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ABSTRACT We have developed a coevolutionary method
for the computational design of HIV-1 protease inhibitors
selected for their ability to retain efficacy in the face of
protease mutation. For HIV-1 protease, typical drug design
techniques are shown to be ineffective for the design of
resistance-evading inhibitors: An inhibitor that is a direct
analogue of one of the natural substrates will be susceptible
to resistance mutation, as will inhibitors designed to fill the
active site of the wild-type or a mutant enzyme. Two design
principles are demonstrated: (i) For enzymes with broad
substrate specificity, such as HIV-1 protease, resistance-
evading inhibitors are best designed against the immutable
properties of the active site—the properties that must be
conserved in any mutant protease to retain the ability to bind
and cleave all of the native substrates. (ii) Robust resistance-
evading inhibitors can be designed by optimizing activity
simultaneously against a large set of mutant enzymes, incor-
porating as much of the mutational space as possible.

Current techniques for drug discovery typically seek com-
pounds that maximally inhibit a single target enzyme. Often,
researchers start with a substrate analogue and then use
rational or shotgun techniques to optimize its binding to the
target. For wild-type HIV-1 protease, this approach has led to
the discovery of nanomolar-level inhibitors (1-3), which are
powerful agents for the treatment of AIDS (4). In this decade,
however, researchers have been faced with a new challenge.
Because of the low fidelity of reverse transcriptase (5, 6) and
the high replication rate of the virus (7), drug-resistant HIV
strains rapidly develop (8-11). Effective methods to combat
drug resistance are currently a field of intense study. Many
workers are approaching the problem with traditional drug
discovery methods, searching for a new compound to inhibit
each new drug-resistant mutant. This approach, however,
cannot guarantee an end to the process; we are faced with the
prospect of chasing new mutants indefinitely.

We have developed a coevolutionary method for designing
compounds to inhibit an entire class of mutating targets, with
the goal of designing resistance-evading inhibitors, which are
effective against wild-type and mutant enzymes. Coevolution
(12-15) refers to a class of search methods loosely based on
coevolutionary “arms races” observed in biological systems,
such as the adaptations of herbivorous insects and their host
plants (16). A coevolutionary approach to the design of
resistance-evading HIV-1 protease inhibitors is formulated as
follows. Throughout the computation, a set of inhibitors and
a set of mutant proteases compete against one another. Based
on a “fitness function” that models the viability of a particular
mutant virus when challenged by a given inhibitor, new
inhibitors are selected at each generation to block optimally
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the current set of proteases, and new mutant proteases are
selected that retain their ability to cleave their viral substrates
in the presence of these inhibitors. The ultimate goal, viewed
from our side, is to find an inhibitor that maximally inhibits the
entire range of possible mutant proteases. The goal from the
virus’s side, however, is to find the most active protease when
challenged by the best inhibitors.

In this report, we describe a coevolutionary analysis of
peptidomimetic inhibitors of HIV-1 protease. HIV-1 protease
is a small dimeric enzyme that plays an essential role in viral
maturation by processing viral polyproteins into functional
proteins. Peptides bind to HIV-1 protease in extended form,
with eight contiguous residues on the peptide, labeled P4 to
P4’, making contact with eight enzyme subsites, labeled S4 to
S4' (3). The cleavage site is at the peptide linkage between P1
and P1’ at the center. Peptidomimetic inhibitors mimic this
binding mode, binding in extended conformation but placing
an uncleavable group at the active site. The experiments
described here challenge a set of mutant proteases, which
includes members with mutations at up to 10 active site
residues, with a set of peptidomimetic inhibitors composed of
all possible combinations of uncharged amino acids, searching
for inhibitors that evade viral efforts at resistance. Throughout
the following discussion, the reader should not expect the
results to correspond exactly to observed protease mutations
and specific inhibitors. Although the coevolution method
remains an exact formulation of the problem, the current level
of understanding of protease specificity and mutation is not
sufficient to calculate accurately kinetic constants for all
possible protease/inhibitor/substrate interactions. The simple
model for protease kinetics used here captures only the general
features of the interaction, so the results must be taken as
suggesting new concepts for the design of resistance-evading
inhibitors.

METHODS

Coevolutionary Simulation. The simple form of our fitness
evaluation (described below) allows the use of an exact co-
evolutionary algorithm that finds the minimax-optimal solu-
tion. Given mutant proteases m € M, where M is the set of all
allowed mutant proteases; inhibitors i € I, where [ is the set of
all allowed inhibitors; and a fitness model A(m, i) that evalu-
ates the activity of the protease when challenged by the
inhibitor, the algorithm obtains the particular inhibitor with
the minimax-optimal activity:

min max A(m, i)

i€l meM
i.e., the inhibitor that minimizes the activity of the best
protease while that protease itself retains the maximal activity
when inhibited. A description of the set of mutant proteases
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INITIALIZATION:
I’ is the empty set, M’ contains only the wild-type protease
REPEAT:

A.1l. Let ip.s be: argmin max A(m, i)
i€r meM”

2. Add ipese to I7

B.1l. For each 1 € I’, set f, to be: max A(m, 1)
meM

2, Mark all members of I’ as not being covered
3. Until all members of I’ are marked as being covered:
a. Find the mutant m € M that maximizes the number of
inhibitors i € I’ such that: A(m, 1) == f;
b. Mark as covered each inhibitor i for which this
is satisfied
c. Add m to M’
UNTIL:

min max A(m,1i) = min wmax A(m, 1)
i€ meM’ 1I€I" mEM

FiG.1. Pseudocode for coevolution. I is the entire set of inhibitors,
and M is the entire set of mutant proteases that compete with one
another; I and M’ are working sets of inhibitors and mutant proteases
used within the search; A(m, i) is a fitness function describing the
viability of a virus with a given mutant protease m in the presence of
a given inhibitor i. See the text for additional details and a description
of the actual sets and fitness function that were used.

and the set of inhibitors, and the form and evaluation of the
fitness function, is included in sections below.

The coevolutionary method (13-15, 17) has been described
previously. We include a brief summary here, and pseudocode
is included in Fig. 1. A working set of inhibitors (I') and a
working set of mutant proteases (M') are maintained during
execution. At the beginning, I" is empty, and M’ contains only
the wild-type protease. Then, at each step, the large search
space of all allowed peptides (I) is searched for the single
inhibitor that optimally blocks the current working set of
mutant proteases (shown in step Al in Fig. 1). The optimal
inhibitor is added to I” (step A2 in Fig. 1), and its ability to
block the best protease in M’ defines the current lower bound
for the minimax optimum. The algorithm then searches all
allowed combinations of protease mutants (M) to find a set of
mutants that optimally covers the current set of inhibitors.
First, the algorithm finds, for each inhibitor in I’, the protease
with maximal activity when challenged with the inhibitor (step
Bl in Fig. 1). However, this is not the best set for the
coevolutionary search because each of these mutants may
cover only a single inhibitor, eliminating only it from the
search. To attempt to eliminate larger sets of poor inhibitors
from the search, a greedy algorithm is used to search for a
smaller set of mutant proteases that retain activity against the
set of inhibitors in I’ but where each mutant covers a larger set
of inhibitors (steps B2 and B3 in Fig. 1). These mutants then
are added to M'. The lowest activity of the proteases in this set
determines the upper bound for the minimax optimum. When
the lower bound, describing the efficacy of the best inhibitor,
meets the upper bound, describing the activity of the best
protease, the minimax-optimal inhibitor has been found (the
loop termination condition at the bottom of Fig. 1).

The search for inhibitors (step Al in Fig. 1) and the search
for mutants (steps Bl and B3a in Fig. 1) use an exact
enumerative method that is guaranteed to find the best
solution. The efficiency of the search is greatly improved by
pruning of large classes of suboptimal solutions: When the
search finds a solution that, in some subset of the subsites,
binds too poorly to be effective, the additive nature of the
fitness function (described below) allows all candidate solu-
tions that match in these subsites to be eliminated from the
search.

These coevolution experiments assume that all mutations
(within the set described below) are equally available to a
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population of viruses when challenged by a given inhibitor.
Given the rapid rate of protease mutation in HIV in vivo, a
typical virus population should include individuals with all
possible single site mutations (7). Proteases with two or more
mutations are selected by an ordered accumulation of muta-
tions, requiring that each step in the accumulation also remains
a viable virus (18). Thus, the current experiments should not
be thought of as models for how mutant proteases are selected
in vivo; instead, they should be thought of as methods for
designing inhibitors that perform optimally against all possible
proteases with a given number of mutations. We are currently
exploring the use of stochastic coevolution algorithms to study
the course of ordered accumulation of mutations, to determine
the space of multiple mutants that are accessible by ordered,
single evolutionary steps from the wild type and to determine
whether this reduced space provides any advantages for in-
hibitor design.

Fitness Evaluation. The viral fitness function used for
coevolution evaluates the likelihood that a given virus may
reproduce when challenged by a given inhibitor. The mutant
virus must retain the ability to cleave its polyprotein processing
sites at a sufficient rate, so we have defined the fitness function,
A(m, i), as the ratio of (i) the reaction velocity of the mutant
protease cleaving its worst substrate (i.e., its rate-limiting
substrate) when challenged by the inhibitor, to (i) that of the
wild-type enzyme, uninhibited, cleaving its worst substrate.

Fitness values >1 indicate mutants that are more active than
wild type, even in the presence of inhibitor, whereas values <1
are proteases that are inhibited. It has been estimated that
reduction of protease activity to 2% that of the wild type is
sufficient to block viral replication (19) and that restoration of
protease activity to ~26% that of the wild type will yield a
viable resistant strain (20). This definition of A(m, i) allows
easy comparison to these values; we will consider changes of
this order of magnitude to be significant in our simulations.

The reaction velocity of the wild-type protease with a given
substrate, v(wt), is calculated by using Michaelis—-Menten
kinetics:

[S]

v(wt) = Vipa(wi) m

where [S] is the substrate concentration, V,.(wt) is the
maximal velocity, and Ky/(wt) is the Michaelis constant. The
reaction velocity of a given mutant protease with a competitive
inhibitor is calculated similarly:

(S]
[S] + Ku(m) +

v(m, i) = V,u(m) [TK,(m)

KI(m, l)

where [I] is the concentration of inhibitor, K; is the inhibition
constant, and m and i indicate that the values are taken for a
given mutant protease and inhibitor, respectively. To define
the velocity of the rate-limiting step, we evaluate »(wt) by using
the substrate that gives the lowest velocity and evaluate v(m, i)
with its worst substrate. Nine native substrates are tested (the
cleavage site is shown with an asterisk): SONY*PIVQ,
ARVL*AEAM, ATIM*MQRG, PGNF*LQSR, RQAN*
FLGK, SFNF*PQIT, TLNF*PISP, RKIL*FLDG, and
AETF*YVDR (21).

The most problematic aspect of the fitness function is the
evaluation of the Michaelis and inhibition constants. Coevo-
lution experiments require very rapid evaluation of reaction
velocities, as billions of inhibitors interacting with up to
millions of different mutant proteases are tested during each
experiment. Two approaches have been reported for predic-
tion of protease specificity and activity. A molecular mechanics
approach was able to rank fairly well a series of 21 similar
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peptide substrates, yielding a correlation coefficient of 0.64
between experimental cleavage rates and predicted interaction
energies (22). The ability of atom-based methods to rank
widely different substrates, however, has not been demon-
strated. Also, molecular mechanics is computationally feasible
for evaluating a few dozen complexes whereas a single coevo-
lution experiment requires millions of evaluations. Alterna-
tively, various pattern-recognition techniques have been used
to analyze peptide cleavage data, resulting in functions that
predict the probability that a given peptide will be cleaved,
making correct predictions in 80-90% of the cases (23-25).
These types of methods are rapid enough to make coevolution
simulation tractable. We have used a volume-based method
similar to these pattern-matching methods, as described below.
Several assumptions relate the volume-based score to the viral
fitness: (i) constant V,,, for all substrates and (if) Ky/(mm) of a
given peptide substrate or K;(m, i) for a given peptidomimetic
inhibitor may be approximated by the binding constant
Kay(m, i) = exp(AG(m, i)/RT), where AG(m, i) is the energy
evaluated by the volume-based method. The limitations im-
posed by these assumptions are discussed in Conclusions. Note
that, as better predictive models are developed, they will be
directly applicable within the coevolution method.

In each coevolution experiment, all individuals in the pro-
tease set compete with the entire set of inhibitors, all at the
same concentration and at the same substrate concentration.
The concentration of substrate in the HI'V-1 virion has been
estimated variously from 10 mM (26) to 80 uM (20), and Ky,
values for wild-type protease with peptide substrates are in the
high millimolar range (27). We set [S] = Ku(wt)/10 and the
inhibitor concentration equal to the substrate concentration.
Qualitatively similar results are obtained for different ratios of
[I] and [S] versus Ky (wt) and for experiments in which [I] does
not equal [S] (data not shown). Higher values of [I] generally
reduce the fitness of the entire set of mutant proteases while
retaining similar ordering and relative effectiveness among the
set of inhibitors.

Volume-Based Binding Free Energy Model. The binding
free energy of inhibitors and substrates to wild-type protease
is estimated by using a simple measure of volume complemen-
tarity. A potential of mean force was calibrated by using a data
set of 63 cleaved sequences and 239 uncleaved sequences (23).
In addition, a set of 1,488 uncleaved octapeptides was taken
from the gag and pol polyproteins of HIV-1 BRU isolate
(SWISS-PROT accession codes P03348 and P03367) by scan-
ning an eight-residue window through the sequence and
discarding octapeptides corresponding to the processing sites.
First, two tables of abundances were created, one for the
cleaved amino acid sequences and the other for the uncleaved
peptides, with subsites from P4 to P4" along one axis and amino
acid sidechain volumes (28) in bins of 20 A3 along the other
axis. These tables were populated by averaging over a moving
window of 20 A3 to minimize artifacts from the discrete
binning. We then used the uncleaved sequence table to define
the reference state, dividing bin-by-bin the values in the
“cleaved” table by values in the “uncleaved” table to account
for the uneven distribution of the 20 amino acids within the
volume bins. Use of amino acid natural abundances in place of
data from uncleaved peptides gave comparable results. Prob-
abilities, P, then were obtained by normalizing all volume bin
values across a given subsite. The probabilities were used to
calculate the free energy of binding of substrate to protease by
assuming Boltzmann-type statistics using the relation AG =
—RTIn(P) (29).

The volume-based binding model was tested by cross-
validation. Each sequence in the training set described above
was removed in turn, new potentials were calculated, and the
binding energy was calculated for the omitted sequence by
using the new potentials. Choosing a threshold value of 44
kcal/mol, 80% of the cleaved sequences showed binding
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stronger than the threshold, and 77% of the uncleaved se-
quences showed weaker binding. The discriminant function
method (23) performs somewhat better than this: By using
their reported threshold of 0.8 on data not included in their
training set, the method yields proper prediction of 89% of a
set of 55 sequences known to be cleaved. However, the
discriminant function method, and other methods that deal
with amino acids as “symbols” without physical properties, are
incompatible with the scheme by which we evaluate mutations,
described below. We currently are exploring the incorporation
of other properties, such as hydrophobicity, into the volume-
based model to improve its predictive ability.

These potentials reflect many of the qualitative features
previously reported for protease-substrate recognition (30).
Fig. 2 shows the potentials for each of the subsites. Low free
energies are observed for large amino acids in P1 and for
medium-sized amino acids in P2’. High free energies disallow
large amino acids in P2 and P2’, and P1’ shows two shallow
minima, one for large amino acids, reflecting substrates with
aromatic groups flanking the cleavage site, and one for small
amino acids, reflecting substrates cleaved between aromatic
amino acids and proline. Surprisingly, the potentials show that
P4 and P4’ both significantly favor small amino acids.

Modeling of Protease Mutation. Protease mutation is mod-
eled by assuming that changes in the volume of amino acids in
contact with the substrate add linearly and may be used with
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Table 1. Summary of coevolution results
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In the final model, 10 protease amino acids in each chain of the
dimer were allowed to mutate: G27, A28, V32, 147, G48, G49,

Number of . .
mutations Best mutant protease Minimax-optimal 150, and 184 were allowed to mutate to uncharged amino acids,
allowed* against minimax inhibitor inhibitor  Fitness and D29 and D30 were allowed to mutate conservatively to E,

Inhibitors limited to a set of nine HIV-1 polyprotein cleavage sites’

N, or Q. The subsites they contact are G27-S1; A28-S2;
D29-S3,S4; D30-S2,S4; V32-S2; 147-S2,S3,S4; G48-S3; G49-

0 wild-type ARVLAEAM 0.1402 S1,82,83; 150-S2; 184-S1'; G127-S1’; A128-S2’; D129-S3',S4';
; 32G48g48 SFNFPQIT gzg? D130-S2',84"; V132-S2’; 1147-S2",84', G148-S3’; G149-
: b 33’ IEW (I}‘L " sgﬁg()g o8 9; S1',82; 1150-S2; 1184-S1. The distance cutoff chosen here
1 G2IA \%ZN G’4 8N, 1840 SFNFPSIT N 5546 caused V82, a site of mutation commonly observed in resistant

’ ’ ’ : strains, to be omitted from the list. This should have little effect
5 G27A, A28S, D29Q, 147V, 184Q  SFNFPQIT  1.8325

Inhibitors from all combinations of uncharged amino acids*

on the results presented here because the current model does
not evaluate directionality in the interaction between

(1) Wl\l/d_?;??e %Ygﬁ:gﬁg 882471; sidechains and subsites, so the 184 /1184 positions provide a
2 V32T, G48T GFTFAQAG O'1 467 remodeling of the S1'/S1 sites similar to that of the V82/V182
3 V32L, G48T, 150T GFVYAQTG 0.3060 positions.

4 G27A, A28S, V32P, 150Q GFVYWLGT 0.4829

5 A28S, D30Q, V32C, 147V, G48C GFVFYQAG 0.6660

*Inhibitors were tested against sets of mutant proteases with increasing
genetic diversity. The simplest set contains only the wild-type en-
zyme; the largest, with 51 million individuals, includes all proteases
with up to five mutations at the specified sites (see Methods).

TInhibitors tested were RQANFLGK, AETFYVDR, SQNYPIVQ,
RKILFLDG, ATIMMQRG, PGNFLQSR, TLNFPISP, SENFPQIT,
and ARVLAEAM.

¥This includes all amino acids except D, E, H, R, and K.

the volume-based model described above. For example, mu-
tation V32L increases the size of the amino acid by ~26 A3,
decreasing the size of the S2 and S2' protease subsites; to
evaluate the free energy of binding, we shift the potentials for
P2 and P2’ 1.3 bins toward the smaller volumes. The resulting
potentials disfavor larger sidechains in the substrates and
inhibitors even more strongly than the original potentials.
Sites of mutation were limited to active site amino acids
judged to be in contact with substrate, determined by using the
structures of 12 protease-inhibitor complexes with peptidomi-
metic inhibitors (Protein Data Bank accession codes laaq,
1hef, 1heg, 1hih, 1hiv, 1hvi, 1hvj, 1hvk, 1hvs, 7hvp, 8hvp, and
9hvp). The protein backbones were superimposed, and average
values for the CB positions of protein and inhibitor residues
were determined. Distances between inhibitor CB and protein
Cp atoms were calculated (the rms deviation of these distances
was ~0.5 A), and protein residues within 6 A of an inhibitor
were added to the list of residues contacting that particular
subsite. The 12 structures did not contain inhibitors with a Cf3
position at P4, so we assumed that this site is symmetrical with
the P4 site and is contacted by the symmetry-related residues.

Table 2. Robustness of minimax-optimal inhibitors

RESULTS AND DISCUSSION

Most enzymes are highly specific for a single substrate, so a
transition state analogue of the substrate will often be an ideal
inhibitor. Retroviral proteases, however, have broader speci-
ficity, binding and cleaving a wide range of different peptide
substrates. Our first coevolution experiment compares two
strategies for the design of HI'V-1 protease inhibitors. The first
challenges the set of mutant proteases with a small set of
substrate analogues: peptidomimetic inhibitors corresponding
to the sequences of the native substrates. This simulation
models the simplest strategy for the design of peptidomimetic
inhibitors: that of creating a noncleavable analogue of one of
the observed substrates of the target enzyme. The second
simulation challenges the proteases with all possible peptido-
mimetic inhibitors, searching this much larger set for the best
possible resistance-evading inhibitor. The results are included
in Table 1.

As one might expect, the inhibitors chosen from the larger
set perform far better. Against the wild-type protease, the best
inhibitor from the substrate-analogue set shows a fitness of
0.1402, or 7-fold inhibition, but the best inhibitor from the
larger set (GWQFAQAG) shows a fitness of 0.0071, or 140-
fold inhibition. As sets of mutant proteases are tested, the
fitness of the virus increases in both simulations, as the
protease becomes increasingly more able to evade the inhib-
itors. Allowing only single-site mutations, the best substrate
analogue reduces the fitness of the best mutant protease by
3-fold whereas the inhibitor selected from the larger set
inhibits its best competitor by 18-fold. Allowing pentuple
mutants, the substrate analogues are completely ineffective,

Minimax-optimal inhibitors

Fitness of best protease

0 1 2 3 4 5

(1) (119) (6288) (1.9 X 109) (3.9 x 106) (5.1 X 107)
GWQFAQAG 0.0071 2.9291 3.1456 5.9740 8.4034 8.5782
GLQFAQAG 0.0105 0.0548 0.2312 0.5605 0.8769 1.5725
GFTFAQAG 0.0229 0.0747 0.1467 0.3394 0.5791 1.0133
GFVYAQTG 0.0205 0.0984 0.3060 0.3060 0.9070 1.0752
GFVYWLGT* 0.2769 0.2769 0.4477 0.4477 0.4829 0.7753
GFVFYQAG 0.0369 0.1485 0.3833 0.6660 0.6660 0.6660

The minimax inhibitor optimized against each set of mutant proteases, given in Table 1, was subsequently subjected to the other five sets of
proteases. Each column corresponds to a set of proteases with a different number of simultaneous mutations, from wild type to pentuple mutants
(left to right). Figures in parentheses are the number of different mutant proteases in each set. Values in bold are the viral fitnesses obtained during
the initial search for each inhibitor (identical to those values in Table 1); values in plain type are fitnesses when the inhibitor then was subjected
to the other five sets of mutants.

*The inhibitor selected against the set of quadruple mutants, GFVYWLGT, shows less robust behavior than the inhibitors selected against the other
sets and also shows a sharp dip in both inhibitor and substrate binding free energy compared with the other inhibitors (see Fig. 3). This is because
of the structural mode used to evade inhibitors: The best quadruple mutant reduces the size of the P1 and P1’ sites whereas the best proteases
selected from the other sets increase P2 and P2’ and decrease P3 and P3’ (data not shown). Examples of both modes can be found within 20%
of the minimax-optimal inhibitor in the sets of triple, quadruple, and pentuple mutants.
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Fic. 3. Results from six coevolution simulations challenging dif-
ferent sets of mutant proteases, from the wild-type protease through
pentuple mutants (left to right on the horizontal axis), with 2.6 billion
general-sequence inhibitors. The mutations observed in the best
protease selected from each set are given at the top of the graph, the
inhibitors selected in each case are given in Table 1, and the binding
free energy of the inhibitor to this protease (in kcal/mol) is shown with
the heavy line. The binding free energies of each of the other native
substrates to these same mutant proteases also are shown with thin
lines. The fitness of the virus is determined by two factors: (i) the
strength of binding of the rate-limiting substrate, which is the upper-
most point on the graph for each mutant, and (i) the effectiveness of
the inhibitor, which is inversely proportional to the difference between
the binding strength of the inhibitor and that of the rate-limiting
substrate (this difference is highlighted by stippling). The virus mu-
tates to improve the binding of its worst substrate, moving the
uppermost point downwards on the graph, and to reduce the effec-
tiveness of the inhibitor, reducing the difference shown by stippling.
With wild-type protease, the inhibitor is very effective and binds far
more tightly than the rate-limiting substrate, ROQANFLGK. But with
a single site mutation, the binding of the inhibitor is reduced substan-
tially. The sets with additional sites of mutation then select proteases
that improve the binding of the worst substrate while retaining the
poor binding of the inhibitor.

allowing selection of a mutant that actually increases the
activity over the wild-type enzyme, and the best inhibitor
chosen from the larger range inhibits weakly, with a fitness
0.6660X that of the wild type. For each set of mutant proteases,
the inhibitor selected from all possible inhibitors is better than
the inhibitor derived from the nine natural substrates. The
large magnitude of this difference (a factor of 20 for inhibition
of the wild type to a factor of 3 for inhibition of the pentuple
mutants) is unexpected and is attributable to the semispecific
recognition of HIV-1 protease for its substrates. If the pro-
tease were a more typical, highly specific enzyme, we would
expect this difference to be far smaller, and the natural
substrates would be a better model for inhibitors.

The inhibitors chosen from the larger set of all possible
inhibitors might be thought of as “generalist” inhibitors. They
are targeting the immutable features of the enzyme active site,
the features that must be conserved to retain the ability to
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cleave all of the native substrates. An example of one such
feature is seen in the S3 and S3’ sites. The volume-based
potentials for S3 and S3" (Fig. 2) are relatively flat, with the
minimum in the 140- to 160-A3 bin in S3’ and a general
favoring of larger amino acids in S3. A typical rational drug-
design study would seek to fill these sites, which are quite large,
with bulky sidechains, forming the maximal number of con-
tacts between inhibitor and the protein. This allows, however,
an easy route for resistance mutation. Because the native
substrates contain no residues larger than arginine at P3’ and
phenylalanine at P3, an inhibitor with tryptophan or another
large, bulky group at these positions can be excluded by
constriction of the S3 and S3’ sites. The immutable feature of
the S3 site, providing a resistance-evading target for drug
design, is the need to accommodate amino acids up to the size
of phenylalanine.

The coevolution method identifies this feature, as seen in
Table 1. The first target for resistance by mutant proteases is
the P3 position: Tryptophan is best in an inhibitor for the
wild-type protease, filling the large S3 site, but smaller amino
acids are needed to retain efficacy in the face of protease
mutation. This effect has been observed experimentally. Sa-
quinavir, which has a large P3 substituent, is sensitive to a
G48V mutation that constricts the S3 site (31). Also, small P3
and P3’ substituents have been shown to be critical in a
broad-based inhibitor efficacious against FIV, SIV, and HIV
proteases (32).

The robustness of these generalist inhibitors is tested by
challenging each minimax inhibitor with the other sets of
mutant proteases (Table 2): for instance, finding the best
inhibitor for the set of proteases with a single mutation, and
then challenging this inhibitor with all proteases having qua-
druple mutations. These data reveal an important point for
design of inhibitors: It is imperative to design inhibitors against
a large set of mutant proteases. Reading across the top row of
the table, we see that inhibitors designed against the wild-type
protease are ineffective against mutant proteases. Reading
down the first column, we see that inhibitors designed against
various sets of mutant proteases remain highly effective against
the wild-type protease. This observation is not expected a
priori and is fortuitous for the design of antiviral agents.
Because all of the proteases present in the single, double,
triple, and quadruple mutant sets, as well as the wild-type
protease, are also present in the pentuple mutant set, the
inhibitor GFVFYQAG (the last row) is ensured of being able
to inhibit all of the sets of proteases at a level of 0.6660 or
better. We find, however, that this same inhibitor retains the
ability to inhibit the subsets with fewer mutations at levels close
to those obtained by inhibitors optimized directly against the
smaller subsets. This indicates that a single experiment, using
the largest allowable mutation space, is sufficient for selection
of a robust inhibitor that will be effective against wild-type and
mutant proteases.

Coevolution experiments are also useful for probing the
mechanisms of mutation. For instance, the mutant proteases
that are selected in the current experiments maximize their
activity in two ways, as shown in Fig. 3. First, as more mutations
are allowed, the mutant proteases progressively worsen the
binding of inhibitor, moving the bold line upwards along the
free energy scale. Second, the mutant proteases improve the
binding of the rate-limiting native substrate, moving the up-
permost points progressively downward along the free energy
scale. Together, these two changes reduce the overall effec-
tiveness of the inhibitors, as seen in the fitness values in Table
1. It has been reported that the quadruple mutant (M461/
L63P/V82T/184V) provides resistance to protease inhibitors
in a similar way: Mutation of residues 82 and 84 reduces the
binding strength of inhibitors, whereas mutation of residues 46
and 63 improves the cleavage of the substrates (33). Note,
however, that the mechanism of improved protease cleavage is
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different in the coevolution simulation and in the observed
quadruple mutant: In the simulations, the fitness model ac-
counts only for active site residues, so the mutant’s fitness is
improved simply by increasing the binding strength of the
substrate; in the quadruple mutant, residues 46 and 63 are
distant from the active site, and the mutant enhances cleavage
through a mixture of enthalpic and entropic changes, which are
not modeled in the current coevolutionary experiments.

CONCLUSIONS

These coevolutionary experiments, challenging a set of mutant
proteases with a set of peptidomimetic inhibitors, demonstrate
that typical drug design techniques may be ineffective for the
design of resistance-evading inhibitors against enzymes with
broad specificity, such as HIV-1 protease. Inhibitors that are
direct analogues of individual substrates, and inhibitors de-
signed to fill the active site of the wild type or a mutant enzyme,
do not take into account the mutational plasticity of HIV-1
protease, making them susceptible to resistance mutation. Two
design principles, demonstrated by the coevolution experi-
ments, can improve the search for new resistance-evading
pharmaceutical agents: (i) Resistance-evading inhibitors are
best designed against the immutable properties of the active
site—the properties that are necessary for binding and cleav-
age of all of the native substrates. Coevolution experiments
have shown that, in HI'V-1 protease inhibitors, the P3 and P3’
positions are sites in which the best resistance-evading design
calls for a sidechain smaller than that recommended by typical
drug design techniques. (if) Robust resistance-evading inhib-
itors can be designed by optimizing activity simultaneously
against a large set of mutant enzymes, incorporating as much
of the mutational space as possible.

Because of the assumptions made in the current fitness
evaluation needed to keep computation times tractable, the
molecular detail shown in these results should not be taken
literally. We do not necessarily expect the exact mutations and
inhibitors found in the current experiments to reflect muta-
tions that will be selected in vivo or to recommend inhibitors
that should be synthesized and tested. The current model does,
however, incorporate the major structural features of pro-
tease-inhibitor interaction, so we expect that the qualitative
trends indicated by the results, as encapsulated in the points
above, will be relatively unaffected by quantitative changes in
the model as more data become available. Coevolution pro-
vides a powerful method for combining diverse data on HIV-1
protease mutation, sequence specificity, and inhibition within
a computational framework that allows for the analysis of viral
mutation processes and the rapid prototyping and evaluation
of new inhibitors when challenged by a mutating target.
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