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We present a methodology for the efficient numerical solution of
eigenvalue problems of full three-dimensional elasticity for thin
elastic structures, such as shells, plates and rods of arbitrary
geometry, discretized by the finite element method. Such problems
are solved by iterative methods, which, however, are known to
suffer from slow convergence or even convergence failure, when
the thickness is small. In this paper we show an effective way of
resolving this difficulty by invoking a special preconditioning
technique associated with the effective dimensional reduction
algorithm (EDRA). As an example, we present an algorithm for
computing the minimal eigenvalue of a thin elastic plate and we
show both theoretically and numerically that it is robust with
respect to both the thickness and discretization parameters, i.e. the
convergence does not deteriorate with diminishing thickness or
mesh refinement. This robustness is sine qua non for the efficient
computation of large-scale eigenvalue problems for thin elastic
structures.

robust preconditioning in thickness and discretization
parameters u vibrations u shells u plates u rods

Prolegomena

Mnemosyne, Archimedean Muse: Ivo Babuška and his
legacy to computational mathematics, mechanics, and
finite element culture.*

I t may be useful to begin with some reflections through which
the present contribution can be contextualized. The first aspect

that will impress the newcomer to the field of thin elastic
structures, such as shells, plates, and rods, is a myriad of papers
and books that have been written on a plethora of theoretical,
numerical, and computational themes. The second aspect that
will—upon reflection—appear is that the field is almost exclu-
sively occupied by (a hierarchy of) lower-dimensional models
(e.g., two-dimensional plates and shells) bearing the names of
their most prominent proponents: Kirchhoff, Love, Reissner,
Mindlin, von Kármán, Koiter, Naghdi, etc. (see, e.g., refs. 1–8).
The raison d’ être for these models has been to provide tractable,
‘‘valid’’ approximations to the governing partial differential
equations of thin three-dimensional elastic bodies. However,
questions relating to the validity of these models have never
ceased to be raised since, say, 1888, when Love published his
seminal paper on ‘‘The small vibrations and deformation of a
thin elastic shell’’ (ref. 9; for a historical excursion, see ref. 10).

Even today, despite substantial progress in the numerical
solution of three-dimensional large-scale problems, the study of
lower-dimensional models continues to be a crowded mono-
drome. This (lower-dimensional) paradigm is eloquently exem-
plified by some prominent specialists in the field, who, in a recent
state-of-the-art statement—‘‘sign-posted’’ in cyberspace (ref.
11)—explain: ‘‘. . . An accurate, fully three-dimensional, simu-
lation of a very thin body is beyond the power of even the most
powerful computers and computational techniques . . . Thus the
need for two-dimensional shell models.’’

In this paper we face up to the three-dimensional challenge—
with respect to the efficient computation of eigenvalue problems
for thin elastic structures. In fact, thorough scrutiny of the
literature reveals that this is the first paper to deal with the
numerical solution of three-dimensional eigenvalue problems for
thin elastic structures—including theoretical convergence esti-
mates for the iterative algorithm. The (new) paradigm in three
dimensions, rooted in the epistemological approach introduced
earlier (refs. 12–16) bears the hallmark of a paradigm shift—to
adopt Thomas Kuhn’s terminology (ref. 17)—from lower- to
higher-dimensional thinking in this field (see also ref. 2).

Interestingly, the genesis of the new paradigm was heralded in
Stuart Antman’s inspiring and visionary ‘‘dreams for a final
theory’’†: ‘‘The progress in the numerical analysis of problems of
solid mechanics suggests that a day will come when rod and shell
theories will lose their distinctive identities within computational
mechanics and be subsumed under a general theory for the
numerical treatment of three-dimensional problems, endowed
with useful error estimates’’ (ref. 1, page 600; see also ref. 6).

1. Introduction
Vibrations and associated eigenvalue problems are all-
pervasive in the natural and man-made world and as such are
investigated by many branches of mathematical physics, com-
putational mathematics, and engineering. For example, in
structural dynamics, to which this paper relates, the eigenval-
ues of the elasticity system of equations represent the fre-
quencies of free vibrations of an elastic structure, and the
eigenfunctions describe vibration modes. In this paper we are
primarily concerned with the question of how to solve effi-
ciently eigenvalue problems for three-dimensional large-scale
thin elastic structures, such as shells, plates and rods of
arbitrary geometry. We address in particular the hitherto
unresolved difficulties encountered in the numerical solution
of such problems resulting from the presence of a small
thickness parameter. The term ‘‘dimensional reduction’’ in the
title and throughout this paper must be distinguished from that
commonly associated with the familiar lower-dimensional shell,
plate, and rod models (see, e.g., refs. 1 and 4). Here the term
means reduction of the complexity in the numerical solution
of the three-dimensional problem. This will become apparent
from the ensuing discussion (see Section 7).

The discretization of an eigenvalue problem for a differential
equation using, e.g., the finite element method yields an alge-
braic eigenvalue problem. We note that in this paper we do not
address questions of accuracy of discretization; our main concern
is the efficient numerical solution of the discretized problem
(assumed to be an adequate approximation of the eigenvalue
problem for the equations of three-dimensional elasticity). The

*Mnemosyne (archetypal image of cultural and intellectual memory, mother of the nine
Muses) has been called upon to record our homage to the life and pre-eminent scientific
work of Professor Ivo Babuška. His insightful and challenging questions occasioned our
exploration of thin elastic structures.

†Title of a book by Steven Weinberg, Nobel Laureate.
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numerical algorithms for solving algebraic eigenvalue problems
are among the oldest known in the literature; they are ‘‘150 years
old and still alive’’ as the authors of ref. 18 wittingly put it to
emphasize that eigenproblems continue to be a major focus of
modern numerical analysis—especially in connection with large-
scale computations. Unlike the case of linear systems of equa-
tions—which can be solved by direct methods, i.e., at a finite
number of steps—methods for solving algebraic eigenvalue
problems are intrinsically iterative. When developing an iterative
method it is important to secure that it is robust, i.e., its
convergence rate is not adversely affected by the various pa-
rameters involved. In large-scale finite element computations
the convergence may deteriorate as the size of the discretized
problem increases. In the case of thin elastic structures, such as
shells, plates, and rods, one encounters, additionally, the dete-
rioration of the convergence owing to the small thickness of the
structure. This poses a hitherto insurmountable difficulty even
for modern high performance numerical methods such as mul-
tilevel methods, as witnessed, e.g., in the numerical experiments
of refs. 19 and 20. Interestingly, as ref. 19 states, this convergence
deterioration is especially pronounced in the case of thin plates
(the case treated here) rather than thin shells; moreover, very
small plate thickness may result not only in slow convergence but
sometimes in convergence failure.

Recent progress in robust iterative algorithms is associated
with a technique called preconditioning (see, e.g., refs. 21 and
22 and the references therein). To describe this technique, let
us first consider the solution of a linear system Au 5 f with a
symmetric positive definite matrix A. The solution u of this
system yields the minimum to the functional J(u) 5 (Au, u) 2
2(f, u), where (z,z) is the Euclidean scalar product; and it can
be found using, e.g., the steepest descent algorithm. The
convergence of this algorithm is determined by the spectral
condition number (i.e., the ratio of the maximal and minimal
eigenvalues) of the matrix A. Hence, if A is, e.g., the stiffness
matrix of the finite element method, the convergence deteri-
orates when the finite element mesh is refined. In the case of
a thin elastic structure, e.g., a plate or a shell, the spectral
condition number of A depends, additionally, on the thickness
t as O(t22). Thus, the convergence deteriorates also when t is
small (cf. ref. 21). However, if one calculates the gradient of
J using the scalar product (Bz,z), where B is a symmetric positive
definite matrix, then the convergence of the steepest descent
algorithm is determined by the spectral condition number of
B21A rather than by the spectral condition number of A.
Therefore, the deterioration of the convergence caused by a
parameter can be avoided provided that the spectral condition
number of B21A is uniformly bounded with respect to that
parameter. The matrix B is called a preconditioner for A, and
the technique just described is the preconditioning we men-
tioned earlier.

The above preconditioning technique can be applied to
eigenvalue problems as well. Suppose that we are interested in
the minimal eigenvalue of the matrix A. This eigenvalue is the
minimum of the Rayleigh quotient functional l(w) 5 (Aw,
w)y(w, w), which can be found using the preconditioned
steepest descent algorithm described above. In Section 5
below, we present an estimate for the convergence of this
algorithm obtained from that of ref. 23. This estimate shows
that the convergence is determined by the spectral condition
number of B21A and the ratio (l1 2 l0)yl1, where l0 and l1
are the two smallest eigenvalues of A. In the case of a thin
elastic plate the asymptotic analysis of ref. 24 (see Section 6)
demonstrates that (l1 2 l0)yl1 is uniformly positive in the
vicinity of t 5 0. Thus, if we use a preconditioner that is robust
with respect to both the thickness and the discretization
parameters then the corresponding preconditioned steepest

descent method for finding the minimal eigenvalue of A is
robust also with respect to these parameters.

Today, we find a plethora of preconditioned iterative meth-
ods that are robust with respect to the discretization param-
eters (see, e.g., ref. 25). By contrast, there is a scarcity of iterative
methods for thin elastic structures that are robust with respect
to the thickness—and these invariably address one- and two-
dimensional models (see, e.g., refs. 26–28). The question of
thickness-robustness for full three-dimensional elasticity was
first addressed—and radically resolved—in refs. 13–16. In these
papers, a methodology was introduced for the development of
robust numerical methods for thin elastic structures based on the
synergy of the so-called Effective Dimensional Reduction Algo-
rithm (EDRA; ref. 12) and the concept of the Korn’s type
inequality in subspaces (see, e.g., refs. 14 and 16). In EDRA
special basis functions are used for the discretization of the
problem in the transverse direction of the thin structure, whereas
in the lateral direction any suitable discretization can be em-
ployed—or, in fact, no discretization at all, yielding a semi-
discrete system of equations (see, e.g., refs. 12 and 16). The
(semi-) discretized problem is then solved by a suitable precon-
ditioned iterative algorithm with a block-diagonal precondi-
tioner in which each block corresponds to basis functions with a
fixed transversal component (see Section 7). In the present
paper, we show that this methodology can also be applied to
eigenvalue problems of full three-dimensional elasticity for thin
structures. As an example, we consider the solution of the
minimal eigenvalue problem for a thin elastic plate using the
steepest descent algorithm and we show both theoretically and
numerically that employing the above block-diagonal precondi-
tioner makes the convergence of this algorithm robust with
respect to both the thickness and the discretization parameters.
This robustness is sine qua non for the efficient computation of
large-scale eigenvalue problems for thin elastic structures.

2. Notation
In the paper, we use the notation (z, z)V for the scalar product in
the Lebesgue space L2(V). The same notation is used for vector
functions, i.e., for u, v [ (L2(V))3, (u, v)V denotes the scalar
product of u and v in (L2(V))3. Throughout the paper, we use
boldface for vector functions and their spaces, i.e., u 5 (u1, u2,
u3), etc. The standard notation is used for Sobolev spaces and
their subspaces, e.g., H0

1(V) is the Sobolev space of functions
vanishing on the boundary V of the domain V with weak
derivatives in L2(V).

3. Eigenvalue Problem for a Thin Elastic Structure
Let V be a domain of the form v 3 (2t, t), where v is a
two-dimensional bounded domain with piecewise smooth Lip-
schitz boundary v. Thus, t is the (half-) thickness of V.

In this paper, we are interested in the computation of the
minimal eigenvalue of the following eigenvalue problem:

E~u, v! 5 l~u, v!V @v [ V. [1]

Here V is the space of admissible displacements given by

V 5 $u [ ~H1~V!!3:u 5 0 on G 5 v 3 ~ 2 t , t!%, [2]

and E is the elastic energy form given by

E~u, v! 5 E
V

O
i, j51

3

sij~u!«ij~v!dV,
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where «ij are the components of the strain tensor given by

«ij~v! 5
1
2 Svi

xj
1

vj

xi
D

and sij are the components of the stress tensor given by

sij~u! 5
E

1 1 v
«ij~u! 1

Ev
~1 1 v!~1 2 2v!

di
j O

k51

3

«kk~u!,

where E is the Young’s modulus and v is the Poisson’s ratio.

4. Discretization
To discretize 1 we introduce the finite-dimensional approxima-
tion Vpq of the space of admissible displacements V given by

Vpq 5 $~u1, u2, u3! [ V:uk 5 O
i50

p

uki~x, y!wi~z!%, [3]

where uki [ Vq,

Vq 5 $u [ H0
1~v!: u 5 O

j51

Nq

cjvj~x, y!%, [4]

and vj(x, y) and wi(z) are some given basis functions. The
Galerkin projection onto Vpq yields the following discretized
counterpart of 1:

E~upq, v! 5 l~upq, v!V @v [ Vpq. [5]

Let us enumerate the elements of the set Jpq of triple indices (i,
j, k), where i ranges between 0 and p, j ranges between 1 and Nq,
and k ranges between 1 and 3:

Jpq 5 $0, . . . , p% 3 $1, . . . , Nq% 3 $1, 2, 3%

5 $~in, jn, kn!%n51,Npq
.

The vector functions wn
pq 5 win

(z)vjn
(x, y)ekn

where e1 5 (1, 0, 0),
e2 5 (0, 1, 0), and e3 5 (0, 0, 1), form the basis of Vpq, and the
eigenvalue problem 5 can be expressed in matrix form as

Aw 5 lBw, [6]

where the stiffness matrix A and the mass matrix B are Npq 3 Npq
matrices with the elements amn and bmn given by

amn 5 E~wm
pq, wn

pq!, bmn 5 ~wm
pq, wn

pq!V [7]

and w is the vector of the coordinates of the eigenfunction upq in
the basis {wn

pq}, i.e.,

upq 5 O
i51

Npq

wiwi
pq.

We observe from 7 that the matrices A and B are symmetric
positive definite.

5. Preconditioned Iterative Solution of an Algebraic
Eigenvalue Problem
The problem of finding the smallest eigenvalue l0 (and corre-
sponding eigenvector w0) of 6 can be formulated equivalently as
the following variational problem:

l0 5 l~w0! 5 min
w

l~w!, [8]

where l(w) is the Rayleigh quotient functional given by

l~w! 5
~Aw, w!

~Bw, w!
,

and (z, z) stands for the usual scalar product in Npq-dimensional
Euclidean space. The problem 8 can be solved iteratively by the
steepest descent algorithm: given an approximation w0

n to the
eigenvector w0, we compute the new approximation w0

n11 and the
corresponding minimal eigenvalue approximation l0

n11 by solv-
ing the following one-dimensional variational problem:

l0
n11 5 l~w0

n11! 5 min
t

l~w0
n 1 t¹l~w0

n!!. [9]

From 9 we see that l0 # l0
n11 # l0

n and, therefore, the iterations
converge. Furthermore, it is easy to verify that if l0

n 3 l then l
is an eigenvalue of 6. Thus, if l0

m , l1 for some m then l0
n 3

l0. However, the convergence rate of the iterations 9 generally
depends on the thickness t and discretization parameters p and
q. When the thickness is small or the finite element mesh is
refined, i.e., p and Nq are large, the convergence may be very
slow. To avoid the deterioration of the convergence we naturally
resort to preconditioning.

Let C be a symmetric positive definite Npq 3 Npq matrix. If we
use the scalar product (Cz, z) instead of (z, z), then the gradient
of the functional l(w) becomes

¹l~w! 5
2

~Bw, w!
C21~Aw 2 l~w!Bw!. [10]

The matrix C is called the preconditioner and the iterative
algorithm 9 with the gradient computed according to 10 is called
the preconditioned steepest descent algorithm. For the conver-
gence rate of this algorithm the following estimate can be derived
from that given in ref. 23 (see also ref. 29). Assuming that l0 is
simple, and l0

n , l1, where l1 is the second smallest eigenvalue
of 6, we have

r~l0
n11! # S1 2

d0

d0

l1 2 l0

l1
D r~l0

n!, [11]

where

r~l! 5
l 2 l0

l1 2 l
, d0 5 min

w

~Aw, w!

~Cw, w!
, d0 5 max

w

~Aw, w!

~Cw, w!
.

From 11 we observe that the convergence of the algorithm 9
is affected by two factors: (i) the spectral condition number d 5
d0yd0 of the matrix C21A and (ii) the ratio dl 5 (l1 2 l0)yl1.
In Section 6 below, we describe the asymptotic behavior of dl

with respect to the thickness and discretization parameters, and
in Section 7, we introduce the preconditioner C for which d is
bounded by a constant independent of these parameters.

6. Asymptotic Behavior of Eigenvalues of Thin Plates
From the theory of spectral approximation (see, e.g., ref. 30) we
know that the two smallest eigenvalues of 5 converge to the two
smallest eigenvalues of 1 provided that the space Vpq approxi-
mates the corresponding eigenfunctions. For the case of a thin
isotropic and homogeneous plate, it was first shown in ref. 24
that, as t3 0, the eigenvalues of 1 divided by t2 converge to the
eigenvalues u of the biharmonic equation

E
3~1 2 v2! E

v

DuDvdv 5 u E
v

uvdv @v [ H0
2~v!. [12]
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Thus, we conclude that

lim
t30

lim
p,q3`

l1 2 l0

l1
5

u1 2 u0

u1
, [13]

where u0 and u1 are the two smallest eigenvalues of 12. Assuming
that the first eigenvalue of 12 is simple, the constant in the
right-hand side of 13 is positive.

7. Effective Dimensional Reduction Preconditioner for Thin
Elastic Plates
Let us set w0(z) 5 1, w1(z) 5 z and assume that the subsequent
basis functions are the eigenfunctions corresponding to all but
the two smallest eigenvalues of the eigenvalue problem

wi [ Pp: E
2t

t

dwi

dz
dw
dz

dz 5 l E
2t

t

wiwdz @w [ Pp, [14]

where Pp is the space of polynomials of degree # p. Further, let
us assume that the triple indices (in, jn, kn) are enumerated in
such a way that in is the slowest index and jn is the fastest one,
and let us take the following block-diagonal matrix for the
preconditioner C:

C 5 diag$C0, C21, C22, C23, . . . , Cp1, Cp2, Cp3%, [15]

where C0 coincides with the square block of A containing all
elements amn for which in 5 im # 1 and Cik coincides with the
square block of A containing all amn for which in 5 im 5 i and
kn 5 km 5 k.

According to 10 and 15 the computation of the gradient in the
preconditioned steepest descent algorithm involves the solution
of the systems

C0g0 5 f0 [16]

and

Cijgij 5 fij. [17]

From the definition of the matrices C0 and Cij, we observe that
they can be viewed as stiffness matrices of some auxiliary
two-dimensional problems. Thus, the solution of the discretized
three-dimensional problem is reduced to the solution of a se-
quence of discretized two-dimensional problems. This key fea-
ture explains the use of the term ‘‘dimensional reduction’’ for
algorithms based on the above preconditioner. One such algo-
rithm is the so-called EDRA which the authors have previously
introduced to solve multidimensional boundary value problems
for elliptic systems of partial differential equations (see, e.g.,
refs. 12 and 16; ‡). For this algorithm a convergence rate estimate
is given in ref. 16 which is independent of the number of
lower-dimensional blocks Cij in the preconditioner C. It should
be noted that if we introduce the block partitioning of the matrix
A corresponding to the partitioning of C given above, then A
itself can be formally viewed as the matrix of a system of
discretized two-dimensional equations. However, unlike 16–17,
this system is coupled. The above result on the convergence rate
of the EDRA implies that the use of the preconditioner C
effectively decouples this system, and, for this reason, we have
called this preconditioning technique effective dimensional re-
duction. Furthermore, from the Korn’s type inequality in sub-
spaces it follows that the constants d0 and d0 are uniformly
bounded from below and above not only with respect to the

discretization parameters but also with respect to the thickness
(see refs. 15 and 16). Thus, the convergence of the EDRA is not
adversely affected by either the small thickness or large number
of elements (i.e., basis functions) in a finite element discretiza-
tion.

Returning to the eigenvalue problem, we observe that, in view
of the discussion in the previous section, one can easily derive
from 11 the following asymptotic estimate for the convergence
of the iterations 9:

lim
t30

lim
p,q3`

lim
n3`

ul0
n11 2 l0u

ul0
n 2 l0u

5 1 2
d0

d0

u1 2 u0

u1
5 q0 , 1.

This estimate shows that the convergence rate does not deteri-
orate for large values of the discretization parameters p and Nq
(cf. 3 and 4) and small values of the thickness parameter t. Thus,
the above algorithm for solving the minimal eigenvalue problem
for thin elastic structures is robust with respect to these param-
eters.

8. Numerical Example
In this section, we present numerical results for a three-
dimensional cantilevered rectangular plate V 5 (0, 1) 3 (0, 2) 3
(0, t) clamped at y 5 0 and free on all other edges. The elastic
moduli are: E 5 1010 and v 5 0.25. We discretize problem 1
using the p-version of the finite element method (see, e.g., ref.
8). We have carried out numerical experiments using one and
more rectangular brick elements to subdivide the given domain.
Here we present typical convergence results for the case when
the domain is subdivided into 4 elements by the planes x 5 0.5
and y 5 0.5. We use the basis functions described in Section 7
in the (transverse) variable z and (piecewise) polynomials of
degree # q in the (lateral) variables x and y. The discretized
problem 6 is solved using iterations 9 which are repeated until the
relative energy norm =(Arn, rn)yl0

n of the (preconditioned)
residual rn 5 C21(Aw0

n 2 l0
nBw0

n) becomes less than 0.001. Table
1 displays the smallest eigenvalue l0 and the number of iterations
for various values of the thickness parameter t and the discreti-
zation parameters p and q. We note that these results fully
confirm the theoretical predictions made above.

Epilegomena
It may be useful to end with a reflection on the versatility of the
preconditioner presented above. In this paper we have presented
a methodology for computing the minimal eigenvalue for thin
isotropic and homogeneous plates and we have demonstrated

‡In the present paper, for simplicity and consistency of notation, we interpret the results on
EDRA in the algebraic form.

Table 1. The smallest eigenvalue (l0) and the number of
iterations (N) vs. thickness (t) and polynomial degrees in the
transverse (p) and lateral (q) directions

t p q l0 N

0.04 2 6 1062890.0 6
0.02 2 6 266137.0 6
0.01 2 6 66568.1 6
0.005 2 6 16644.8 6

0.01 1 6 72600.5 2
0.01 2 6 66568.1 6
0.01 3 6 66566.3 6
0.01 4 6 66566.3 6

0.01 2 2 78726.6 6
0.01 2 4 66789.3 6
0.01 2 6 66568.1 6
0.01 2 8 66497.1 6
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robustness of the preconditioner with respect to the thickness
and discretization parameters. Our current research indicates
that this preconditioner exhibits the same robustness also for
anisotropic and heterogeneous (e.g., multilayered) thin elastic

structures, such as shells, plates and rods of arbitrary geometry.
But these and further results including the computation of
several eigenvalues for three-dimensional thin elastic structures
will be the subject of another communication.
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8. Szabó, B. & Babuška, I. (1991) Finite Element Analysis (Wiley, New York).
9. Love, A. E. H. (1888) Philos. Trans. R. Soc. London A 17, 491–546.

10. Calladine, C. R. (1988) Proc. Inst. Mech. Eng. 202, A3, 141–149.
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