regime

corresponds to q . 0.25.

The intermediate and high q regimes provide the most

information regarding average chain shape and fluctuations

(62–64). Inspection of Kratky profiles in these two regimes

suggests the following: in the EV limit, there are two dis-

cernible length scales. All sequence-specificity is localized to

the high-q, short-wavelength regime. The implication is that

sequence specificity influences local rather than nonlocal

conformational preferences. In the intermediate q regime,

proteins in the EV limit show scale-invariant, sequence-

independent behavior wherein properties such as chain size

and internal distances follow well-defined power laws.

Kratky profiles for proteins in the EV limit were compared

to those of folded proteins and ideal, freely rotating chains

(43). An example of this comparison is shown in Fig. 2 for

the protein ubiquitin. In the following sections, we show that

the differences in Kratky profiles imply that in the EV limit

proteins are cigar-shaped, loosely packed coils, with average

topologies that are independent of amino acid sequence.

The average shape of a denatured protein is that
of a prolate ellipsoid

We computed the ensemble-averaged asphericity values for

each of the 23 sequences in the EV limit and the resultant data

are shown as cross marks in Fig. 3. For comparison, the

d values calculated from native structures are also shown

as open circles. The average asphericity value of 0.5 is

FIGURE 1 Kratky profiles for each of the 23 protein

sequences calculated using EV-limit ensembles.
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independent of sequence in the EV limit. This suggests that

proteins in the EV limit have an average ellipsoidal shape. In

addition to the asphericity, we computed ensemble-averaged

shape parameters (S) for each protein sequence. Again, S¼ 0

for a perfect sphere. If S, 0, the object is oblate and if S. 0,

the object is prolate. The data show that S � 0.7 for all 23

sequences in the EV limit (Fig. 3). The conclusion is that in the

EV limit, the average shape for a protein is that of a prolate

ellipsoid, i.e., a cigar-shaped object.

Interestingly, although the average shape is independent of

sequence in the EV limit, it clearly depends on sequence for

folded proteins. A comparison of the d and S values of proteins

in the EV limit to those of folded proteins is shown in Fig. 3.

Although Rg scales with chain length as N0.34 for folded

proteins (66), the scaling law itself does not restrict folded

proteins to be spherical globules. This point has been made

recently by Dima and Thirumalai (66) who carried out a

systematic study of asymmetry in the shapes of folded proteins.

Although the average shape in the EV limit is that of a

prolate ellipsoid, the fluctuations in the Rg and d-values are

large. This is shown in Fig. 4 using a contour plot of the two-

dimensional distribution function r(Rg/N0.6, d) for Fyn SH3

domain. The oblong shape reflects the coupling between

shape and size. It is also seen that fluctuations span the

spectrum of shapes and sizes. In other words, chains in the EV

limit are not hard, prolate ellipsoids. Instead, they are soft

ellipsoids that show large correlated fluctuations about mean

values for Rg and d. In Fig. 5, we show backbone traces of 10

EV limit conformations each for four different protein

sequences. The conformations, which are drawn at random

from the ensembles, are oriented in the principle axis frames

to illustrate the average prolate ellipsoidal shape as well as the

large fluctuations that characterize the conformational distri-

butions.

Internal correlations show scale invariance

As noted in the introduction, the self-repelling nature of

proteins in the EV limit imposes correlations on all length

scales. These correlations lead to scale invariance in a variety

of chain properties and direct evidence for correlations can be

obtained by quantifying the scaling of internal distances.

Theory predicts that ensemble-averaged internal distances will

scale like ensemble-averaged end-to-end distances such that

ÆR2
ijæ=ðÆR2

eæji� jjÞ ¼ Æðri � rjÞ2æ=ðÆR2
eæji� jjÞ;1 (39). Here,

ÆR2
eæ is the mean-squared end-to-end distance, R2

ij ¼ jri � rjj2,

and we choose ri and rj to be the position vectors of a-carbon

atoms of residues i and j, respectively. The implication is thatffiffiffiffiffiffiffiffiffi
ÆR2

ijæ
q

;ji� jjn, where n � 0.59. This behavior is expected

to hold for all ji � jj . ns, where ns denotes the number of

residues over which sequence context is important. Predic-

tions for the scaling of internal distances are important

because they also allow us to make direct contact with

measurements of internal distances in denatured proteins.

These measurements are becoming accessible to a variety of

experiments that are based on the use of spin labels (71–77).

In Fig. 6, we plot ln(ÆRijæ) versus ln(jj � ij) for four repre-

sentative sequences drawn from Table 1. Two parametric

lines are used to calibrate the results. The solid lines have

FIGURE 2 Comparison of Kratky profiles for three different models of

ubiquitin, namely, the EV-limit ensemble (dashed curve), the freely rotating

chain ensemble (solid curve), and the native structure (dash-dotted curve).

FIGURE 3 Ensemble-averaged asphericity (d) and shape (S) parameters

for all 23 sequences in the EV limit (shown by cross marks) and for folded

proteins (open circles). Error bars quantify the standard error in estimation

of the mean.
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slopes of 0.59 and intercepts of 2.0, whereas the dashed lines

have slopes of 1.0 and intercepts of 1.335. The latter were

derived by assuming a fully extended, rodlike chain with

distances between adjacent a-carbon atoms of 3.8 Å. Partial

motivation for this reference line comes from the work of

Zagrovic and Pande (78), who showed that internal distances

in unfolded ensembles of several proteins follow the

predictions of the ideal random-flight chain with link length

of 3.8 Å. In the EV limit, we find that irrespective of amino

acid sequence, internal distances follow the power law

predicted by theory for chains in a good solvent. Deviations

from the power-law scaling occur for internal distances

between residues that are ,7 residues apart in sequence.

For proteins in the EV limit, there are two distinct length

scales. The first is a local length scale that spans seven-

residue stretches. For sequence separations that go beyond

this local length scale, chain properties such as Rg, Re, and

internal distances scale with sequence separation according

to universal power laws. Local stiffness is typically quan-

tified in terms of a persistence length, which is the length

scale over which the chain behaves like a rigid rod (40,79).

The value of Ro obtained from fits to SAXS data for

denatured proteins suggests that denatured proteins show

rodlike behavior over very short length scales (11). This is

also confirmed from our analysis in Fig. 6, which shows that

deviations from rodlike behavior occur for all sequence

separations greater than a single residue.

Fig. 6 also shows that there is a local length scale over

which proteins in the EV limit show nonuniversal behavior.

This is not a persistence length. Instead, it is the length scale

over which sequence-specific spatial correlations decay. To

estimate this length scale, referred to as ns, we follow the

prescription of Thirumalai and Ha (79). Let li and lj be two

‘‘bond’’ vectors. The vector li straddles residue i extending

between the backbone nitrogen and carbonyl carbon atoms of

residue i; the vector lj straddles residue j. Correlation between

a pair of ‘‘bond’’ vectors is quantified by computing the

projection, cos(uij), between the vectors. The value for ns is

estimated from a plot of the ensemble average of Æjcosuijjæ as a

function of jj � ij, where the latter refers to the sequence

separation. If a pair of bonds are highly correlated in the

ensemble, then Æjcosuijjæ � 1. This is obviously true of

adjacent vectors. As the sequence separationjj � ij increases,

the correlations decay, and the value of jj � ij for which

Æjcosuijjæ � 1
e is the estimated value for ns. Fig. 7 shows the

calculated values of ns for all 23 sequences shown in Table 1.

Values for ns range from six to nine residues and do not vary

dramatically with protein sequence or chain length. The

FIGURE 4 Two-dimensional probability density plot, r(Rg/N0.6,d), for

the Fyn SH3 domain in the EV limit. The contour plot demonstrates the large

fluctuations around the average shape and size that are to be expected in the

EV limit.

FIGURE 5 Ten representative conforma-

tions drawn from the EV-limit ensembles for

four different protein sequences. The confor-

mations are oriented in the principle axis frame,

shown in the bottom left corner for each pro-

tein. The snapshots demonstrate both the aver-

age prolate shape and the large fluctuations.
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estimates for ns appear to be consistent with those from

different measurements (80–84) and calculations (48,85). The

calculated value of ns is largest for CI2 and smallest for cold

shock protein. It is important to reiterate that the concept of a

persistence length is ill defined for a highly flexible chain. It is

erroneous to multiply ns by 3.6 Å (the rise per residue for a

fully extended conformation) and stipulate that this is the

persistence length for a chain in the EV limit. In fact, the

persistence length in the EV limit—the length over which

the chain behaves like a straight segment—is ,4 Å, i.e., no

more than one residue. This estimate agrees with SAXS data,

recent atomic force microscopy measurements (86), and

simulation results for different proteins (78).

Protein interiors in the EV limit reveal cavities
on all length scales

Field theories predict that chains in the EV limit are charac-

terized by interior cavities of all sizes, reflecting the inefficient

way in which the chains fill the available volume (39). This is

a result of correlations that exist on all length scales and the

fact that interactions that give rise to these correlations are

purely repulsive in nature.

Fig. 8 shows results from our quantitative analysis of

cavity statistics for the EV-limit ensembles of proteins. In the

interest of clarity, we show data for the sequence of ubiquitin.

Similar results were obtained for all other two-state protein

sequences shown in Table 1. The question we ask is, what is

the probability that a sphere of radius a placed at random

with respect to the center of mass of the chain will be empty?

For each conformation in the EV-limit ensemble, we place a

probe sphere of radius a at several random locations with

respect to the center of mass and quantify the number of times

a chain atom crosses the probe sphere. This procedure is

repeated for all conformations within the ensemble. The re-

sultant data are used to compute Poa(r), which is defined as

the probability of finding a cavity of radius a at a distance r
from the center of mass in the ensemble.

For ubiquitin, we computed Poa(r) for probe spheres of

radii ranging from 2.5 to 12.5 Å. The results are shown in

Fig. 8 A. Remarkably, there is a 20% chance of finding a

cavity of radius a ¼ 12.5 Å at the average location of the

center of mass. The finite probability of finding large cavities

within the interior of denatured proteins emphasizes two

points: First, the volume occupied by a chain is filled inef-

ficiently when compared to either a folded protein or a freely

rotating chain. Second, the cavity statistics are indicative of

large-scale correlated fluctuations, which exist on all length

scales in the EV limit. To illustrate these points, we compare

the values of Poa(r) obtained in the EV limit to those for three

different models.

Cavity statistics, Poa(r), for folded ubiquitin are shown in

Fig. 8 B. In the folded form, the average packing density is

high and protein interiors are thought to be either solidlike

(87,88) or like ‘‘randomly packed spheres near their per-

colation threshold’’ (89). Either way, the thinking is that it

ought to be difficult to locate spherical cavities of different

sizes within protein interiors. Fig. 8 B shows that it is in fact

impossible to find room for small or large cavities unless the

cavity is located sufficiently far from the center of mass of

the folded protein. Interestingly, similar results are obtained

for the protein modeled as a fully extended conformation

FIGURE 6 Scaling of internal distances as a function of

sequence separation. Internal correlations are shown for

four representative protein sequences. In each of the log-

log plots, the solid line has a slope of 0.59 and intercept of

2.0 and the dashed line has a slope of 1.0 and intercept of

1.33. Average internal distances obey the universal power

law scaling for sequence separations that go beyond five to

nine residues.
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(Fig. 8 C). This erroneous model is of interest only because it

has been used previously for denatured proteins in studies

aimed at correlating m values and DCP to changes in solvent-

accessible surface area (90). In the fully extended confor-

mation, the chain is loosely packed because it is maximally

stretched. Yet the probe sphere always intersects the chain

unless it is centered sufficiently far away from the center

of mass. The results in Fig. 8, B and C, underscore the

importance of conformational fluctuations. It is impossible to

capture the features of an ensemble, such as the creation

of interior cavities, using a single conformation. Comparison

of results in Fig. 8 A to those in Fig. 8 C suggest that the

‘‘observed’’ correlation between m values and DCP to

changes in solvent-accessible surface area might in fact be

serendipitous. A first-principles reassessment of the source

of this empirical correlation is mandated. This is the topic of

ongoing studies (H. T. Tran and R. V. Pappu, unpublished).

Are fluctuations in the EV limit correlated?

Theory predicts that the gross inefficiency with which the

available volume is filled by polymers in the EV limit is in

fact a manifestation of correlations between large-scale fluc-

tuations. That this is indeed the case is shown by comparing

cavity statistics in the EV limit to values obtained for freely

rotating chains. The latter is a model for a soft, Gaussian coil

with large-scale, albeit uncorrelated, fluctuations (43).

Results for ubiquitin modeled as a freely rotating chain are

shown in Fig. 8 D. Since conformational fluctuations are

uncorrelated in a chain devoid of interactions, it is impos-

sible to find large cavities (a . 5 Å) within the interior of a

freely rotating chain. There is, however, a finite probability

of finding small cavities (a , 5 Å) within the interior of a

freely rotating chain. In our implementation of the freely

rotating chain model, all nonbonded interatomic interactions

were turned off and ensembles were generated by drawing

the f,c,x angles for each residue from sterically allowed

regions. To implement the true spirit of a Flory model, we

could have selected only those conformations that lead to

reproduction of the N0.59 scaling law. Although such an

exercise yields higher probabilities for large cavities, the

difference is purely qualitative and does not alter the main

conclusion.

A summary of the difference between correlated fluctu-

ations in the EV limit and uncorrelated fluctuations for a

Flory-like freely rotating chain is shown in Fig. 9, which

plots the probabilities, Poa(r ¼ 0), of finding cavities of

different sizes at the ensemble-averaged center-of-mass as a

function of cavity radius a. Although Poa(r ¼ 0) decreases

linearly with cavity size, a, for the EV limit, it decays much

more rapidly for the freely rotating chain version of ubiq-

uitin. Of course, what we refer to as cavities will actually be

filled by solvent and cosolute molecules under denaturing

conditions. The main point of the foregoing discussion is that

inasmuch as there is congruence between the EV-limit

ensemble and highly denatured states, chain fluctuations

create ample room to accommodate favorable interactions

with the surrounding solvent. Standard reference models

such as the fully extended chain and the Flory random coil

model will grossly underestimate both the diversity and

extent of chain-solvent interactions, which in turn leads to a

misrepresentation of the extent and type of conformational

fluctuations.

Can the differences quantified in Fig. 8 be
tested experimentally?

Fluctuations for a chain of length N will lead to cavities that

are large enough to allow for the free diffusion of a smaller

chain of length n , N. This observation led Khokhlov and

coworkers (91,92) to propose an experiment whereby a re-

active group is placed at the center of a chain molecule and

the rate of interpolymer reactions is followed as a function

of chain length. Reaction rates will be dictated by the

FIGURE 7 Variation of ns with sequence for 23 two-state proteins. The

top panel shows the ensemble-averaged values of ns and the bottom panel

shows how we estimate ns from a plot of Æcos(uij)æ versus jj � ij, the

sequence separation.
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accessibility of the reactive group. If denatured proteins

follow the Flory random-coil model, the reaction rates would

drop exponentially as chain length increases because the

reactive group ought to become increasingly inaccessible

due to uncorrelated fluctuations. Conversely, for a chain that

follows the predictions of field theories in the EV limit, the

reaction rate will decrease as some power law with chain

length, and there will be a finite probability of realizing a

reaction with the reactive group even for very long chains.

Advancements in analytical chemistry and mass spectrom-

etry suggest that Khokhlov’s proposal can be tested using

novel cross-linking approaches that are being developed for

quantitative studies of protein folding (93). Other experi-

mental probes can also be used. The form factor in the high q
regime provides a measure of the number of interresidue

interactions that can be found within a distance a; q�1 from

each other and this will scale as a1.7 (39). Finally, because of

the large cavities created by a chain in the EV limit, it is

expected that the second virial coefficient (B2) for highly

denatured proteins will scale with chain length as N0.59

(39,41).

Contacts are hierarchical and average topologies
are independent of sequence

Two residues are said to be in contact if there are at least two

atoms (including hydrogen atoms), one from each residue,

within a 6-Å distance of each other. The histogram of

interresidue contacts can be plotted as a contact density map

and the results are shown in the top row of Fig. 10 for three

proteins of different lengths. Irrespective of chain length and

sequence, the contact densities follow a hierarchical pattern

FIGURE 8 Analysis of cavity statistics.

This is plotted as the probability Poa(r) of

finding a cavity of size a at a distance r from

the center of mass. The data in all of the

panels are for the sequence of ubiquitin. (A)

EV-limit ensemble of ubiquitin. (B) Folded

structure of ubiquitin. (C) Ubiquitin mod-

eled as a fully extended conformation. (D)

An ensemble of ubiquitin modeled as a

freely rotating chain.

FIGURE 9 Comparison of the effect of correlated versus of uncorrelated

fluctuations on cavity statistics. Here we plot the probability, Poa(r ¼ 0) of

finding a cavity of radius a at the center of mass as a function of cavity radius

a. The dashed curve is for the ensemble of ubiquitin modeled as a freely

rotating chain (uncorrelated fluctuations) and the solid curve is for the

EV-limit ensemble of ubiquitin (correlated fluctuations).
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whereby near-neighbor residues have a higher probability of

being spatially proximal. The probability of finding a pair of

residues in close spatial proximity decreases with increasing

sequence separation. If one were to zoom into the contact

density map of a long protein such as titin one reproduces the

contact density map for a shorter protein such as ubiquitin or

peripheral subunit binding domain (PSBD). Conversely,

zooming out or scaling up from the contact density map of a

short protein like PSBD will yield the contact density maps

of longer proteins such as ubiquitin or titin. This scale in-

variance, referred to as dilatation symmetry (39) is a hall-

mark of chains in the EV limit and reflects the preservation of

the hierarchical nature of contact patterns irrespective of

sequence or chain length.

The large-scale fluctuations that give rise to the contact

density maps shown in Fig. 10 are best explained in terms

of distributions for interatomic distances. In the bottom row

of Fig. 10 we show distributions of distances obtained for

different pairs of residues in the three proteins: PSBD, ubiq-

uitin, and titin. The distributions of distances are sharply peaked

for near-neighbor residues and they become increasingly

broad as sequence separation increases. In addition, the

FIGURE 10 Top row shows the contact density maps for EV-limit ensembles of PSBD, ubiquitin, and titin. The color bar for all three plots is shown on the

right. To provide a contrast of the folded state to the EV-limit ensemble, the middle row shows contact maps for native structures of PSBD, ubiquitin, and titin.

The bottom row shows how the contact density maps in the EV limit come about. Each panel shows distance distributions for different pairs of residues that

have different spacing in sequence space. Distance distributions for residues that are local in sequence space are sharply peaked around close distances, whereas

distributions for residues that are far apart in sequence are broad and peaked around large distances. The broad distance distributions for distal residues lead

to large-scale fluctuations in the EV limit.
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distance distributions are peaked at larger distance values as

sequence separation increases. This emphasizes three im-

portant points regarding protein ensembles in the EV limit:

First, the dominant contacts are in fact local. Second, the

magnitude of fluctuations in interresidue distances increases

with increasing sequence separation. Third, these increased

fluctuations could certainly lead to the occasional close ap-

proach of distal amino acids. Experiments that only detect

close spatial contacts will be interpreted as providing evi-

dence of long-range ‘‘residual’’ structure in the denatured state

(94–98). Contrary to interpretations of many such experi-

ments, numerous molecular simulations (7,23,99) and recent

single-molecule experiments (75) provide little evidence of

long-range residual structure under harshly denaturing

conditions. The main conclusion is that analysis of the EV-

limit ensembles does not preclude the possibility of occa-

sional close contacts between residues that are distal in

sequence. It does, however, predict that these contacts have

low probabilities and are sampled in the tails of distance dis-

tributions. Conventional NMR experiments based on the

nuclear Overhauser effect are incapable of resolving contacts

that go beyond 5–7 Å. Hence, one must be cautious in

interpreting observations of nuclear Overhauser effects as

evidence for residual, long-range structure in highly dena-

tured states.

Dilatation symmetry is preserved for all sequences in the

EV limit. Conversely, the contact density maps for the

folded versions of different sequences reflect differences in

native-state topologies. Given access to contact density

maps for the denatured state (EV limit) and contact maps for

native states, one can make a qualitative judgment regarding

the folding process by computing difference contact density

maps between the native and denatured states. These dif-

ference maps are shown in Fig. 11. These maps show re-

gions where contacts are either present (strong) or absent

(weak) in both the native and denatured states. They also

show contacts that are strongly represented in the native

state and weak in the denatured state. Regions shaded in

black are contacts that are pronounced in the denatured state.

From the difference contact maps, we find that upon folding,

specific nonnative local contacts have to be broken (weak-

ened) to make native, nonlocal spatial contacts. The number

and locations of nonnative local contacts that are to be

broken determine the sets of spatial contacts that are formed

upon folding.

Formally, folding can be viewed as a symmetry-breaking

operation wherein the dilatation symmetry characteristic of

the denatured-state (EV limit) ensemble is broken by break-

ing or disrupting the requisite number of nonnative local

contacts. If folding were strictly driven by the formation of

local contacts (100–102), as in a helix-coil transition, then no

nonnative local contacts would have to be broken upon

folding. Instead, new local contacts would be added onto

those that already exist in the denatured state. However,

since folding requires the formation of spatial, long-range

contacts, local nonnative contacts have to be broken. How

the dilatation symmetry of denatured states is broken under

folding conditions will depend on a variety of factors

including local biases for turns and short stretches of

extended or helical conformations, the drive to sequester

hydrophobic amino acids, and the achievement of specificity

in side-chain packing (103). These interactions will be

determined by the specific sequence or, more precisely, by

native-state topology.

The importance of native-state topology for folding is

underscored by analysis of the average denatured-state

topology. Folding rates for two-state proteins show statisti-

cally significant correlation with native-state contact order

(104). In their original work, Plaxco et al. (104) ignored

denatured-state topologies when quantifying the correlation

between native-state topology and folding rates. The strong

positive correlation between folding rates and contact order

implies that folding rates depend only on the end point, i.e.,

native-state topology. A similar principle underlies the

design of energy landscape theories for folding kinetics

that are based on G�oo models (105–107). At first glance, these

results are surprising since the highly denatured state is the

starting point for in vitro folding reactions and yet no con-

sideration of the denatured-state topology is required to

account for the folding rates. These results would make sense

if denatured-state topologies were equivalent and invariant

with sequence.

Indeed, for all 23 sequences in the EV limit we find that

the absolute contact orders are independent of sequence. We

calculated absolute contact order using the method of Plaxco

et al. (104). The sequence independence of absolute contact

orders in the EV limit is shown in Fig. 12, which plots the

absolute ensemble-averaged, EV-limit contact order for all

23 sequences. For comparison, the absolute contact orders of

the native-state counterparts are also shown. Since contact

FIGURE 11 Difference contact den-

sity maps for PSBD, ubiquitin, and

titin. Contacts that are either missing or

weak in the native state but are present

in the EV limit are shown in black in the

difference contact maps.
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order is well-established as a ‘‘single value descriptor of

topological complexity’’ (68), the data in Fig. 12 support the

conclusion that EV limit ensembles are topologically equiv-

alent. This equivalence in average topologies of denatured

states explains why it has been reasonable to ignore the de-

natured state when assessing the contribution of topology to

folding rates for small two-state proteins.

The distribution of end-to-end distances

The distribution of end-to-end distances is a fundamental

quantity for comparing predictions of different polymer

theories (38–42). If x ¼ Re=
ffiffiffiffiffiffiffiffiffi
ÆR2

eæ
p

, where ÆR2
eæ is the mean-

squared end-to-end distance, then 4px2PðxÞdx is the prob-

ability of finding a conformation with x values between x and

x 1 dx. For a Flory random coil, P(x) is a Gaussian dis-

tribution of the form PðxÞ ¼ ð3=2pÞ3=2
expð�1:5x2Þ. The

functional form for P(x) in the EV limit has been derived by

des Cloizeaux (41) as an interpolation between the predicted

results for P(x) for large (87–110) and small x (111). des

Cloizeaux’s formula is PðxÞ ¼ aox
0:269expð�1:269x2:427Þ

(41). Here, ao is a normalization constant, which ensures

that
RN

0
4px2PðxÞdx ¼ 1.

Fig. 13 shows a comparison of P(x) predicted by theory to

distributions computed for four different proteins in the EV

limit. Similar data were obtained for all protein sequences

shown in Table 1. Simulated data agree with theoretical

predictions and the agreement is quantified in terms of

residuals between the theoretical distribution and those from

simulations. The dashed curve in Fig. 13 is the Gaussian

distribution for P(x) that fits a Flory random coil. Compar-

ison of the dashed curve to the other distributions reveals two

features of the end-to-end distance distribution in the EV

limit. For large x, entropy opposes stretching of the chain

beyond its average value of Re. However, there is a dimi-

nution in the entropy in the EV limit vis-à-vis the the Flory

model. This is evident in the more rapid decay of P(x) for

large x in the EV limit. For small x, the discrepancy is even

more pronounced. In the EV limit, there exists a so-called

‘‘correlation hole’’ (39). Stated differently, correlated chain

repulsions drastically reduce the probability that the N- and

C-termini come very close together. Conversely, P(x) is

maximal for small x if one assumes a Flory-style random coil

model with uncorrelated fluctuations and uniform (mean-

field) chain swelling.

The existence of a correlation hole in the EV limit has

been demonstrated in Monte Carlo simulations for a variety

of polymeric systems (112,113). Recently, Zhou (114)

computed the functional form of x2P(x) from EV simulations

of proteins studied by Wilkins et al. (46). The fit obtained by

Zhou for x2P(x) (114) is consistent with predictions made by

field theory, although Zhou has pursued an alternative

interpretation (114–116) of the des Cloizeaux functional

form. His interpretation is anchored in refinements (45) of

the Flory random coil model (44). Refinements of Flory’s

mean-field theory have to be used with caution and tailored

FIGURE 12 Absolute contact orders for all 23 sequences in the EV limit

(cross marks) and for native structures (open circles). Invariance of contact

order with sequence in the EV limit suggests that the average topology does

not depend on sequence in the denatured state.

FIGURE 13 End-to-end distance distribution for five representative

sequences in the EV limit. The parameter X ¼ ðRe=ÆR2
e æÞ. The solid curve

shows the distribution predicted by des Cloizeaux and the dashed curve is

the Gaussian distribution that applies for the Flory random coil. The bottom

panel shows residuals between data from EV-limit simulations and the

theoretical (solid) curve.
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for each application because they are not designed to capture

renormalizable features of polymers in the EV limit (38).

CONCLUSIONS

We have used an atomistic EV model, developed in previous

work, to show that it is computationally tractable to generate

accurate conformational ensembles for proteins in the EV

limit. The accuracy of these ensembles is judged by match-

ing the structural characteristics of the simulated ensembles

to those predicted by field theories. Given the equivalence

between the EV limit and highly denatured states, our ability

to simulate conformational ensembles in the EV limit, with

full atomic detail, has direct bearing on the development of

an accurate physical picture of conformations accessible to

denatured proteins. A summary of our results from analysis

of EV-limit ensembles for 23 different two-state proteins is

provided below:

1. The average shapes of proteins in the EV limit are akin to

those of prolate ellipsoids. This feature is shared with

Gaussian chains (39), although clear differences exist in

the magnitude of and correlation between conformational

fluctuations.

2. We have shown that there are two distinct length scales

for proteins in the EV limit. A local length scale spans

five- to nine-residue stretches over which sequence-

specific spatial correlations decay. Beyond this length

scale, all internal distances scale with sequence separa-

tion in accordance with the standard power law for

proteins in a good solvent.

3. Correlated fluctuations give rise to ensembles that are

characterized by a range of internal cavities. The ease of

cavitation within the interior of a protein provides a direct

measure of the degree of preference for chain-solvent

interactions in a perfect solvent.

4. The average topology in the EV limit is independent of

amino acid sequence. As a consequence, the EV limit is

characterized by hierarchical contacts whereby the dis-

tribution of distances between near-neighbor residues is

narrow and peaked around smaller values. Conversely,

distance distributions for residues that are farther in

sequence tend to be broad and peaked at large distances.

These hierarchical distance distributions reflect the so-

called dilatation symmetry in the EV limit whereby con-

tact density maps for one protein sequence can be rescaled

to obtain the contact density map for another sequence.

5. Analysis of difference contact maps suggests that to fold,

the dilatation symmetry in the EV limit is broken by

weakening specific nonnative local contacts. Precisely

how many and which nonnative local contacts are to be

broken is determined by the native-state topology and

hence the specific amino acid sequence. In other words,

although sequence specificity is not apparent in the

average denatured-state topology, it is apparent in the

way the symmetry characteristic of the denatured state is

broken. We believe that this result provides a physical

basis for the robustness of native-state topology in

protein-folding studies.

6. The distribution of end-to-end distances reveals the

presence of a ‘‘correlation hole’’ as was first predicted

by des Cloizeaux (41,111) and captures the diminution of

entropy vis-à-vis the Flory random-coil estimates. We note

that theory also predicts that the number of self-avoiding

walks in the EV limit will grow as N1/6 with chain length N
(41,42). We are developing methods to quantify the growth

in the size of conformational space with chain length to test

this prediction from scaling theories.

Implications for denatured-state ensembles in
strongly denaturing environments

Our results have direct bearing on the development of accurate

reference-state descriptions for highly denatured proteins. Our

efforts based on use of the EV limit mirror the use of the hard-

sphere fluid as a reference state for van der Waals liquids

(51,52). The ability to simulate denatured-state ensembles is

important for a range of applications including protein design

(25,26), calculation of stability profiles, understanding the

contribution of the denatured state to F-values used to quan-

tify structure in the transition state ensembles (117,118), the

development of a robust understanding of preferential inter-

actions in cosolute mixtures (31–36), quantifying the interac-

tions between unfolded molecules at high concentrations (29),

assessing the presence of residual interactions between hydro-

phobic as well as charged groups (119–122).

Our ability to simulate mimics of denatured-state ensem-

bles will allow us to ask precise questions about the role of

the denatured state in the types of applications outlined

above. Of particular interest is the question of how pre-

ferential interactions in 8 M urea or 6 M GdnCl conspire to

make these conditions mimic perfect solvents for proteins.

The recent work of Rösgen et al. (35) suggests that urea,

which is chemically equivalent to the main repeating unit in

the peptide backbone, can be thought of as a near-perfect

solute over the entire solubility range. These observations

provide the necessary impetus for developing an accurate

statistical thermodynamics framework for understanding

how polypeptides respond to increasing concentrations of

denaturants to yield ensembles that converge upon the EV

limit description.

Our efforts to develop an accurate EV limit description for

the denatured-state ensemble parallels the efforts of the

Sosnick (124) and Zhou groups (114). There are two obvious

differences between our approaches. These two sets of

researchers use either coil library statistics (125) or confor-

mations of residues in loops (114) to model local, sequence-

context-dependent conformational preferences. To generate

ensembles that are self-avoiding, either build-up procedures

that screen for long-range hard-sphere steric overlap or
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Monte Carlo simulations are used. Our approach is different

because we use a single potential function to capture both

local structure and nonlocal fluctuations. We do not expect

there to be any major differences between EV-limit ensem-

bles generated using our approach and the methods used by

the Zhou and Sosnick groups. Specifically, we believe that

ensembles for proteins obtained in the EV limit (48,124–

127), will have characteristics that match predictions from

field theories.

There have been numerous attempts to develop models for

conformations accessible to highly denatured proteins. These

models have an ad hoc flavor and are anchored in Flory’s

random-coil paradigm, where local biases are modeled

accurately and long-range interactions are either ignored or

modeled using a mean field. This paradigm forms the basis

for the use of tri- and pentapeptides, coil libraries (125,128),

and fragments excised from structural databases for model-

ing properties such as solvent-accessible surface areas (129)

in the highly denatured state. None of these models can

provide an accurate description of conformational ensembles

accessible to highly denatured proteins since they explicitly

disregard the effects of correlated fluctuations imposed by

two-body EV interactions.

At the other end of the spectrum, recent experimental

work and some modeling efforts suggest that a new para-

digm is in order for denatured-state ensembles (100,101,130).

Apparently, highly denatured states are to be viewed as

embryos of native states since it is expected that native-like

local and/or nonlocal signals are sampled with statistically

significant probability in the denatured-state ensemble

(10,130,131). Inasmuch as sequence-specific effects are

present over five- to nine-residue stretches, it is conceivable

that there are native-like local biases as well as default biases

for conformations such as polyproline II (48). However, our

assessment of contact density maps, difference contact maps,

and topological measures clearly indicate that highly dena-

tured states, which are characterized by dilatation symmetry,

are topologically distinct vis-à-vis their native-state counter-

parts. We speculate that under folding conditions, it is the

topological distinction between the native and highly

denatured states that provides part of the driving force for

folding via collapse and symmetry breaking.

Our work also leads to a direct solution to the reconcil-

iation problem of Plaxco and coworkers (11,47,132). They

proposed that observations of residual structure need to be

reconciled with the good solvent scaling law obeyed by

denatured proteins. Analysis of the EV-limit ensembles

suggests that the observations of local sequence-specific

contacts are not incompatible with the observed power law

behavior. In fact, the existence of two distinct length scales is

mandated by field theories. For all sequence separations that

go beyond ;7 residues, ensemble-averaged internal dis-

tances show the same power law behavior as Rg and Re. This

scaling ensures that claims of persistent, long-range contacts

are not predicted by theories for polymers in the EV limit.

Therefore, the reconciliation problem is primarily a debate

about how experimental data are interpreted.

The Flory random-coil model has been a topic of intense

debate with cases being made for and against this mean-field

model as an accurate descriptor of denatured states (132–

137). Throughout these discussions, advances in polymer

theory that provide an appropriate framework for the descrip-

tion of denatured proteins have largely been ignored. Both

the Flory random-coil model and field theories agree that all

sequence-specific biases are strictly local and that denatured-

state ensembles show significant conformational heteroge-

neity. However, the mean-field Flory random-coil model is

not well-suited for explaining the source of scale-invariant

behavior of denatured proteins. This is because it is not

applicable to describe polymers in the EV limit. This inher-

ent weakness of the Flory mean-field theory also demands

extreme caution when extrapolating simulation or experi-

mental results from peptides (10,12,43,58,101,102,129,138)

to draw conclusions about denatured proteins. Peptides do

not contain information that goes beyond local propensities

and these do not provide insights regarding the correlated

fluctuations required to explain how scale invariance of struc-

tural, colligative, and thermodynamic properties come about.

TABLE 2 Results from convergence tests for cytochrome c

Run Initial Rg (Angstroms) Initial asphericity ÆRgæ (Angst.) Standard deviation Rg
y ÆAsphericityæ

Production* 50.3 0.67 39.7 6 0.3 8.20 0.48 6 0.01

1 53.4 0.63 38.9 6 0.4 8.05 0.49 6 0.01

2 58.1 0.88 39.5 6 0.3 8.09 0.49 6 0.01

3 45.3 0.38 39.4 6 0.3 8.20 0.48 6 0.01

4 47.2 0.58 38.8 6 0.3 8.23 0.49 6 0.01

5 47.3 0.43 39.4 6 0.3 8.31 0.49 6 0.01

6 35.6 0.33 39.4 6 0.3 8.11 0.49 6 0.01

7 61.4 0.86 39.7 6 0.3 8.12 0.49 6 0.01

8 40.0 0.20 39.5 6 0.3 8.20 0.48 6 0.01

9 38.6 0.20 39.5 6 0.4 8.22 0.49 6 0.01

10 63.4 0.69 39.6 6 0.3 8.24 0.48 6 0.01

*Production indicates that data from this simulation were used in our analysis discussed in the Results section.
yFor each simulation, we obtain an ensemble and hence a distribution of Rg values, P(Rg). Whereas ÆRgæ denotes the first moment of this distribution, the

standard deviation is the square root of the variance.
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The main contribution of field theories is the recognition

of the special properties of conformational ensembles that

are encoded by correlated fluctuations imposed by the self-

repelling nature of a polymer in the EV limit. Inasmuch as

these theories are applicable to denatured proteins, the cur-

rent work shows that many of the seemingly paradoxical obser-

vations regarding denatured proteins are readily resolved.

Theory and simulation are unambiguous that proteins in the

EV limit are topologically distinct from their native-state

counterparts, have special renormalizable features, and show

hierarchical distance distributions. Interpretations suggesting

that highly denatured proteins might be embryos of their

native-state counterparts must be treated with extreme

caution because there is no sound theoretical basis for such

proposals.

APPENDIX: TESTS FOR CONVERGENCE OF
MONTE CARLO SIMULATIONS

In the protocol prescribed in the Methods section, a complete Monte Carlo

simulation involves 107 trial moves. A snapshot is saved once every 103

moves for a sample size of 104 conformations in the ensemble for each

sequence. We wish to test whether the properties calculated using this

ensemble are 1), sensitive to the choice of the initial random conformation;

and 2), sensitive to the number of uncorrelated conformations generated in the

ensemble. For our test case, we used cytochrome c, a 104-amino-acid

sequence, which is one of the longer sequences we have used. It should be

noted that cytochrome c is modeled without the heme group, i.e., only the

primary sequence information is used.

We generated 10 independent ensembles for cytochrome c using a

protocol that is identical to that described in the Methods section. For each of

the 10 simulations, we used different, randomly chosen, initial conformations.

For each simulation we compute ensemble-averaged properties such as Rg

and d. Comparison of the ensemble-averaged values for these global param-

eters that assess ensemble-averaged size and shape provides an assessment of

the convergence of a single simulation. Table 2 shows the ensemble-averaged

Rg, d, and standard deviations obtained for each of the 10 simulations that

have the different initial conformations. The results show that irrespective of

the starting conformation, we obtain similar values for Rg and d. Although it

may be possible to achieve this convergence inadvertently for the ensemble

average ofRg, convergence for bothRg and d is a stringent test of the quality of

simulations.

To assess the influence of the size of the ensemble (104 per sequence), we

concatenated the ensembles from the 10 independent simulations to generate

a cumulative ensemble with 105 conformations. Ensemble-averaged Rg and

d values were computed with samples of size varying from 10 to 105. For a

sample size that is very small (,102), the ensemble-averaged values deviate

measurably from the mean values. However, for sample sizes .500,

convergence of ensemble-averaged values is readily achieved. Data from

these analyses are shown in Fig. 14. Based on the foregoing discussion, we

conclude that our sampling protocol provides an accurate and converged

description of atomic-level spontaneous fluctuations in the EV limit.
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