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Abstract

Diagnostic test evaluations are susceptible to random and systematic error. Simulated non-
differential random error for six different error distributions was evaluated for its effect on
measures of diagnostic accuracy for a brucellosis competitive ELISA. Test results were divided into
four categories: <0.25, 0.25 — 0.349, 0.35 — 0.499, and > 0.50 proportions inhibition for calculation
of likelihood ratios and diagnostic odds ratios. Larger variance components of the error structure
resulted in larger accuracy attenuations as measured by the area under the receiver-operating
characteristic curve and systematic components appeared to cause little bias. Added error caused
point estimates of likelihood ratios to be biased towards the null value (1.0) for all categories
except 0.25 — 0.349. Results for the 0.35 — 0.499 category also extended beyond the null value for
some error structures. Diagnostic odds ratios were consistently biased towards the null when the
<0.25 category was considered the reference level. Non-differential measurement error can lead
to biased results in the quantitative evaluation of ELISA and the direction is not always towards the
null value.

Background

The goal of epidemiologic investigations is the collection
of valid data leading to a precise estimate of a population
parameter (e.g. measure of association). For the purpose
of this discussion, an estimate of a parameter will be con-
sidered biased if the expected value (over indefinite repli-
cations) is not the true value [1,2]. A study or process is
considered biased if a systematic error is present in study
design, data collection, or data analysis [2,3]. Systematic
error, using a slight modification of a standard dictionary
definition [4], can be defined as a persistent error having
a nonzero mean that cannot be attributed entirely to
chance but to inaccuracy inherent in the system of meas-
urement. A random error develops from imprecision in a
measuring instrument or protocol used to collect data for

study. A random error in absence of systematic error will
not result in bias if on average the measured value is still
the true population value. The effect of random errors will
be reduced by increasing sample size or number of meas-
urements taken from each sampling unit. Systematic error
will not be reduced by increasing sample size because it
does not result from imprecise measurements.

Epidemiologic investigations must consider the potential
effects of both systematic and random errors on study
results. The odds ratio (OR) is frequently the measure of
association estimated in studies concerning etiology and
the likelihood ratio (LR) is commonly estimated for eval-
uation of diagnostic tests. Odds ratios for diagnostic pur-
poses can also be estimated that quantify the change in
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the odds of infection (or disease) resulting from a positive
test result [5].

Estimates of LRs and diagnostic ORs can be affected by
random and systematic errors similar to other epidemio-
logic measures of association. The error in detection of the
analyte (biologic substance measured by a diagnostic
assay) must exert its effect through misclassification of the
test result. The ability of the analyte to predict infection
(or lack of infection) in an individual determines its use-
fulness or accuracy for diagnosis. Accuracy of a testing sys-
tem is measured by its sensitivity (probability of correctly
classifying infected individuals) and specificity (probabil-
ity of correctly classifying uninfected individuals). Accu-
racy can be measured at a single or over multiple positive
cutoff values.

The evaluation of tests over multiple cutoffs can be per-
formed through estimation of LRs or performing receiver-
operating characteristic (ROC) analyses. The LR is a meas-
ure of association that quantifies how many more times
likely a test result is from an infected individual compared
to one that is uninfected. It is calculated as the ratio of the
probability that an infected individual will have that test
result to the probability that an uninfected individual
would have that same result [6]. Calculation of LRs for
tests with quantitative outcomes (e.g. titers, optical densi-
ties) necessitates dividing up the possible range of test
results into categories. Likelihood ratios are also mathe-
matically related to ROC curves as the slope between adja-
cent test result categories [7].

Receiver-operating characteristic (ROC) curves are formed
by plotting 1 - specificity (x-axis) by sensitivity (y-axis)
over multiple positive cutoff values [8]. The area under a
ROC curve (AUC) is defined as the probability that a ran-
domly selected infected individual will have a greater test
result than a randomly selected uninfected individual,
and is considered a measure of overall discriminating
ability of the test [9]. The precision of a diagnostic testing
system will affect the overall accuracy and is often meas-
ured as the coefficient of variation (CV), which is calcu-
lated as the standard deviation of measurements on the
same sample divided by the mean of the measurements.
The CV quantifies the random measurement error inher-
ent in the diagnostic system.

Measurement error associated with the analyte could the-
oretically be differential or non-differential. Differential
measurement error is defined as an error whose magni-
tude or direction is different for individuals who have the
outcome (eg. infection) compared to those without the
outcome. Non-differential measurement error is an error
that is independent of outcome status; the direction and
magnitude is equal for those with and without the out-
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come. Measurement error can lead to misclassification
that is differential or non-differential. The effect of meas-
urement error and misclassification on LRs could not be
found in the currently available peer-reviewed literature.
The direction of bias in estimates of ORs and risk ratios
with differential misclassification cannot be predicted
[10-12], however, non-differential misclassification of an
exposure has been shown to result in measures of associ-
ation to be consistently biased towards the null when
evaluated in a 2 x 2 table [1,10-14] except in unrealisti-
cally extreme situations [1,10,15]. When the exposure is
classified into more than two categories (higher-order
tables) the direction of deviation is no longer consistently
towards the null value with non-differential misclassifica-
tion [10,15-18]. However, even in situations with more
than two levels of exposure, the measures of association
will be biased towards the null when calculated for the
categories involved in the misclassified exposure [19,20].

A quantitative exposure that is categorized into three lev-
els will often assign the lowest category (level 1) as the ref-
erence level. The usual ORs evaluating the effect of
exposure are calculated comparing level 2 to level 1 and
level 3 to level 1. If non-differential misclassification
occurs only between exposure levels 2 and 3, for instance,
then the usual ORs could be biased towards or away from
the null value, however, the OR calculated between level
2 and level 3 (not usually reported) would consistently be
biased towards the null. The exception to this rule is when
misclassification is so extreme that the probability of
incorrect classification is more likely than correct classifi-
cation [19,20].

The effects of misclassification on measures of association
are often studied by creating hypothetical data distribu-
tions, but simulation studies using actual data can also be
employed [21,22]. Simulation studies have the advantage
of defining probability distributions rather than creating
extreme and potentially unrealistic situations. The objec-
tive of this study was to investigate the effects of non-dif-
ferential measurement error on AUC, LRs, and diagnostic
ORs calculated for a test categorized into four levels using
real data and simulated error structures.

Analysis

Data source

Brucellosis is a major disease problem worldwide [23]
associated with chronic debilitating infections in people
and reproductive failure in domestic animals. Brucella spe-
cies that cause disease in people include B. abortus (pri-
mary reservoir is cattle and water buffalo), B. melitensis
(sheep and goats), and B. suis (swine) [24]. Cattle and
domestic water buffalo in Trinidad have been found to be
infected with B. abortus [25] and the data used for this sim-
ulation study are results from a brucellosis competitive
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ELISA (c-ELISA) in 391 cattle and 381 domestic water buf-
falo (Bubalus bubalis) of Trinidad. Evaluation of this assay
has been reported elsewhere [26] and results from both
species were pooled in a single analysis for purpose of
these evaluations. The brucellosis status (infected or unin-
fected with B. abortus) was determined using results from
multiple diagnostic tests in a no gold standard analysis.
The most likely infection status based on this analysis was
assumed the true status. This classification resulted in 126
cattle and water buffalo infected with B. abortus and 656
uninfected cattle and water buffalo.

The c-ELISA is a quantitative test where sample results are
reported as the proportion of inhibition compared to a
conjugate-only control (no serum added). Each test and
control sample had optical density (OD) values measured
in duplicate and the formula to calculate the proportion
inhibition (PI) is included below.

_ mean OD of conjugate control — mean OD of test sera

PI
mean OD of conjugate control

The theoretical limits are therefore zero to one with values
closer to one being more positive (higher level of compet-
ing antibodies). Negative values occur infrequently when
the OD of the sample is greater than the conjugate con-
trol.

Data simulation

The data measured when performing an ELISA is the
degree of color change, or OD, that quantifies the amount
of antibodies in the serum. The observed mean OD values
for test sera and conjugate-only controls from each ELISA
plate were assumed to represent the true biologic value for
purpose of these simulations. Commercially available
software [27] was used to incorporate error distributions
to both sample and control mean values independently.
After addition of error to original mean OD values, the PI
was re-calculated for each sample.

Conjugate-only control samples contain no competing
antibodies and therefore the color change (i.e. OD)
should be equal to a baseline level. Variation in the meas-
ured values for these controls represents the random error
associated with the assay. Therefore, mean ODs measured
for the duplicate conjugate controls on the original ELISA
plates were used to estimate the inherent error of the test-
ing system and determine simulation error distributions.
Normal distributions with means of 0, 0.1, -0.1 and
standard deviation of 0.12 and mean of 0 and standard
deviation of 0.24 were evaluated as part of the study. A
value of 0.1 was chosen for a mean because it was the
interquartile range for the average of duplicate conjugate
control values on each ELISA plate. A standard deviation
of 0.12 was chosen because this was the standard devia-
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tion of all original mean conjugate control values. A ran-
dom sample from these distributions was added to
observed mean OD values. Lognormal distributions were
used to add an error structure that varied depending upon
observed ODs. The scale (u) parameter of these distribu-
tions was calculated as the observed mean OD of the par-
ticular sample divided by the mean OD of all sample
values. The shape (o) parameters investigated were 0.12
and 0.24. A random selection from these distributions
was multiplied by the observed mean OD to calculate
simulated values. Simulated mean ODs were not trun-
cated in range and calculated PI values could be less than
zero and greater than one.

Test results were divided into four categories: <0.25, 0.25
-0.349,0.35-0.499, and > 0.50 PI. These categories were
based on an evaluation of this assay [28] with the original
six categories collapsed to four to reduce complexity of
simulations and increase the number of infected and
uninfected individuals in the lower most and upper most
categories, respectively. Category-specific LRs [7] were cal-
culated for each of the four categories as the proportion of
infected individuals in each category divided by the pro-
portion of uninfected individuals within that same cate-
gory. Diagnostic ORs were calculated comparing the three
higher test result categories to the lowest category as the
baseline, or reference level. Sensitivity and specificity were
calculated for the c-ELISA at all possible cutoff values from
0.01t0 0.99 PI at 0.01 intervals. Area under the ROC curve
was calculated as an overall measure of diagnostic accu-
racy using the trapezoid method [29]. The average sensi-
tivity between adjacent cutoffs was the mean height of the
trapezoid and base width was the difference in adjacent
specificities.

Six simulation studies were performed independently
assessing the impact of added error distributions to the
original observed data. Monte Carlo sampling was per-
formed of these error distributions independently for
each test sample and conjugate control over 10,000 itera-
tions. Error was added to all mean OD values at each iter-
ation, new PIs were calculated, and diagnostic accuracy
measures (AUC, LR, OR) were determined. The mean,
median, standard deviation, minimum, and maximum
values of PIs for infected and uninfected individuals were
calculated at each iteration. Median values and percentiles
over these 10,000 iterations were used as point estimates
and confidence intervals, respectively for descriptive sta-
tistics and all investigated AUCs, LRs, and ORs.

Simulation results

The six added error structures caused mean PI values to
have greater range and larger standard deviations for both
infected and uninfected groups of individuals compared
to original values and decreased overall test accuracy as
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Table I: Descriptive statistics for proportion inhibition (Pl) and area under the receiver-operating characteristic curve (AUC) for a
brucellosis c-ELISA used in 126 infected and 656 uninfected cattle and water buffalo of Trinidad incorporating multiple error
structures. Median values for each statistic (eg. mean) are reported over 10,000 iterations of the Monte Carlo simulation.

Error structure

Infected

Uninfected

AUC (90% Interval)*

Mean (sd) Minimum, median, Mean (sd) Minimum, median,
maximum maximum
None (standard) 0.812 (0.273) 0.050, 0.983, 1.006 0.137 (0.091) -0.033, 0.119, 0.752 0.973
Normal (0, 0.12) 0.810 (0.291) -0.033, 0.921, 1.210 0.130 (0.150) -0.328, 0.129, 0.768 0.959 (0.945, 0.972)
Lognormal 0.12 0.809 (0.285) -0.136, 0.983, 1.006 0.118 (0.207) -0.685, 0.137, 0.752 0.952 (0.934, 0.968)
Normal (0.1, 0.12) 0.753 (0.271) -0.031, 0.856, 1.123 0.122 (0.139) -0.301, 0.120,0.714 0.959 (0.944, 0.972)
Normal (-0.1, 0.12) 0.877 (0.315) -0.036, 0.996, 1.316 0.140 (0.162) -0.361, 0.139, 0.829 0.959 (0.945, 0.972)
Normal (0, 0.24) 0.806 (0.344) -0.273, 0.880, 1.459 0.108 (0.266) -0.906, 0.133, 0.877 0.933 (0.907, 0.953)
Lognormal 0.24 0.800 (0.320) -0.542, 0.982, 1.006 0.059 (0.419) -2.074, 0.143, 0.785 0.928 (0.899, 0.950)

*Interval formed as the 5t and 95t percentiles of Monte Carlo simulations

sd = standard deviation

measured by AUC (Table 1). Distribution of c-ELISA PI
values for Normal (0, 0.12) and lognormal (0.24) error
structures were noticeably different from the original dis-
tribution for uninfected individuals (Fig 1) and relatively
similar for infected individuals (Fig 2). Added error with
different means but the same standard deviations resulted
in visually similar distributions (data not shown). Distri-
bution of PIs in uninfected individuals peaked at zero
because all lower extreme values were included in the 0-
5% test result category. In general, distribution of PIs with
added error had a wider (less precise) distribution, which
resulted in more overlap with distribution of infected
individuals and lowered overall test accuracy. Added error
caused point estimates of LRs to be biased towards the
null value (1.0) for all categories except 0.25 - 0.349
(Table 2). Results for the 0.35 - 0.499 category also
extended beyond the null value for some error structures.
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Figure |

Distribution of c-ELISA proportion inhibition results for 656
B. abortus uninfected cattle and water buffalo from Trinidad
with added error from a single iteration of a simulation study
and summed over 5% proportion inhibition intervals.

Diagnostic ORs calculated with the lowest category as
baseline were consistently biased towards the null for all
evaluated error structures. Error structures with larger var-
iance resulted in more bias for both LRs and ORs.

Conclusion

The effect of non-differential random error in exposure
measurement has been discussed in previous publications
[21,30-32], and leads to measures of association being
biased towards the null value except in unrealistically
extreme situations. Overall accuracy of a quantitative
diagnostic test, measured via the AUC, has been shown
here to also be decreased (biased towards null value of
0.5) through addition of non-differential measurement
error. The variance component of the measurement error
structure appears to have an important effect on decreas-
ing AUC and the systematic (mean) component of the
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Figure 2

Distribution of c-ELISA proportion inhibition results for 126
B. abortus infected cattle and water buffalo with added error
from a single iteration of a simulation study and summed
over 5% proportion inhibition intervals.
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Table 2: Results of adding six measurement error structures on the likelihood ratio (LR) and diagnostic odds ratio (OR) for a
brucellosis c-ELISA used in 126 infected and 656 uninfected cattle and water buffalo of Trinidad over four categories of proportion
inhibition (PI). Results calculated over 10,000 iterations of the Monte Carlo simulation.

Error structure Result category (Pl) No. infected®* No. uninfected*

LR* (90% Intervalt) LR difference® OR* (90% Intervalt) OR difference*

None <0.25 8 586 0.070 NA 1.0 NA
(standard) 0.25 - 0.349 5 38 0.675 NA 9.64 NA
0.35 - 0.499 I 17 332 NA 47.4 NA

>0.50 102 5 105 NA 1494 NA

Normal <0.25 8 522 0.083 (0.051, 0.116) 0.013 1.0 (referent) NA
0,0.12) 0.25 - 0.349 5 80 0.337 (0.136, 0.630) -0.337 4.14 (1.36, 9.90) -5.50
0.35 - 0.499 9 34 1.33(0.72, 2.32) -1.99 16.35 (7.37, 35.8) -31.0

>0.50 103 9 59.2 (40.2, 105) -45.3 749 (431, 1415) -745

Lognormal <0.25 8 469 0.089 (0.049, 0.133) 0.019 1.0 (referent) NA
0.12 0.25 - 0.349 5 100 0.244 (0.088, 0.485) -0.430 2.79 (0.78,7.57) -6.85
0.35-0.499 9 64 0.707 (0.338, 1.42) -2.61 8.13 (3.10,21.5) -39.3

>0.50 104 I 49.4 (23.8, 104) -55.2 582 (239, 1288) 913

Normal <0.25 9 543 0.088 (0.057, 0.122) 0.018 1.0 (referent) NA
(0.1,0.12) 0.25 -0.349 6 71 0.427 (0.181, 0.801) -0.247 4.89 (1.69, 11.7) -4.74
0.35-0.499 10 26 1.83 (0.98, 3.24) -1.49 21.2 (9.70, 44.6) -26.2

>0.50 10l 6 86.3 (53.3, 171) -183 994 (580, 1980) -501

Normal <0.25 7 499 0.078 (0.046, 0.113) 0.008 1.0 (referent) NA
(-0.1,0.12) 0.25-0.349 5 90 0.264 (0.101, 0.506) -0.410 3.44 (1.03, 8.89) -6.20
0.35-0.499 8 43 0.954 (0.488, 1.66) -2.36 12.5 (5.25,28.2) -34.9

>0.50 105 13 41.8 (28.6, 66.7) -62.8 555 (321, 1065) -939

Normal <0.25 10 444 0.120 (0.068, 0.176) 0.049 1.0 (referent) NA
(0,0.24) 0.25 -0.349 4 89 0.254 (0.089, 0.496) -0.421 2.14 (0.61, 5.56) -7.50
0.35 - 0.499 8 79 0.540 (0.267, 0.966) -2.78 4.59 (1.85, 10.8) -42.8
>0.50 103 34 15.7 (10.7, 24.7) -88.9 135 (73.0, 270) -1359

Lognormal <0.25 10 401 0.124 (0.065, 0.192) 0.054 1.0 (referent) NA
0.24 0.25 - 0.349 3 75 0.237 (0.062, 0.500) -0.438 1.91 (0.43, 5.44) -1.72
0.35-0.499 7 99 0.366 (0.169, 0.675) -2.95 3.00 (1.11,7.62) -44.4
>0.50 105 68 7.81 (4.68, 16.1) -96.8 67.0 (30.1, 167) -1427

*Median value of Monte Carlo simulations. }Interval formed as the 5t and 95t percentiles of Monte Carlo simulations.

NA = not applicable.

error structure has little or no bearing on results when
applied equally to all samples (ie. non-differential). This
attenuation in accuracy is due to added variability spread-
ing out the distribution of test results and creating more
overlap between results from infected and uninfected
individuals as shown in the figures. Values were not trun-
cated during simulations despite the fact that biologically
unusual values were observed as evidenced by the PI
ranges. These observations did not unduly influence the
analysis because they were considered equivalent to the
boundary categories.

Likelihood ratios are derived from the odds version of
Bayes' theorem [28], correspond to the added informa-
tion provided by a test, and are used to update the prior
odds of infection. The null value of a LR is one, which

would correspond to a particular test result being equally
likely in infected and uninfected individuals (would not
affect prior probabilities). A previous study [31] demon-
strated that non-differential, random measurement error
in exposure determination without a systematic compo-
nent, consistently led to attenuation in effect measures
such as the OR. Results for diagnostic ORs agreed with this
previous finding; however, LRs estimated in the present
study were not consistently biased towards the null value.
For example, the baseline (without error) LR for the 0.25
- 0.349 category was 0.675 and all evaluated error struc-
tures resulted in this LR (based on median simulated
value) to be biased further away from one. The baseline
LR for the 0.35 - 0.499 category was 3.32 and four of the
evaluated error structures resulted in this measure to be
biased to such an extent that the point estimates extended
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below the null value of one. Estimates of LRs and ORs
were also mildly affected by the systematic component
(mean) of the error structure. Unlike the AUC, these
measures are dependent upon the underlying distribution
of values because they are calculated for a small number
of fixed categories.

The direction of bias is not easily described as being away
from or towards the null value for investigated LRs. How-
ever, all LRs estimated from evaluated error structures
could be described as being biased in a manner resulting
in the test having less discriminating ability for its usual
function at that category. For instance, the lowest category
is often useful for "ruling out" infection given that (i.e.
"negative") test result. The observed bias towards one
causes a test result falling within this category to be less
useful for that purpose. Larger test result categories are
more positive (0.30 is the usual positive cutoff for the bru-
cellosis ¢-ELISA [33]) and therefore a higher post-test
probability of infection (compared to pre-test probabil-
ity) would be the desired effect. All error structures
resulted in LRs for these categories to be biased towards
zero, which means that the test is less useful for this pur-
pose (calculated post-test probability of infection lower
than the true value). The observed direction of the biases
in this study might have resulted from the underlying dis-
tributions of test results for infected and uninfected indi-
viduals and a different dataset might not demonstrate the
same relationships.

A strength of the employed simulation procedure is that
error distributions were added to the mean ODs measured
from duplicate test and control samples. Optical densities,
and not PIs, would be the values actually affected by
measurement error. A similar analysis adding error to the
PIs would not directly simulate this type of error. Lognor-
mal error distributions were evaluated to simulate meas-
urement error that depended on the magnitude of the
measured value. In the example of a ¢-ELISA, higher OD
values correspond to more negative (fewer competing
antibodies) samples. Therefore, this error structure has a
greater impact on the distribution of values in uninfected
individuals as was seen in the presented figures. Investi-
gated error structures might overestimate true measure-
ment error and only a limited number of distributions
were evaluated leading to difficulty in generalizing results
to all possible error situations. However, added error dis-
tributions were based on true observations from the mean
conjugate-only controls that have no competing antibod-
ies. Therefore, variability inherent in these measurements
should be a valid representation of the true variability of
the testing system. It is expected that some sources of error
would be dependent upon plate-level and day-level fac-
tors such as reagents, laboratory temperature, and incuba-
tion times that would be equal for both test and control
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samples. Therefore, the addition of non-differential error
independently to test and control values represents the
upper limit of possible effects on test accuracy measures.

Non-differential random error added via a probability dis-
tribution might result in differential misclassification of
test result categories as evidenced in data presented in
Table 2. The proportion of individuals misclassified in the
four test result categories does not appear to be equal
between infected and uninfected individuals. A similar
finding has been reported for non-differential measure-
ment error of exposure [21,31,32]. In this study, however,
itis impossible to know which particular individuals were
misclassified because only total counts could be calcu-
lated and an accurate assessment of the magnitude of mis-
classification could not be determined. It is only possible
to know the net result of the misclassification and not the
number of individuals incorrectly entering or leaving each
category. The misclassification across the test result cate-
gories also depends upon the underlying distribution of
values.

The true infection status of individuals in the evaluated
dataset was not known and classification of individuals
was performed based on results of a no gold standard test
evaluation study. Therefore, the original data is expected
to contain some results that were misclassified based on
infection status. These errors are not expected to unduly
affect results of the simulation study because they would
apply equally to the baseline and error-augmented situa-
tions. The underlying distributions of test results in
infected and uninfected individuals, however, might not
adequately reflect the true distributions because of this
potential misclassification.

This study shows that non-differential measurement error
can lead to biased results in the evaluation of diagnostic
tests with quantitative outcomes. It is especially important
to recognize that LRs are not consistently biased towards
the null even when measurement error is exclusively non-
differential. These biases will not be reduced by simply
increasing the sample size; it would be necessary to
increase the number of observations on each sampling
unit to reduce the impact of this error. It is therefore pos-
sible for an unbiased study (presence of random error
without a systematic component) to yield biased popula-
tion values through non-differential measurement error.
This situation is possible when the population parameter
to be estimated by the study (e.g. LR of a test) is not a sim-
ple one to one transformation of the data affected by
measurement error (e.g. OD). The observed attenuation
in AUC would be expected to occur in all situations
involving non-differential measurement error, but the
direction of bias in measured LRs would be expected to

Page 6 of 7

(page number not for citation purposes)



Emerging Themes in Epidemiology 2006, 3:7

vary depending upon the amount of error and underlying
distribution of test results.
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