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One of the serious limitations of tokamaks as reactors is the oc-
currence of disruptions. Stellarators designed by advanced com-
putational methods provide an attractive alternative for a major
experiment in magnetic fusion research. Configurations with ap-
proximate two-dimensional magnetic symmetry have been found
with high β limits and good transport. Specifications are given
for a compact stellarator with three field periods and 18 moder-
ately twisted modular coils that has equilibrium with robust flux
surfaces, a deep magnetic well assuring favorable stability, and
adequate confinement of hot particles at reactor conditions. Fast
computer codes with sufficient accuracy to resolve the mathe-
matical problems of equilibrium, stability and transport that arise
in the more complicated geometry of the stellarator have pro-
duced this breakthrough. The mathematical analysis of the meth-
ods used is presented.

1. The Stellarator Concept

M agnetic fusion is based on the concept of fusing deuterium
ions to form helium and release neutrons in a hot plasma

confined by a strong magnetic field. The most common geom-
etry of the plasma is a torus laced by nested flux surfaces. The
tokamak is an axially symmetric configuration using net current
to achieve equilibrium, but the current may cause disruptions of
the plasma. These instabilities are suppressed in stellarators by
exploiting three-dimensional asymmetry of the magnetic field
instead of net current to generate the poloidal field required
to confine the plasma. New methods of computational physics
have been introduced to handle the more complicated geometry
of stellarator equilibria.

The complexity of the mathematical theory of stellarators with
desirable physical properties calls for computational design tech-
niques rather than asymptotic expansion about exact solutions.
Experience has shown that the partial differential equations of
ideal magnetohydrodynamics furnish a satisfactory model de-
spite the fact that the mean free path of charged particles in a
reactor may go hundreds of circuits around the torus. Fast and
accurate numerical algorithms have led to significant progress in
recent years. Most of our results come from running the NSTAB
equilibrium and stability code and the TRAN neoclassical trans-
port code developed by Octavio Betancourt and Mark Taylor at
New York University (1–3).

A generally accepted technique to design stellarators is to op-
timize their physical properties in dependence on the shape of
the plasma surface during calculations of magnetohydrodynamic
equilibrium (4). Configurations have been found this way that
have an approximate helical or axial symmetry of the magnetic
spectrum which leads to good confinement of hot particles. The
precise meaning of this symmetry will be explained below, and
when it is axial we shall see that the contribution to the rota-
tional transform from bootstrap current may be large and com-
pact stellarators are obtained whose aspect ratio is comparable
to that of a tokamak (5). Moreover, it is possible to choose the
multiple harmonics defining the plasma geometry so that modu-
lar coils with relatively moderate twist can be constructed to gen-
erate an external magnetic field matching the optimal equilib-
rium. These coils are preferable to the interlocked helical coils
of conventional torsatrons.

The conventional stellarators in operation 20 years ago suf-
fered from poor stability because of magnetic hills and from
unsatisfactory transport because of conflicting helical and
toroidal terms in the magnetic spectrum. Progress was made
when heliacs were introduced whose shape provided a good
magnetic well, but large terms in the spectrum still suggested
there would be poor transport and perhaps also unfavorable
island formation. The helias configuration discovered 10 years
ago by Nuehrenberg and Zille using the BETA equilibrium
code was a significant breakthrough because both the well and
the spectrum were satisfactory (6). After that quasihelically
symmetric (QHS) and quasiaxially symmetric (QAS) stellara-
tors were developed that had remarkable physical properties,
but only those with the essential features of the helias seem to
meet all the requirements for a proof of principle experiment
(7, 8). This is the theory justifying approval of the very promis-
ing Wendelstein 7-X (W7-X) proposal in Europe (9). However,
a more compact modular helias-like heliac with just two field
periods (MHH2) becomes an attractive candidate provided that
the spectral terms associated with the most dangerous reso-
nances are kept small enough to suppress corresponding islands
(10). Of more interest to us here will be a quasiaxially sym-
metric configuration with three field periods called the QAS3
which depends for satisfactory equilibrium on the existence of
substantial bootstrap current to augment the rotational trans-
form. Our computations show that this stellarator has adequate
two-dimensional symmetry for transport, robust equilibrium
over a range of assumptions about the bootstrap current, and
safe magnetohydrodynamic stability to both kink and ballooning
modes (11).

The NSTAB and TRAN computer codes that we have used to
design the QAS3 stellarator have been validated both by com-
parison with experimental data and by careful convergence stud-
ies (12, 13). We shall discuss in Section 3 results about the sta-
bility of global modes for the Compact Helical System (CHS)
experiment in Japan for a case where ample measurements are
available, though the performance was not very good because of
the presence of a magnetic hill (14). Similar studies have been
made for a variety of tokamaks. Insofar as equilibrium, stabil-
ity, and transport are concerned, our prediction is that the new
stellarators represent a significant improvement over previous
experience. The QAS3 is predicted to have an average β limit
of at least 6% because of a strong magnetic well. Because of its
two-dimensional symmetry, it should have confinement permit-
ting ignition in a reactor of moderate size.

Smooth solutions of the magnetostatic equations in fully
three-dimensional geometry do not exist, and related diffi-
culties have arisen in the mathematical analysis of stability.
Accordingly, all of the computer codes that are in use to de-
sign stellarators have limitations on their convergence, although
they do seem to provided a plausible simulation of the most
important physics. More progress will require construction of a
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proof of principle experiment to assess the merits of the new
configurations that have been proposed. A relatively modest
expenditure in this direction could lead to significant progress
in magnetic fusion research and provide a desirable alternative
to the tokamak. The resulting experimental observations would
not only serve to verify the computational theory, but would
also provide important information about bootstrap current, β
limits, and transport at plasma conditions already achieved in
tokamaks. The QAS3 configuration is our candidate of choice
for such a stellarator experiment.

2. Two-Dimensional Magnetic Symmetry
Equilibria in plasma physics are solutions of the system of partial
differential equations

∇ · B = 0; J 3 B = ∇p
for the magnetic field B, the current density J = ∇ 3 B, and
the pressure p, which we take to be a given function of the
toroidal flux s. We compute solutions by applying the variational
principle ∫ ∫ ∫

�B2/2 − p�s��dx1dx2dx3 = minimum

of ideal magnetohydrodynamics, subject to appropriate flux con-
straints. In a system of cylindrical coordinates r, ϑ = v/Q and z
with

r + iz = r0 + iz0 + R�r1 + iz1 − r0 − iz0� ;
the boundary of the plasma is defined by a Fourier series of the
form

r1 + iz1 = eiu
∑

1mne
−imu+inv;

where u is a poloidal angle and Q is the number of field periods.
The energy is minimized as a functional of the magnetic axis co-
ordinates r0 and z0, the plasma radius R, and a multiple-valued
flux function θ. The solution has Clebsch representations

B = ∇s 3 ∇θ = ∇φ+ ζ∇s
in which θ and φ can be renormalized to become invariant
poloidal and toroidal angles on each nested flux surface s =
const.

As a function of the flux coordinates s, θ, and φ; the magnetic
field strength can be expanded in a Fourier series of the form

1
B2
=
∑

Bmn cos�mθ− �n− ιm�φ� :

The coefficients Bmn = Bmn�s� are known in the fusion literature
as the magnetic spectrum, and magnetic symmetry is defined
in terms of them (15). Neoclassical transport depends largely
on the spectrum and becomes dramatically better in cases of
two-dimensional symmetry where only one row or a single di-
agonal of the matrix Bmn differs from zero. Of special interest
are quasihelically symmetric stellarators such that Bmn is small
if m 6= n and quasiaxially symmetric stellarators with Bmn negli-
gible if n 6= 0. It is remarkable that realistic configurations with
one or the other of these two properties have been found by
computational methods.

An easy manipulation of the magnetostatic equations leads to
the representation

λ = p′
∑ mBmn

n− ιm cos�mθ− �n− ιm�φ�

for the parallel current λ = J · B/B2 in terms of the magnetic
spectrum. The denominators n − ιm vanish at surfaces where
the rotational transform ι is rational, and these resonances lead

to the generation of magnetic islands. It becomes clear that,
in three dimensions, one cannot expect smooth solutions of the
equilibrium problem to exist with the kind of nested toroidal sur-
faces s = const. required for good confinement because of the
behavior of the small denominators. In practice, that motivates
us to use a numerical method that constructs weak solutions
of the problem in an appropriate conservation form, avoiding
unnecessary differentiations. The Kolmogoroff–Arnold–Moser
(KAM) theory of dynamical systems describes a corresponding
phenomenon that occurs in tracking magnetic lines of force (12).

The BETA equilibrium code applied a finite element method
to the variational principle of magnetohydrodynamics to calcu-
late weak solutions of the stellarator problem and gave satis-
factory estimates of the potential energy, but was otherwise in-
accurate (4). Resolution was improved in the VMEC code by
introducing a spectral algorithm to handle dependence on the
poloidal and toroidal angles, but the problem of nonexistence
of solutions became harder to address and the energy landscape
became more difficult to compute (16). The NSTAB equilib-
rium and stability code combines these approaches, capturing
islands and current sheets remarkably well. It is fast and accu-
rate enough to be an effective tool for the systematic design of
configurations involving complicated combinations of multiple
harmonics in three dimensions.

In the spectral method, weak solutions of the equilibrium
problem are characterized by the existence of meaningful
Fourier coefficients of the scaler potential φ as a function of
the poloidal and toroidal angles u and v. In the NSTAB code,
that enables us to compute both θ and φ effectively. Further
progress is made by calculating the Fourier coefficients of other
quantities such as 1/B2 in their dependence on θ and φ as
renormalized invariant flux coordinates (17). The principal dif-
ficulty that arises in this procedure is that some of the resulting
Fourier series may be divergent and must be filtered appropri-
ately before they can be summed numerically. Precisely how
that is accomplished can have a significant effect on the physics,
so care must be taken in the applications not to draw erroneous
conclusions from the numerical work.

We have arranged the formulas for the plasma surface so that
the shape parameter 1mn has a direct influence on the corre-
sponding coefficient Bmn in the magnetic spectrum. The index
m gives some indication of the geometry, so, for example, m = 2
is associated with elongation and m = −1 characterizes a cres-
cent. This analysis facilitates our design of quasiaxially symmet-
ric stellarators.

The specifications for one of our most promising configura-
tions called the QAS3 are given in Table 1, and four Poincaré
sections of the magnetic surfaces are shown in Fig. 1. There
are only Q = 3 field periods in all, and the aspect ratio of the
plasma is A = 110/100 = 4. Optimal choices of the helical terms
1−1−1 and 132 produce an 8% magnetic well at

β = 2�p�/B2 = 0;

and the axisymmetric terms 1−10 and 130 have been selected to
improve stability at higher β. Over the full torus the rotational

Table 1. Coefficients âm;n defining a quasiaxially symmetric stel-
larator with three field periods for values m = −1;0;1;2;3;4 of
the row index and values n = −1;0;1;2;3 of the column index

m\n −1 0 1 2 3

−1 0.15 0.09 0.00 0.00 0.00
0 0.00 1.00 0.03 −0.01 0.00
1 0.08 4.00 − 0.01 −0.02 0.00
2 0.01 −0.28 − 0.28 0.03 0.02
3 0.00 0.09 − 0.03 0.06 0.00
4 0.01 −0.02 0.02 0.00 −0.02

Garabedian PNAS | February 1, 2000 | vol. 97 | no. 3 | 973

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S



Fig. 1. NSTAB calculation of four Poincaré sections of the flux surfaces over one
field period in the quasiaxially symmetric QAS3 stellarator at β = 0:06 demonstrat-
ing that the configuration has good equilibrium and stability properties.

transform remains in the interval 0:2 + ι + 0:5, and when β =
0:06 a third of that can be expected to come from bootstrap
current consistent with the equilibrium, which is proportional
to the pressure gradient (11, 17). The largest three-dimensional
terms of the magnetic spectrum are B21 and B32, and their size
is less than 3% of the diagonal term B00, which means that they
contribute only about 1.5% to the total magnetic field strength.

The QAS3 is a compact stellarator that has properties in com-
mon with both helias configurations optimized by computational
methods and recent proposals for a tokamak experiment (5–7).
The success of the design depends on the assumption that there
will be adequate bootstrap current at operating conditions, but
there is enough flexibility to allow for deviations from what is
predicted by present theory. With a current drive the device can
be viewed as a stellarator–tokamak hybrid. The helical elonga-
tion 121 contributes most of the rotational transform, so the
surprisingly small values of B21 that emerge are a key feature of
the design. Our calculations suggest that the magnetic surfaces
are robust and that the equilibrium β limit stemming from an
outward shift of the magnetic axis should exceed 6% unless the
contribution to the rotational transform from bootstrap current
falls significantly below theoretical predictions.

3. Nonlinear Stability
A very accurate finite difference scheme in the radial coordinate
s combined with a spectral method with respect to the poloidal
and toroidal angles u and v provides the NSTAB code with ad-
equate resolution to address issues of global magnetohydrody-
namic stability. Equilibria are classified as unstable if several
solutions can be found, so that at least one of them must be
a saddle point that does not minimize the energy, according to
the mountain pass theorem about critical points. Another more
practical criterion for instability is whether the ratio of suitable
norms � δR � / � δf � of a displacement δR of the equilibrium
triggered by a resonant perturbation δf of the magnetostatic
equations exceeds an empirically determined threshold (12). For
moderately high mode numbers m and n these tests are well cor-
related with other theories and with experimental observations

when trigonometric terms of degree up to 20 are included in
the spectral analysis. Large choices of the radial mesh size can
be used that exceed the width of small islands that may be cap-
tured in bifurcated solutions. This method is valid for internal
modes but has not yet been applied to free boundary equilibria.

To illustrate how well the NSTAB code predicts stability of
stellarators, we describe runs for the CHS experiment in a well
documented case where the magnetic axis was positioned in-
ward so that the confinement was good, but a magnetic hill pro-
duced a low β limit (14). We computed the equilibrium over
only half of the torus and that allowed an asymmetric resonant
m = 4; n = 2 mode to appear in the solution. At β = 0:005 we
found not only a solution with the helical symmetry of the eight
field periods in the full torus but also another bifurcated equilib-
rium in which the asymmetric mode becomes quite visible. The
result of the calculation is displayed in Fig. 2. The existence of
a second solution establishes linear instability that is apparently
marginal and might become nonlinearly saturated in practice.
At these laboratory conditions no larger values of β were ob-
served, which shows that there is substantial agreement between
the theory and the experiment. Higher values of β could only be
achieved by altering the vertical field to shift the magnetic axis
outward, creating a magnetic well. Our analysis suggests that
the QAS3 should perform much better than this conventional
torsatron with regard to both stability and transport.

Convergence studies show that the NSTAB code has suffi-
cient accuracy to assess stability in stellarators of modes with
ballooning structure and wave numbers m � 8 if terms of de-
gree as high as 20 are included in the spectral representation of
the solution. Modes of higher order than that create difficulties
with the accelerated iteration scheme employed to solve the nu-
merical problem because of bad behavior at resonant surfaces
and at the magnetic axis. The radial differencing is quite accu-
rate, so meshes of as few as 15 grid points in s can be used that
capture small magnetic islands in between nested flux surfaces.

Fig. 2. Poincaré map of flux surfaces at similar locations in four consecutive field
periods of a bifurcated CHS equilibrium with the magnetic axis shifted inward to a
position corresponding to experimental observations. The solution has islands with-
out the symmetry of the plasma boundary and exhibits instability of a nonlinearly
saturated m = 4;n = 2 mode at β = 0:005, which was the largest value measured
in these conditions.
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However, the convergence of the method is only asymptotic in
the sense that one must refine enough to reduce the truncation
error without going so far that a meaningful solution ceases to
exist. Other computer codes like VMEC encounter similar dif-
ficulties about existence and accuracy of the solution and may
not deliver reliable answers for some of the harder cases that
arise in physics optimizations when accelerated iteration fails
to drive the residuals toward zero. Tests of convergence of the
available codes have been performed to substantiate this analy-
sis (11, 12, 17).

The simplest test for local stability in stellarators is the
Mercier criterion, which depends on the magnetic field strength
B, the parallel current λ, the size of the gradient ∇s, and the
profiles of volume V , pressure p, and rotational transform ι
as functions of toroidal flux over the interval 0 + s + 1. An
asymptotic analysis of ballooning modes leads to a more restric-
tive requirement involving an eigenvalue problem for a fourth
order system of ordinary differential equations along some arc
of a magnetic line. The coefficients of the differential equations
depend on quantities like those in the Mercier criterion, plus
the curvature

κ = B
B
· ∇B
B

of the magnetic line, which involves evaluation of ∇B2.
Hamieri (18) has shown that over a finite arc the second

eigenvalue of a reduced system of second order that is used
in most ballooning calculations furnishes a good approximation
to the more precise version defined by the fourth order system.
For stellarators the most convincing results are obtained when
the arc for the eigenvalue problem extends over only one or
two field periods. The Mercier critierion is a limiting case of the
ballooning criterion, and for three-dimensional equilibria both
may deliver pessimistic predictions, because the parallel current
λ becomes singular at a dense set of resonant rational surfaces
on which � + 0. The reliability of the ballooning analysis can
be assessed to some extent by analogy with more accessible con-
vergence studies of the Mercier criterion, even though the cor-
responding thresholds for stability are different.

To calculate the local stability criteria numerically an accepted
procedure is to compute the magnetic spectrum Bmn together
with other relevant Fourier coefficients first so that the analysis
can be performed in a convenient flux coordinate system (17,
19). In optimized equilibria with a second stability region where
�∇s� is large and �∇θ� is small, numerical examples show that
there is difficulty in achieving sufficient accuracy when summing
the necessary Fourier series, which are divergent and have to
be filtered appropriately. High order modes have a significant
effect on the results and must be adequately converged. The
full strength of the NSTAB method seems to be required to get
reliable answers for complicated configurations. In practice valid
local stability results that are well correlated with our nonlinear
stability analysis are only obtained over a middle range 0:3 +
s + 0:7 of the radial flux coordinate that excludes numerical
errors at the magnetic axis and the edge of the plasma.

Nonlinear stability calculations for modes of moderate order
predict that the average β limit of the QAS3 stellarator will
be 6% or more (cf. Fig. 1). This conclusion is based on esti-
mates for the bootstrap current suggested by tokamak theory
(11, 17). A comparable result seems to hold for the Mercier
and ballooning criteria if a broad pressure profile is assumed
comparable to that observed at β = 0:02 in the CHS experi-
ment (14). Our earlier estimates of the ballooning limit, which
involved marginally convergent runs of the VMEC code, were
lower because a peakier pressure distribution was used to elim-
inate errors at the magnetic axis and at the edge of the plasma,
so the maximum of p′ on which the results depended was un-
necessarily big (11). Linear stability calculations are of dubious

merit here because they also employ derivatives that may not
be computed with sufficient accuracy. It is a judicious combi-
nation of helias and tokamak concepts that has produced the
remarkably stable QAS3 configuration. Good performance has
been verified over a full range of profiles for the pressure and
the net current at levels below the β limit.

4. Monte Carlo Transport
The TRAN code has been coupled to the NSTAB code to calcu-
late neoclassical transport in stellarators and tokamaks by track-
ing guiding center orbits of a test particle subject to collisions
specified by a random number generator. A fast algorithm en-
ables us to compute the confinement time of the electrons as
well as that of the ions. The operator defining the collisions
of the test particle need not conserve momentum because the
background characterized by the equilibrium is supposed to be
fixed (13). Quasineutrality ni = ne between the distributions of
the ions and the electrons is enforced by iterating on the elec-
trostatic potential 8. The results depend exclusively on the mag-
netic spectrum Bm;n together with the profiles of pressure, ro-
tational transform, and net current. At reactor conditions hot
particles turn out to be adequately confined when the config-
uration has such good axial or helical symmetry that three-
dimensional deviations Bmn of the magnetic spectrum from a
two-dimensional array are low enough so that �Bmn/B00� + 0:03.
This level has been found in some cases to be no more than
what occurs in a model of turbulence for tokamaks (2), and it
has been attained in the QAS3 stellarator.

Our Monte Carlo model of neoclassical transport for a test
particle in stellarators or tokamaks can be described symboli-
cally by a drift kinetic equation of the form

ft + ρ��B+ ∇x 3 �ρ�B�� · ∇xf = ∇v · ν�∇vf +M�v − u�f/T �

in which the parameters that occur differ for ions and electrons.
The possibility of finding solutions f = e−t/τF by separation of
variables suggests that exponential decay can be used to esti-
mate the particle confinement time τ of either species efficiently,
provided particles are removed when they reach the boundary.
Singular perturbation theory for the Poisson equation

L2
D18 = ne − ni

in the limit as the Debye length LD tends to zero shows that
quasineutrality ne�8� = ni�8� must prevail between the ions
and the electrons and should be the law determining the elec-
trostatic potential 8.

Let us express 8 as a Fourier series

8 =
∑

Pmn cos�mθ− �n− ιm�φ�

in flux coordinates like the one for 1/B2. We represent the
charge separation

ne − ni =
∑

Cmn cos�mθ− �n− ιm�φ�

in the same way and iterate on the choice of the coefficients Pmn
to drive the corresponding coefficients Cmn toward zero follow-
ing the rule

Pl+1
mn = Plmn + εClmn ;

where ε is a relaxation parameter. The implementation of this
algorithm is found in numerical computations to work at colli-
sion frequencies so low that the early Fourier coefficients Cmn
can be estimated in a statistically significant way, and it reduces
them perceptibly. Intuitively the method succeeds because hills
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in the electrostatic potential for the ions are wells for the elec-
trons. In stellarators the radial term P00 is adjusted to make the
ion confinement time τi coincide with the electron confinement
time τe, but in tokamaks that goal can only be achieved by in-
troducing resonant perturbations of the magnetic spectrum that
are adjusted to simulate turbulence (13).

The model we use for turbulence in tokamaks is based on
three-dimensional asymmetry of the magnetic spectrum deter-
mined by quasineutrality and it is consistent with experimental
observations at low collisionality for which Monte Carlo esti-
mates of the coefficients Pmn are statistically significant (2). It is
interesting that practical quasiaxially and quasihelically symmet-
ric stellarator configurations can be constructed whose three-
dimensional coefficients Bmn are as small as those of bifurcated
tokamak equilibria occurring in the simulation of turbulence.
This analysis of anomalous transport gives us some reason to
believe that confinement in the new stellarators may be just as
good as that in conventional tokamaks, and of course there is
much less risk of current driven disruptions.

The TRAN code has been applied to the QAS3 stellarator
to establish that ignition can be achieved in a practical way
at reactor conditions. Quasineutrality calculations give an en-
ergy confinement time τE of 1500 ms in a deuterium plasma
for a run with toroidal magnetic field 5 tesla, average density
2 3 1014 cm−3, average temperature 10 keV, and large radius
12 m. The radial component P00 of the electrostatic potential is
three times the temperature, but the remaining coefficients Pmn
are two or three orders of magnitude less. No advantage was
perceived in raising the aspect ratio of the device up to A = 5
so there would be better two-dimensional symmetry, but at the
lower value A = 3 transport deteriorated significantly.

5. Coil Technology
Our idea to design a stellarator by methods of computational
physics is based on optimization of equilibrium, stability, and
transport properties through choice of the parameters 1mn spec-
ifying the separatrix. After that we attempt to find modular coils
on an appropriate control surface that will generate a corre-
sponding external magnetic field satisfying the Biot–Savart law

B = ∇ 3
∫ ∫
∇ϕ 3 N dσ/r

at least for low values of the pressure (20). The latter problem
is not well posed in the sense that an analytic continuation of
the optimal solution for the plasma may not exist in the large,
so it may be futile to look for a surface current distribution

ϕ = v/�2π� +
∑

ϕmn sin�mu− nv�
whose level curves define coils that are well spaced and remain
only moderately twisted. Consequently, one should include in
the design process sufficient flexibility to allow for readjustments
in the geometry of both the plasma surface and the control sur-
face that yield a satisfactory winding law.

In practice we filter the Fourier series specifying the surface
current to eliminate superfluous oscillations of the coil filaments.
This process is facilitated by the observation that each coeffi-
cient ϕmn is primarily dependent on the corresponding shape
factor 1mn. We have written a line tracing code called NWIND
that can be applied to recover the Fourier coefficients of the
last closed flux surface defined by the Biot-Savart law and check
whether they furnish a good approximation to the optimal equi-
librium at zero β. If that is not the case it is feasible to readjust
the definition of the coils systematically so as to arrive at a bet-
ter fit. This offers a well posed, but more tedious, approach to
the original design problem.

For the QAS3 stellarator we have arrived at a satisfactory set
of 18 modular coils that look relatively easy to construct (11).

They consist of six equal groups of three different coils, and
the associated ripple is surprisingly low. Although the filaments
defining them lie on a control surface whose distance from the
plasma is more than half the small radius, in reactor applica-
tions the large radius of the device ought to be at least 12 m
to provide adequate space for the blanket and shield. Auxiliary
vertical field coils can be included in the configuration to restore
the position of the plasma in a familiar way as β increases. It
is an advantage of helias configurations like the QAS3 and the
MHH2 that the modular coils generating the external magnetic
field are less twisted than those for conventional torsatrons.

Modern industry has the computerized tools necessary to con-
struct with sufficient accuracy the frames required to support
modular coils for the QAS3. Fortunately, the curvatures and
torsions to be dealt with are not excessively large, and either su-
perconducting material or ordinary copper could be wound in
the frames successfully. The technology is preferable to that of
interlocked helical coils or of complicated saddle coils. It is for-
tunate that the optimized physics of the new stellarators lends
itself so well to modular coils that differ little in number and
topology from those in standard tokamaks. For this reason one
might view the QAS3 as an advanced tokamak designed to elim-
inate current drive, disruptions and anomalous transport by a
relatively modest change in the geometry.

6. Conclusions
Our research shows that it is feasible to design a compact stel-
larator with an attractive modular coil set that is predicted by
numerical calculations to perform well as a reactor. A signifi-
cant proportion of the rotational transform is supposed to come
from bootstrap current, but not so much that disruptions occur.
The magnetic spectrum deviates from axial symmetry so little
that the adverse effect on confinement should be no worse than
that of anomalous transport in tokamaks. The QAS3 configura-
tion with three field periods seems to be optimal and is more
robust than earlier designs with two periods that may develop
islands at low order resonances if the bootstrap current is large.
However, if the contribution of bootstrap current to the rota-
tional transform turns out in practice to be less than 20% of the
total, an upgraded MHH2 stellarator with increased elongation
120 = −0:08 might be reconsidered that has just 12 modular
coils generating so little external transform that ι + 1/2.

The NSTAB equilibrium code and the TRAN neoclassical
transport code used to design the QAS3 appear to be more
accurate and reliable than other codes, but the mathematics of
stellarators is complicated and all the numerical methods leave
something to be desired. Especially misleading have been calcu-
lations of ballooning instability based on inadequately converged
spectral representations of the partial derivatives of the mag-
netic field strength B. In this connection our prediction is that
the average β limit for equilibrium and stability of the QAS3
will be at least 6% if the pressure profile is broad. Because the
deviation of B from axial symmetry is less than 1.5%, transport
is estimated to be competitive with that of tokamaks at reactor
conditions, but more work should be done on α particles and
on the absorption of neutral beam power.

Theory has progressed to a point in the design of stellarators
where the promising results that have been obtained justify a
proof of principle experiment to evaluate the physics in a more
practical way. The level of bootstrap current, the β limit, and
the energy confinement time should all be measured at condi-
tions of the kind that have already been achieved in tokamaks.
Careful comparison with computer predictions would put the
whole matter on a firmer foundation. Good advantage could be
taken of the facilities that are now available for plasma physics
research.

The engineering issues that arise for a proof of principle ex-
periment are as important as the mathematical physics. Modern
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technology should be exploited to construct a device with mod-
ular coils that is as simple and cost effective as possible. Results
for a configuration like the QAS3 would go far to improve on
what has been learned from more conventional stellarator ex-
periments. For good performance it is essential that the new
design have a deep magnetic well at zero β rather than a hill.

Validation of the computer codes would be only a small part of
the knowledge to be gained.
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