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Alpha-Herpesvirus Infection Induces
the Formation of Nuclear Actin Filaments
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Herpesviruses are large double-stranded DNA viruses that replicate in the nuclei of infected cells. Spatial control of
viral replication and assembly in the host nucleus is achieved by the establishment of nuclear compartments that serve
to concentrate viral and host factors. How these compartments are established and maintained remains poorly
understood. Pseudorabies virus (PRV) is an alpha-herpesvirus often used to study herpesvirus invasion and spread in
the nervous system. Here, we report that PRV and herpes simplex virus type 1 infection of neurons results in formation
of actin filaments in the nucleus. Filamentous actin is not found in the nucleus of uninfected cells. Nuclear actin
filaments appear physically associated with the viral capsids, as shown by serial block-face scanning electron
micropscopy and confocal microscopy. Using a green fluorescent protein-tagged viral capsid protein (VP26), we show
that nuclear actin filaments form prior to capsid assembly and are required for the efficient formation of viral capsid
assembly sites. We find that actin polymerization dynamics (e.g., treadmilling) are not necessary for the formation of
these sites. Green fluorescent protein-VP26 foci co-localize with the actin motor myosin V, suggesting that viral capsids
travel along nuclear actin filaments using myosin-based directed transport. Viral transcription, but not viral DNA
replication, is required for actin filament formation. The finding that infection, by either PRV or herpes simplex virus
type 1, results in formation of nuclear actin filaments in neurons, and that PRV infection of an epithelial cell line results
in a similar phenotype is evidence that F-actin plays a conserved role in herpesvirus assembly. Our results suggest a
mechanism by which assembly domains are organized within infected cells and provide insight into how the viral
infectious cycle and host actin cytoskeleton are integrated to promote the infection process.
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Introduction compartments undergo movements that result in their

coalescence into larger replication compartments [5]. During

Herpesviruses are widespread animal pathogens, produc-
ing a variety of diseases of medical and economic impact,
including mucocutaneous infections, infections of the central
nervous system, and occasionally infections of visceral organs.
Herpesviruses are large double-stranded DNA viruses that
replicate and encapsidate their genomes inside the nuclei of
infected cells. The virions have a complex structure consist-
ing of four components: membrane envelope, tegument,
capsid, and core [1,2]. The core consists of the double-
stranded DNA-genome. During assembly, the genome is
packaged into a pre-formed capsid within nuclei of infected
cells. The capsid is surrounded by a protinaceous layer called
the tegument, and the entire particle is enclosed by a host-
derived lipid envelope containing many different viral
membrane proteins. The capsid is assembled in the nucleus
as an immature procapsid and undergoes cleavage-induced
rearrangements to form a mature capsid filled with DNA. The
coordination of herpesvirus capsid assembly and subsequent
nuclear egress is currently the subject of intense study [3-21].

Viral replication, late gene expression, and capsid for-
mation take place within distinct intranuclear structures
called replication compartments, originally defined by the
localization of herpes simplex virus (HSV) single-stranded
DNA-binding protein ICP8 [3-5,22,23]. Precursors to these
compartments are distinct structures called pre-replicative
sites, which form adjacent to cellular nuclear matrix-
associated ND10 sites [4,19,20,24]. Pre-replicative sites under-
go intranuclear movements that result in the formation of
replication compartments [5]. Subsequently, replication
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replication compartment formation, cellular chromatin is
marginated, the nuclear lamina is disrupted, and the nucleus
enlarges [6,9,10,14]. Although such domains certainly act to
concentrate viral and cellular factors required for viral
replication and assembly, the formation and maintenance
of such compartments during viral assembly remain poorly
understood.

The alpha-herpesvirinae subfamily includes pseudorabies
virus (PRV), varicella-zoster virus, and herpes simplex virus
type 1 and type 2 (HSV-1 and HSV-2). PRV has an
exceptionally broad host range and is often used to study
alpha-herpesvirus invasion and spread in the nervous system.
Using a combination of serial-section scanning electron
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Synopsis

Regulation of subcellular organization and transport is essential for
control of crucial biological processes. However, our knowledge
often is hampered because these processes tend to be transient and
difficult to study. Studies of how opportunistic microbes hijack
cellular machinery have provided insights into various normal cell
processes. For example, studies with intracellular microorganisms,
such as Listeria monocytogenes, Shigella spp., Rickettsia spp., and
vaccinia virus, have significantly increased our understanding of the
dynamic nature of the actin cytoskeleton. However, much less is
known about subcellular organization and transport of cargo in the
nucleus. The authors have discovered that alpha-herpesvirus
infection of neurons leads to the transient formation of actin
filaments in the nucleus. These filaments do not fill the nucleus, but
rather associate with newly formed viral capsids. The nuclear actin
filaments were initially identified in peripheral nervous system tissue
using a new imaging technology, serial section scanning electron
microscopy pioneered by Winfried Denk (a co-author). Their results
suggest that nuclear actin filaments form as part of a general stress
response to infection, but then are co-opted, perhaps to direct
capsid transport to sites of budding along the nuclear envelope.
This work illuminates a less well understood part of the viral life
cycle and sets the stage for future work investigating control of how
cargo is organized and moved in the nucleus.

microscopy [25], confocal microscopy, and transmission
electron microscopy (TEM), we show that PRV and HSV-1
infections of peripheral neurons result in the formation of
nuclear actin filaments. Using PRV expressing a green
fluorescent protein (GFP)-tagged VP26 capsid protein, we
demonstrate by confocal microscopy that nuclear actin
filaments associate with viral capsids and form prior to
capsid assembly. By using the actin-depolymerizing drug
latrunculin A, we show that F-actin is required for the
efficient assembly of capsid-rich foci in the nucleus. In
contrast, treatment with the actin-stabilizing drug jasplaki-
nolide increased the number and the size of individual
capsid-rich foci. We have found that GFP-VP26 nuclear foci
co-localize with the actin motor myosin V, suggesting that
viral capsids travel along nuclear actin filaments using
myosin-directed transport. We have also found that the early
stage of viral infection, but not viral genome replication and
late gene expression, is required for actin filament formation.
Our results suggest a mechanism by which assembly domains
can be organized within infected cells and provide insight
into how viral gene expression and host actin cytoskeleton
may be integrated to organize and promote the infection
process.

Results

Filaments Associate with Viral Capsids in Neuronal Nuclei

To better understand PRV assembly in neurons, we used
serial block-face scanning electron microscopy (SBFSEM)
[25]. For SBFSEM, the sample is embedded in a block of resin
and then imaged using back-scattered electrons, which shows
the distribution of heavy atoms within a superficial layer of
the block. A diamond knife blade is then driven across the
surface of the sample block by an automated ultramicrotome
drive to remove a thin (—50 nm) layer of resin. The cutting
and imaging processes are iterated through a large number of
cycles to obtain a well-registered volume image in the form of
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serial images, allowing the automated acquisition of 3-D
datasets at nanoscopic resolution. We imaged mouse sub-
mandibular ganglia (SMG) infected with PRV. The SMG is a
parasympathetic ganglion in the salivation circuit and has
been used extensively to study synapse formation during
development [26-28]. Using SBFSEM volume images, we
noticed filaments in the nuclei of infected neurons that
preferentially associated with genome-filled capsids, which
appear as dark spheres (Figure 1A; see Figure 1Ac for
enlargement of capsids; Video S1). Filaments were present
only in the nuclei but not in the cytoplasm of infected cells
(Video S2). In contrast, uninfected cells did not contain
intranuclear filaments, as determined by analysis of serial
SBFSEM images (compare Video S2 with Video S3). A stack of
65 images, sectioned at 50-nm thickness, clearly shows the
aggregation of capsids, with genome-filled capsids at the edge
of the aggregate, associating with fibers that extend to the
nuclear envelope (Figure 1Af; Video S1). Most of the filament-
capsid associations are end-on, although some capsids
associated with the sides of filaments (Figure 1Ae and 1B).
The filaments also associate with structures that appeared to
be partially formed capsids (Figure 1Ad). A 2-D projection of
the stack revealed a network of criss-crossing filaments
surrounding accumulations of filled and unfilled capsids
and other material (Figure 1Af). The filaments varied in
length between 1 and 5 pm, with an average length of 3 um (n
= 30, SD * 1.2 pm). The width of filaments ranged
approximately from 25 to 100 nm (1-4 pixels), with the width
varying along the filament length, suggesting the filaments are
actually bundles composed of several filaments.

Cultured Neurons Infected with PRV Have Numerous
Polarized Nuclear F-Actin Filaments That Associate with
Capsids

In SBFSEM, the filaments were reminiscent of F-actin. To
test the hypothesis that actin filaments form in the nuclei of
PRV-infected cells, we fixed SMG and stained with AF568-
phalloidin, which binds to F-actin, but not actin monomers.
Unfortunately, immunofluorescence microscopy of whole
ganglia resulted in high background at the surface and
inefficient penetration of the phalloidin at the center of the
ganglion (unpublished data). Consequently, we utilized in
vitro dissociated cultures of superior cervical ganglion (SCG)
neurons fixed and stained with AF568-phalloidin. The single-
step growth kinetics of PRV in SCG neurons is similar to that
of standard cell lines, with maximum production of infectious
virus at 12 h post-infection (hpi) [29,30]. Confocal microscopy
(versus wide-field microscopy) was required for the visual-
ization of the nuclear actin filaments, due to the strong actin
signal in the cytoplasm. In mock-infections, neurons showed
normal actin staining with increased fluorescence in the
actin-rich cortex (Figure 2, first row) and other structures,
such as axons, known to be actin-rich. Mock-infected cells did
not show any nuclear actin structures as shown by the
antibody staining against a nuclear lamin-associated protein,
a-LAP2 (Figure 2A, first row). We infected cells with a
recombinant PRV strain expressing a GFP-VP26 (a capsid
protein) fusion protein that is readily incorporated into
infectious virions [31]. The number of GFP-VP26 proteins in
each capsid is theoretically 900, enabling detection of
individual capsids by fluorescence imaging [32]. The nuclear
GFP-VP26 foci in Figure 2A are most likely aggregates of
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Figure 1. Filaments Associate with PRV Capsids in the Nuclei of Peripheral Neurons

(A) SBFSEM images. Scale bar is indicated in each image. (a) Filaments (magnified in b) associated with genome-filled capsids in the nucleus. Note that
the genome-packaged viral capsids appear as dark spots. Nuclear envelope is indicated (ne). Red arrows point out selected filament-capsid associations.
(c) Enlargement of (a) showing aggregate of capsids, both empty and genome-filled. (d) Putative immature capsids (red arrow) appear associated with
filamentous network. () Note side versus end-on associations between capsids and filaments. This image was processed by Volume Viewer (ImageJ
plugin) in which a stack can be re-sliced along a selected plane. 30 consecutive images were rotated around the Z-axis and selected slice is shown. (f) A
minimum-intensity projection from 30 consecutive layers in an image stack, taken 50-nm apart.

(B) Histogram showing end-on versus side associations between nuclear filaments and viral capsids (n = 105).

DOI: 10.1371/journal.ppat.0020085.g001

individual capsids. These foci may be analogous to HSV-1
VP26 foci, which serve as areas of capsid assembly [33].
Smaller punctae may be single whole, or partially formed
capsids [31]. When infected cells were fixed at 15 hpi and
stained with AF568-phalloidin, we saw actin filaments in the
nucleus (Figure 2A, second and third rows). These additional
filaments were restricted to the area within the o-LAP2
staining, indicating that the actin filaments were inside the
nucleus. In PRV-infected neurons, 95% of nuclei contained
actin filaments (n = 102 cells), with 51% of nuclei exhibiting
extensive actin filament networks (Figure 2B). To verify that it
was not the GFP-capsid fusion that triggered the formation of
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Figure 2. Actin Filaments Form in the Nuclei of PRV-Infected Neurons

actin filaments, we infected cells with the wild-type PRV-
Becker strain and found that these cells contained nuclear
actin filaments to the same degree and number as the GFP
strain (unpublished data).

The vast majority of cells containing nuclear actin
filaments (81%, n =102 cells) showed a polarized distribution,
with filaments primarily formed at one side of the nucleus
(Figure 3). To determine whether this asymmetry reflects the
overall polarity of the cell, we stained infected cells with an
antibody to the Golgi marker, GM130. We found that the
filaments were associated with the side of the nucleus that
faced the Golgi apparatus (Figure 3, first and second row).

Merge

(A) Confocal images are 2-D projections from five consecutive layers in an image stack, taken 0.5 pum apart. GFP-VP26 is visualized by direct
fluorescence. Scale bar = 20 um. An enlargement of one of the nuclei is shown for clarity. Scale bar for enlargement = 10 pum.
(B) Quantitation of actin filament formation within nuclei (infected versus mock-infected neurons).

DOI: 10.1371/journal.ppat.0020085.g002
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Figure 3. Polarity of Nuclear Actin Filaments Reflect the Overall Polarity of the Cell

Neurons were stained with AF568-phalloidin, anti-GM130 to stain the Golgi. GFP-VP26 is visualized by direct fluorescence. Each image is a 2-D
projection from four consecutive layers in a confocal image stack, taken 0.5 um apart. Scale bar =20 um. Top two rows show polarized SCG neurons
with one axon. Bottom row shows a single SCG neuron with two axons emanating from opposite sides of the cell body.

DOI: 10.1371/journal.ppat.0020085.9g003

However, in neurons with two axons on opposite sides of the
cell body where the nucleus is located in the center of the cell
body, the filaments appeared to emanate from all sides of the
nuclear lamina; in these cells, the Golgi apparatus also
formed a ring around the nucleus (Figure 3, bottom row).
These findings suggest that the nuclear actin filaments reflect
the overall polarity of the cell.

Nuclear Actin Filaments Form before GFP-VP26 Foci and
Co-Localize with GFP-VP26

To determine when actin filaments were formed during
PRV infection, we recorded images of infected neurons every
3 h during a 24-h interval. At 3 hpi, we could not detect GFP-
VP26 protein or actin filaments in the nucleus (Figure 4 and
Table 1), suggesting either that actin filaments had not
formed and GFP-VP26 had not yet been imported, or were
present only in amounts too small to be detected by our
methods. At 6 hpi, we still could not detect GFP-VP26 protein
in the nucleus, but we did detect diffuse actin webs and very
fine filaments in the nucleus (Figure 4 and Table 1). At 9 hpi,
both GFP-VP26 protein and actin filaments were present in
the same cells (29%, n =99 cells) (Figure 4 and Table 1). By 12
hpi, 48% (n = 102) of the cells showed GFP-VP26 fluo-
rescence, with 4% of cells having bright GFP-VP26 foci, and
over 50% of the cells containing nuclear actin filaments
(Figure 4 and Table 1). At 15 hpi, 95% of cells (n = 103) had
nuclear actin filaments, with almost 40% of cells also
containing GFP-VP26 foci (Figure 4 and Table 1). After 15
hpi, both GFP-VP26 foci and nuclear actin filaments became
prominent, with the number of cells showing diffuse GFP-
VP26 fluorescence decreasing and GFP-VP26 foci markedly
increasing (Figure 4 and Table 1). Nuclear actin filaments
appeared at the same time as diffuse GFP-VP26 fluorescence,
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but prior to the foci of GFP-VP26 (Figure 4B) suggesting that
formation of GFP- VP26 into larger foci depends on F-actin.
These foci may represent the accumulations of capsids in the
nucleus that are seen by SBFSEM.

During the 24-h time course following infection, we
noticed precise co-localization between GFP-VP26 and actin
filaments in the nucleus at specific time points: 9, 12, and 15
hpi (Figure 5). In some cells, the GFP-VP26 was discontinuous
along the F-actin filament (Figure 5, 9 hpi); in other cells, the
GFP-VP26 fluorescence was continuous along the entire
filament length, with GFP-VP26 foci detected at the edges of
the nuclear envelope (Figure 5, row 2). Some cells showed
GFP-VP26 fluorescence directly adjacent to as well as aligned
with the filaments. At 9 hpi, nuclear actin filaments co-
localized with VP26 in 81% of neurons (n= 48 cells). The peak
of co-localization occurred at 12 hpi, with 91% of neurons (n
= b5 cells) containing nuclear actin filaments showing co-
localization with VP26. At 15 hpi, the amount of co-
localization had markedly decreased with now only 25% of
neurons (n=>51 cells) with nuclear actin filaments showing co-
localization. These data are in agreement with the recent
finding that HSV-1 capsids undergo active directed move-
ments that are sensitive to an actin depolymerizing drug,
latrunculin A (latA) and most of which are movements away
from GFP-VP26 foci and toward the nuclear periphery [34].

Nuclear Actin Filaments Coordinate the Assembly of GFP-
VP26 Foci

To test whether nuclear actin filaments organize capsids in
the nucleus, we treated cells with the actin-depolymerizing
compound latA. We infected cells with PRV expressing GFP-
VP26 and added 5 pm of latA at 3 hpi, after viral entry was
complete. At 15 hpi, cells were fixed and then stained with
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Figure 4. Time Course of Actin Filament Formation and Capsid Assembly in the Nucleus

(A) SCG neurons were infected with PRV expressing GFP-VP26 at fixed times shown. The inset at 6 hpi is an enlargement of the nucleus from the cell on
the right, which has small nuclear actin filaments. The brightness of the inset image has been enhanced in order to more clearly visualize the filaments.
The arrowheads indicate actin filaments that appear to emanate from the nuclear envelope at 9 hpi. A single focal plane through the nucleus is shown.

Scale bar =20 um.

(B) Chart showing the relative formation of nuclear actin filaments, the presence of GFP-VP26 fluorescence, and emergence of GFP-VP26 foci over the

course of infection.
DOI: 10.1371/journal.ppat.0020085.9004

AF-568 phalloidin. All nuclear actin filaments had depoly-
merized, yet some cortical and axonal actin structures
remained intact (Figure 6, row 2). Cells treated with latA
contained half as many nuclei with capsid foci (18% of latA-
treated cells, n = 110 cells; 39% of untreated neurons at 15
hpi, n=302; Table 1). At 15 hpi, 80% of latA-treated cells (n=
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110 cells) exhibited only diffuse GFP-VP26 fluorescence
throughout the nucleus, rather than discrete VP26 foci,
compared with 61% of untreated neurons (n=302). When we
replaced the media containing latA at 15 hpi with fresh
neuronal media and allowed the infection to progress until 24
hpi, we found that nuclear actin filaments and GFP-VP26 foci
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Table 1. Quantitation of GFP-VP26 Foci and Nuclear Actin Filaments during Infection

Hours Post-Infection 3 6 9 12 15 18 21 24
Capsid foci (%) 0 0 0 4 37 63 83 83
Diffuse capsid (%) 0 0 29 48 6 37 17 17
Actin filaments (%) 0 0? 29 51 95 99 98 100
Cells counted (n) 97 98 99 102 103 104 93 101

% of cells exhibited non-filament actin staining in the nucleus in the form of clouds and wisps.

DOI: 10.1371/journal.ppat.0020085.t001

were restored to control levels (unpublished data). These
results indicate that the establishment and/or maintenance of
nuclear GFP-VP26 foci is partially dependent upon nuclear
F-actin filaments.

To test whether F-actin polymerization dynamics are
required for proper VP26 organization, we treated cells with
the actin filament-stabilizing drug jasplakinolide (jasp).
Addition of jasp prevents the remodeling of actin filaments

GFP-VP26 F-Actin

ghpl -.

Merge

12hpi...

and inhibits the intracellular movement of organisms (e.g.,
Listeria monocytogenes) that use actin polymerization. We
infected cells with PRV expressing GFP-VP26 and added
100 nM of jasp at 3 hpi. At 15 hpi, we fixed the cells and
stained them with AF-568 phalloidin. Since jasp binds the
same domain on the actin filament as phalloidin, the intensity
of phalloidin staining was markedly reduced, even though
pre-existing actin structures are not affected by the drug [35].

Inset

15Imi....

B. 100 -
D ]
2 80
S
=
G 60 -
Q=
28
EE 40 1
3%
> 20 -

Shpi  12hpi

15hpi

Figure 5. GFP-VP26 Co-Localizes with Nuclear Actin Filaments

(A) Neurons were infected with PRV expressing GFP-VP26 and were fixed at time points shown. A single focal plane through the nucleus is shown,
which can result in actin filaments appearing “discontinous” due to filaments weaving in and out of the plane of focus. An enlarged image of the
nucleus (inset) is shown for clarity. Merged image was created in ImageJ and color adjusted linearly to appear yellow. Scale bar = 10 pm.

(B) Histogram shows percentage of cells with co-localized GFP-VP26 and nuclear actin filaments in cells positive for nuclear actin at time points
indicated. This histogram represents the percentage of cells within a population that show co-localization (this histogram does not show the degree to
which GFP-VP26 and nuclear actin filaments are co-localized within a given cell).

DOI: 10.1371/journal.ppat.0020085.g005
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Figure 6. Drug Effects on Actin Filament Formation and Capsid Assembly Organization in the Nucleus

Infected cells were treated with latA, jasp, or DMSO as indicated.

(A) Each image is a 2-D projection from four consecutive layers in an image stack, taken 0.5 um apart. Scale bar =20 pm. The contrast of the o-LAP2

signal has been enhanced in jasp-treated cells.

(B) TEM of infected cells treated with with latA, jasp, or DMSO as indicated. Asterisks indicate capsid assemblies; arrows point out individual capsids.
Inset shows filaments from a different jasp-treated cell; arrows point to filaments. Scale bar =2 um.

DOI: 10.1371/journal.ppat.0020085.g006

When neurons were treated with jasp, there was an increase
in neurons showing GFP-capsid foci (57% of jasp-treated
neurons had foci, n =100 cells; 39% untreated neurons at 15
hpi, » = 302) with a concomitant decrease in diffuse GFP-
capsid fluorescence (43% of jasp-treated neurons showed
diffuse GFP-capsid, n = 100 cells; 61% of untreated neurons
at 15 hpi, n=302; Table 1 and Figure 6). This result indicates
that actin polymerization-based movement is not required
for the establishment of GFP-capsid foci, and rather suggests
that stabilizing actin filaments may actually promote or
stabilize the assembly of GFP-capsid foci.

From the confocal microscopy results, we were unable to
determine if latA treatment caused the disassembly of GFP-
VP26-capsid foci or of the capsids themselves. To distinguish
these possibilities, we examined infected latA-treated neu-
rons by TEM and found that infected cells treated with latA
had dispersed, but distinct capsids, rather than capsid
accumulations, as seen in the DMSO control (Figure 6B;
arrows highlight dispersed capsids; asterisk indicates capsid
accumulation). That individual capsids were intact indicates
that latA does not disrupt capsid structure. When infected
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neurons were treated with jasp, capsid accumulations were
still present and were, in fact, larger than those in the DMSO
control (Figure 6B, asterisk indicates capsid accumulation). In
addition, we detected filaments in the jasp-treated cells that
were similar in structure to those seen with SBFSEM (Figure
6B, inset). It is likely that filaments in the jasp-treated cells are
due to its actin-stabilizing activity [35]. These data are in
agreement with the confocal microscopy results indicating
that actin filaments are involved in establishing and main-
taining capsid foci.

Myosin V Co-Localizes with GFP-VP26 Foci in the Nucleus

The effects seen with latA and jasp provide support for a
mechanism in which individual capsids are using nuclear
actin filaments as tracks for directed transport. To under-
stand the basis for these capsid movements, we sought to find
a myosin motor that associates with the capsids. The three
main families of myosin responsible for intracellular move-
ments are myosin I, II (non-muscle), and V. Since a nuclear
myosin I (NM1) has been implicated in chromatin rearrange-
ments and interaction with actin in the nucleus, we stained
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(A) Anti-myosin V antibody was used to stain for presence of myosin V. A single focal plane through the nucleus is shown. White arrows highlight areas
of co-localization between myosin V and GFP-VP26 foci. Yellow arrow indicates nuclear actin filament associating with both myosin V and GFP-VP26

foci. Scale bar =10 pm.

(B) Profile plots of the GFP-VP26 (green) and anti-myosin V (blue) signal intensities along a straight line intersecting GFP-VP26 foci through the nucleus.
Inset shows the trajectory of the straight line on a merged image of the nucleus. Signal intensity profile plots were obtained using ImageJ and corrected
for background noise by subtracting the average intensity of the approximate nuclear area from the profile data. Curve points below zero correspond
approximately with points outside the nucleus. Correlation coefficients between GFP-VP26 and myosin V for plots shown: (a) 0.87 and (b) 0.72.

DOI: 10.1371/journal.ppat.0020085.9g007

for NM1 in the nucleus of infected neurons. We did not,
however, find any co-localization between capsids and NM]1
(unpublished data). We also did not detect any significant co-
localization between capsids and myosin II (Figure S1).
However, when we stained with antibodies against myosin
Va, we detected significant co-localization with GFP-capsids,
with the highest concentration of myosin Va at GFP-VP26 foci
(Figure 7A). When we compared the localization of GFP-VP26
and myosin Va in merged images, the correlation coefficients
were very high, indicating a high degree of signal overlap (0.87,
1.00 = 100% correlation; Figure 7B). In contrast, the
correlation between GFP-VP26 and myosin II was very low
(—0.08; Figure S1). A recent paper imaging intra-nuclear HSV-
1 capsids showed capsid movements to be sensitive to BDM, a
putative myosin ATPase inhibitor [34]. Our findings support
this data and suggest that the capsids are moving along actin
filaments using the actin-based motor myosin Va.

Nuclear Actin Filament Formation Does Not Require Viral
DNA Synthesis, but Does Require Protein Synthesis

The following experiments address the viral and cellular
requirements for actin filament formation. To test whether
protein synthesis is needed for actin filament formation, we
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treated PRV-infected neurons with cycloheximide. Following
1 h pre-treatment with 100 pg/ml cycloheximide, neurons
were infected with PRV expressing GFP-VP26 in the presence
of cycloheximide. At 15 hpi, we fixed the cells and stained
them with AF568-phalloidin. In cycloheximide-treated cells
we did not detect any nuclear actin filaments (Figure 8),
which shows that new protein synthesis is needed for the
filament formation.

To test whether viral DNA synthesis is required for the
formation of nuclear actin filaments, we treated cells with
phosphonoacetic acid (PAA), a specific inhibitor of viral DNA
synthesis [36,37]. We infected cells with PRV expressing GFP-
VP26 and added 400 pM of PAA at 1 hpi. At 15 hpi, we fixed
cells and stained them with AF568-phalloidin. Despite the
inhibition of viral DNA synthesis, actin filaments were
present at a frequency similar to DMSO-treated cells (86%
of PAA-treated cells, n=106; 95% of DMSO-treated cells, n =
91). We conclude that viral DNA synthesis is not required for
formation of the actin filaments (Figure 8).

PAA treatment of infected cells does not prevent expression
of immediate-early and early viral genes. To determine
whether these viral gene products are required for actin
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Cells were treated with cycloheximide or PAA, as indicated. Alternatively, viral stocks were treated with UV irradiation. Each image is a 2-D projection

from four consecutive layers in an image stack, taken 0.5 um apart. Scale bar = 20 um.

DOI: 10.1371/journal.ppat.0020085.9g008

filament formation, we inactivated PRV stocks with ultraviolet
light (UV), which reduced infectivity by four orders of
magnitude. UV-treated virions can still bind to and enter
cells, but viral transcription and DNA replication are blocked.
UV-treated virions also deliver tegument proteins after entry
[38]. We did not detect nuclear actin filaments after infection
by UV-treated virions (Figure 8), which indicates that new
synthesis of immediate-early and/or early viral proteins is
required for actin filament formation. Taken together, these
results are evidence that viral and/or host protein synthesis is
required for the formation of actin filaments.

Nuclear Actin Filament Formation Is Not Specific for PRV
or for Neurons

To test whether the formation of nuclear actin filaments is
specific to neurons, we infected PK15 cells, a transformed
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porcine kidney epithelial cell line, with PRV and stained cells
with AF568-phalloidin. Infected, but not uninfected, PK15
cells exhibited nuclear actin filaments (Figure 9A and 9B).
But, in distinction to infected neurons, the nuclear filaments
were finer and less organized in PK15 cells (Figure 9A and
9B). Furthermore, nuclear actin filament formation is not
specific to PRV infections since we also observed the
formation of nuclear actin filaments when we infected SCG
neurons with HSV-1 (KOS) (Figure 9C). This suggests that
nuclear actin filament formation is a mechanism that is
conserved within the alpha-herpesvirus subfamily.

Discussion

In this report, we show that herpesvirus infection induces
the formation of actin filaments in the nucleus. The timing of
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Figure 9. Conservation of Formation of Nuclear Actin Filaments

(A) PK15s infected with PRV expressing GFP-VP26, fixed at 9 hpi. Asterisks show cells that are infected and show short actin filaments that appear to
associate with nuclear membrane. Each image is a 2-D projection from four consecutive layers in an image stack, taken 0.1 um apart. Scale bar =20 um.
(B) Enlarged image of nucleus labeled with yellow asterisk in (A) Arrowhead indicates nuclear actin filaments. Scale bar =10 pum.

(C) SCG neurons infected with HSV-1 (KOS), fixed at 15 hpi. Cells were stained for the presence of viral capsid with anti-VP5 (capsid protein) antibody.
Arrowheads indicate nuclear actin filaments. Each image is a 2-D projection from four consecutive layers in an image stack, taken 0.5 um apart. Scale bar

=20 pm.
DOI: 10.1371/journal.ppat.0020085.g009

filament formation (Figure 4), the association of capsids with
filaments (Figures 1 and 5) and myosin V (Figure 7), and the
dependence of VP26 organization on filaments (Figure 6),
suggests that F-actin plays a key role in the formation and
organization of viral assembly centers in the nucleus. Our
results support the recent finding showing that directed
movement of HSV-1 capsids in the nucleus is actin-, and
likely, myosin-dependent [34]. We propose that nuclear actin
filaments provide tracks for myosin—rather than actin
polymerization-based movement, because elimination of
actin dynamics by jasp did not disrupt VP26 localization
(Figure 6). A diverse group of intracellular microorganisms,
including Listeria monocytogenes, Shigella spp., Rickettsia spp.,
and vaccinia virus, utilize the host actin cytoskeleton to move
within and spread between mammalian host cells. We believe
that herpesviruses provide another distinct example of a
pathogen appropriating the host actin cytoskeleton.
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We first observed nuclear actin filaments in infected mouse
SMG tissue in volume electron-microscopic images obtained
using SBFSEM (Figure 1). In those images, we detected a
network of filaments in the nucleus surrounding the PRV
capsids present only in infected cells. Most of the filaments
associated with individual genome-filled capsids, showing
both end-on and side-on associations. Given the association
of filaments exclusively with genome-filled capsids, we
propose that the filaments play a role in capsid assembly
and/or the transport of capsids in preparation for egress.
Similar filaments described as “interwoven fine fibrils” have
been found to associate with HSV-1 and HSV-2 nucleocapsids
in infected CNS, PNS, and glial cell nuclei [39]. Thus, the
formation of such filaments may be a conserved feature in the
alpha-herpesvirus life cycle.

We tested the hypothesis that infection induces filament
formation using dissociated, cultured peripheral SCG neu-
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rons. Neurons infected with PRV or HSV-1 contained a
network of nuclear actin filaments, visualized by fluorescently
labeled phalloidin (Figures 2 and 9). However, the extent to
which actin filaments were present in the nucleus was
variable: some cells contained a single large bundle running
along one face of the inner nuclear membrane whereas others
possessed larger, more complex structures. We do not yet
understand the factors responsible for these differences, but
amount of viral production or the size of the actin monomer
pool could play a role. The average length of nuclear actin
filaments seen by confocal microscopy (4.5 = 1.9 um) was
similar to that seen with SBFSEM (3.0 £ 1.2 pm) and in both
cases filaments specifically associated with capsids and were
present only in infected cells. Thus, they may be the same
structures. In PK15 cells, nuclear actin filaments appeared
finer and less organized than those in SCG neurons, perhaps
reflecting differences between polarized and non-polarized
cells or primary and transformed cells.

Actin filaments associate with the nuclear lamina that faces
the Golgi (Figure 3) which implies that, if actin filaments are
indeed utilized for nuclear egress, capsids traveling along the
filaments towards the nuclear membrane would emerge from
the nuclear envelope ready to engage the secretory pathway.
Consistent with this speculation, live imaging of HSV-1
capsids in the nucleus showed directed movements towards
the nuclear envelope [34]. This result also suggests that if
actin nucleators are involved in the formation of these
filaments, then one would expect to find them asymmetrically
localized on the nuclear lamina.

Since actin filaments are required for capsid foci for-
mation, GFP-VP26 foci presumably reflect viral assembly sites
as they have been observed and characterized in both PRV
and HSV-l-infected cells [31,33]. Experiments with latA
(Figure 6) suggest that actin filaments are important for
establishment and/or maintenance of GFP-VP26 foci. A
recent paper has shown that nuclear expansion in epithelial
cells infected with HSV-1 is dependent on actin [10]. LatA
also inhibits replication, compartment maturation, and
chromatin dispersal [10], providing support for the notion
that actin filaments provide a scaffold for viral assembly.
Testing whether such a scaffold is also used for viral DNA
replication will require further study.

Jasp, an inhibitor of actin treadmilling dynamics that
stabilizes actin filaments, increased the number of cells
containing GFP-VP26 foci by 30% (Figure 6). This finding
suggests that capsid foci may be stabilized as a result of
filament stabilization. At present, we do not know the degree
to which the filaments are dynamic or if they are undergoing
rapid turnover; Fluorescence Recovery after Photobleaching
(FRAP) experiments with neurons expressing GFP-actin
should answer this question. The effects of jasp imply that
individual capsids use the actin filaments as tracks for
directed movements rather than by using actin polymer-
ization-based movement, which is distinct from the way that
Listeria and vaccinia virus use the actin cytoskeleton. The
result that capsids co-localize with the actin motor myosin Va
(Figure 7) supports this idea. Class V myosins are among the
most thoroughly studied forms of unconventional myosins
and considerable evidence supports a role in transport of
organelles and vesicles [40]. Myosin Va is a two-headed
myosin that shows processive movement along actin fila-
ments, similar to that of two-headed kinesins and dynein
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along microtubules [40,41]. Myosin Va is one of the fastest
myosins, moving along actin filaments at a speed of 300-400
nm/s [42], which is comparable with the speed reported for
directed movements of HSV-1 capsids [34].

We do not know whether actin filaments form as a result of
rearrangement of the available nuclear monomer pool or if
monomeric actin is recruited from the cytoplasm. Several
recent publications [43-45] have demonstrated that actin is
present in the nucleus and is critical for transcription,
chromatin remodeling, mRNA export, and nuclear structure
and integrity. However, the actin present in the nucleus may
not be filamentous, since it is not recognized by phalloidin,
which binds only to filaments more than seven monomers
long [46]. By analogy, actin may also play a role in
transcription of viral genes. Bf-actin has been shown to co-
purify with RNA polymerase (I, II, and III), is a component of
pre-initiation complexes, and appears to be recruited to
promoters of genes about to be transcribed [47-49]. However,
recent work [10] demonstrates that treatment with inhibitors
of actin polymerization does not affect HSV-1 viral repli-
cation (cytochalasin D treatment even increases viral titer
about 15 times). These observations taken together with our
findings that actin filaments still form when viral DNA
replication is prevented (Figure 8) suggest that actin plays an
ancillary rather than an essential role in the virus life cycle.

Recent work also shows that host-derived actin is incorpo-
rated into the PRV virion and becomes an integral part of the
outer tegument layer [50,51]. The amount of actin incorpo-
rated increased in the absence of VP22, one of the major
tegument proteins, providing support for the view of the
outer tegument layer as dynamic outer shell [50,51]. Virion-
associated actin has been reported in other herpesviruses
[1,52-56] and other enveloped viruses including paramyx-
ovirus, retrovirus, and rhabdovirus [57-61]. Although actin
incorporation may be required as a structural element of the
virion, actin may also serve an additional function later in
infection, such as nuclear egress or envelopment.

We do not know how actin filament formation occurs after
infection, but we do know that new protein synthesis is
required. We also know that at least one viral immediate-early
or early protein is required (Figure 8). This protein may
promote the formation of actin filaments directly, perhaps as
an actin nucleator. Studies of the mammalian stress response
have revealed that formation of nuclear actin filaments,
increased nuclear invaginations, and decondensation of
nucleoli, events all associated with viral infection, occur in
response to heat shock [62]. During the heat-shock response
and during HSV-1 infection, cellular chaperones Hsp70 and
Hsp40 are redistributed to the nucleus during infection and
co-localize with ICP0, adjacent to replication complexes,
thereby promoting sequestration and compartmentalization
of the nucleus [21]. Herpesvirus infection induces cellular
stress responses, which may be exploited to concentrate viral
and host proteins required for viral assembly and packaging.
Consistent with this speculation, baculovirus-infected cells
form nuclear actin filaments at the time of virus assembly;
these filaments co-localize with nucleocapsids and the
baculovirus major capsid protein has been shown to bind F-
actin [63]. Whether actin filament formation is a viral-induced
response or a general stress response, viruses that replicate in
the nucleus may utilize these actin filaments as a scaffold for
assembly and genome packaging. As a first step toward testing
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these ideas, it will be important to understand how viral
capsids interact with nuclear actin filaments by identifying
viral proteins that interact with actin and/or myosin.

Materials and Methods

Virus and cells. The swine kidney epithelial cell line (PK15) was
purchased from the American Type Culture Collection (CCL-22). All
non-neuronal cells were cultured in Dulbecco’s modified Eagle
medium supplemented with 10% of fetal bovine serum and 1%
penicillin/streptomycin. All PRV stocks were produced in the PK15
cell line. PRV stocks used in this report include PRV Becker, a
virulent isolate [64] and PRV-GS443, a recombinant expressing GFP
fused to the VP26 capsid protein [31].

Infection of mouse SMG. Fach 6-8-wk-old C57 B6 mouse was
anesthetized with 100 pl of a freshly prepared, sterile filtered solution
of ketamine (100 = 10 mglkg)/xylazine (10 = 1 mgl/kg) by intra-
peritoneal (IP) injection. The neck of the mouse, from the base of the
chin to just above the ribcage, was shaved using a platinum razor
blade. The shaved area was prepared for surgery in the laminar flow
hood using aseptic technique by applying disinfectant scrub and
swabbing the area with 70% isopropyl alcohol. The mice were at a
surgical plane of anesthesia prior to incising the neck region to
expose the salivary glands. An approximately 1.5-cm incision was
made with a sterile scalpel blade on a scalpel handle, with the skin
grasped using forceps in order to ensure a shallow incision. The
animal was monitored during the entire surgical procedure; if at any
time the animal is no longer in a surgical plane of anesthesia (e.g.,
increased respiratory rate, movement), then we injected the animal
with additional ketamine/xylazine or ketamine alone (up to 10-20 mg/
kg) to induce a deeper plane of anesthesia. Four separate 2-1
injections of PRV inoculum (diluted in sterile PBS) was injected into
the submandibular glands. The incision was closed with 6-0 silk
sutures. The mouse was administered an IP injection in the scapular
region of 2.0 mg/kg of buprenorphine for prophylaxis against post-
surgical pain. At 48 hpi, the mouse was euthanized by COs inhalation
and fixed with 4% paraformaldehyde by cardiac perfusion. The
salivary glands were surgically removed and the SMG dissected out on
Sylgard plates. This experimental protocol related to animal use has
been approved by the Institutional Animal Care and Use Committee
of the Princeton University Research Board under protocol number
1539-AR1 in accordance with the regulations of the American
Association for Accreditation of Laboratory Animal Care and those
in the Animal Welfare Act (Public Law 99-198).

Block-face serial section scanning electron microscopy. SMG were
stained in a manner similar to what is described for TEM. Post-
staining, the infected ganglia were embedded in Epon resin (EM
Sciences). The embedded samples were mounted on an aluminum
rivet and trimmed following the procedure given in Denk and
Horstman, 2004 [25]. All data shown were taken on an environmental
SBFSEM with a field-emission electron gun (QuantaFEG 200, FEIL,
Eindhoven, The Netherlands) at a gas (Hs0) pressure of 23 P, and an
electron energy of 3.0 keV. The mounted, trimmed samples were
placed on the SEM microtome and sequential images from the block-
face were acquired in between cut cycles. The images were taken at a
digital resolution of 26 nm/pixel. The data were analyzed using
Image] 1.32j software (National Institutes of Health). The reslicing of
image stacks (see Figure le) was done using the Image] Volume
Viewer plugin, which interpolates the z-axis data so that the digital
resolution matches that of the lateral direction.

Neuron culture. Detailed protocols for dissecting and culturing
neurons are found in Ch’ng et al. [65]. Briefly, sympathetic neurons
from the SCG were dissected from E15.5 to E16.5 pregnant Sprague-
Dawley rats (Hilltop Labs Incorporated, Pennsylvania, United States)
and incubated in 250 pg/ml of trypsin (Worthington Biochemicals,
Lakewood, New Jersey, United States) for 10 min. 1 mg/ml of trypsin
inhibitor (Sigma-Aldrich, St. Louis, Missouri, United States) was
added to neutralize the trypsin for 3 min and then removed and
replaced with neuron culture medium. Prior to plating, the ganglia
were triturated into dissociated neurons using a fire-polished Pasteur
pipette and then plated onto glass cover slips in a 35-mm plastic
tissue culture dish coated with 500 pg/ml of poly-DL-ornithine
(Sigma-Aldrich) diluted in borate buffer and 10 pg/ml of natural
mouse laminin (Invitrogen, Carlsbad, California, United States). The
neuron culture medium consists of Dulbecco’s modified Eagle
medium (Invitrogen) and Ham’s F12 (Invitrogen) in a 1:1 ratio. The
serum-free medium was supplemented with 10 mg/ml of bovine
serum albumin (Sigma-Aldrich), 4.6 mg/ml glucose (J. T. Baker), 100
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pug/ml of holotransferrin (Sigma-Aldrich), 16 ug/ml of putrescine
(Sigma-Aldrich), 10 pg/ml of insulin (Sigma-Aldrich), 2 mM of L-
glutamine (Invitrogen); 50 pg/ml or units of penicillin and strepto-
mycin (Invitrogen), 30 nM of selenium (Sigma-Aldrich); 20 nM of
progesterone (Sigma-Aldrich) and 100 ng/ml of nerve growth factor
2.5S (Invitrogen). After 2 d post-plating, the neuronal cultures are
treated with 1 pM of an antimitotic drug called cytosine B-D-
arabinofuranoside (Sigma-Aldrich) to eliminate any non-neuronal
cells. The neuron culture medium was replaced every 3 d and cultures
were kept in a humidified, CO2 regulated 37 °C incubator. This
experimental protocol related to animal use has been approved by
The Institutional Animal Care and Use Committee of the Princeton
University Research Board under protocol number 1453-AR2 in
accordance with the regulations of the American Association for
Accreditation of Laboratory Animal Care and those in the Animal
Welfare Act (Public Law 99-198).

Viral infections. Protocols for viral infection of neurons have been
described by Ch’ng et al. [65]. All PRV infections of neuron cultures
were carried out under high multiplicities of infection (MOI) unless
otherwise stated. Briefly, neurons were cultured on glass cover slips in
35-mm dishes for approximately 2 wk prior to any experiment. The
viral inoculum was diluted in 2% fetal bovine serum in Dulbecco’s
modified Eagle (GIBCO, San Diego, California, United States) and
overlaid on the neuronal culture for 1 h in a humidified 37 °C
incubator. After 1 h, the viral inoculum was removed and replaced
with neuron medium. Infections usually lasted for 15 h (unless
otherwise stated) before the samples were fixed and processed for
staining and immunofluorescence. The production of infectious virus
over time in SCGs has been characterized [30, 66].

Antibodies and stains. Antibodies used in this study include mouse
monoclonal against lamin-associated protein 2 (LAP2) (BD Biosciences,
Palo Alto, California, United States; used 1:500), anti-VP5 (major capsid
protein) antibody and anti-GM130 antibody (BD Transduction labo-
ratories; used 1:250). Myosin Va antibody against neuronal rat myosin V
was generously provided by Paul Bridgman (Washington University, St.
Louis, Missouri, United States) and used at 1:2000. Myosin 1I antibody
against neuronal rat myosin II (Covance) was used at 1:500. Actin was
detected by Alexa 568-phalloidin (Molecular Probes, Eugene, Oregon,
United States) used at 1:40. All secondary Alexa fluorophores were
purchased from Molecular Probes and used at 1:500 dilution.

Fluorescence, immunofluorescence, and drug treatments. All
fluorescence experiments carried out were performed as follows.
Dissociated neurons on glass cover slips were incubated in
phosphate-buffered saline containing 3% bovine serum albumin
and 0.5% triton for 10 min before the addition of primary antibodies
for 1 h. After 1 h, the primary antibodies were removed and the
sample was washed three times with phosphate-buffered saline
containing 3% bovine serum albumin (and 0.5% saponin when
noted in text). Next, secondary antibodies were added to the sample
and incubated for 1 h. After 1 h, the secondary antibodies were
removed and the sample was washed three times with phosphate-
buffered saline containing 3% bovine serum albumin (and 0.5%
saponin when noted in text). To stain for filamentous actin, Alexa-
568-phalloidin was added to the cover slip at a concentration of 6.6
pg/ml. The cover slip was mounted on a glass slide using Aqua
polymount (Polysciences, Warrington, Pennsylvania, United States)
and allowed to dry for 24 h prior to imaging. To depolymerize actin,
latrunculinA (latA; Molecular Probes) was dissolved in DMSO and
added directly to the media at 3 hpi at a final concentration of 5 uM.
Jasplakinolide (jasp; EMD Biosciences, Darmstadt, Germany) was
dissolved in DMSO and was added directly to the media at 3 hpi at a
final concentration of 100 nM. Phosphonoacetic acid (PAA; Sigma-
Aldrich) was dissolved in DMSO and added directly to the media at 1
hpi at a final concentration of 400 uM. Cycloheximide was used at 100
pg/ml (10 mg/ml stock dissolved in PBS). Cells were pre-treated with
cycloheximide in neuronal media for 1 h and then infected with viral
inoculum containing cycloheximide. After 1 h, the viral inoculum was
removed and replaced with neuron medium containing cyclohex-
imide. For UV-inactivation, we exposed aliquots of PRV443L strain to
UV light using a UV Stratalinker 1800 (Stratagene, La Jolla,
California, United States). We used a dosage of UV that reduced
the titer by approximately 1,000-fold.

Samples were imaged with a Perkin-Elmer (Wellesley, California,
United States) RS3 spinning disk confocal microscope side-mounted
on a TE200-S Nikon Eclipse microscope (Tokyo, Japan) with an Argon/
Krypton laser producing excitation lines of 488, 568, and 647 nms.
Optical sections were acquired in 0.1, 0.25, or 0.5 pm steps, as stated. 2-
D projections of confocal stacks and channel merges were created by
Image] 1.32j software (National Institutes of Health). All figures were
assembled in Adobe Photoshop 7.0.1. Alterations to image brightness
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and contrast were conducted in a linear manner and were applied
equally to controls, except where otherwise noted. Supplemental
video was assembled in Image] and converted to QuickTime format.

TEM. Whole SCG were cultured for 2 wk on Aclar (EM Sciences) in
a manner similar to what is described above for glass cover slips
(except without dissociation). Neurons were infected at a high MOI
and treated with latA as described above. After 15 hpi, the plates were
washed twice with phosphate-buffered saline, fixed with 2%
glutaraldehyde in 0.2 M sodium cacodylate buffer (pH 7.2) for 4 h,
and post-fixed with 1% osmium tetroxide in sodium veronal buffer
for 1 h on ice. Samples were then rinsed with sodium veronal buffer
four times and incubated with 0.25% toluidine blue in 0.2 M
cacodylate buffer (pH 7.2) for 1 h; the staining solution was then
removed with four rinses of sodium veronal buffer (pH 7.2), followed
by four rinses with 0.05 M sodium maleate buffer (pH 5.1). Overnight
incubation with 2% uranyl acetate in 0.05 M sodium maleate buffer
was done in the dark followed by four rinses with 0.05 M sodium
maleate buffer (pH 5.1). The fixed samples were then dehydrated with
ethyl alcohol, embedded in Epon resin (EM Sciences) and cut into 70-
nm sections using a Reichert Ultracut E ultramicrotome.

Supporting Information

Figure S1. Profile Plots of the GFP-VP26 (Green) and Anti-Myosin II
(Blue) Signal Intensities along a Straight Line Intersecting GFP-VP26
Foci through the Nucleus

Inset shows the trajectory of the straight line on a merged image of
the nucleus. Signal intensity profile plots were obtained using Image]
and corrected for background noise by subtracting the average
intensity of the approximate nuclear area from the profile data.
Curve points below zero correspond approximately with points
outside the nucleus. Correlation coefficients between GFP-VP26 and
myosin II for plots shown: (A) —0.11 and (B) —0.18.

Found at DOI: 10.1371/journal.ppat.0020085.sg001 (9.9 MB TIF).

Video S1. QuickTime Video of a SBFSEM Stack of 65 Serial Sections
from an Infected Cell, Sectioned at 50 nm

The volume shown is at the inner edge of the nucleus, with the
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nuclear envelope at the right-hand side of the image. This video is a
cropped substack from Video S2.

Found at DOL 10.1371/journal.ppat.0020085.sv001 (3.1 MB MOV).

Video S2. QuickTime Video of a SBFSEM Stack Comprising 100
Serial Sections from an Infected Cell, Sectioned at 50 nm

Lower half of the cell was not obtained during image acquisition.
Found at DOI: 10.1371/journal.ppat.0020085.sv002 (944 KB MOV).

Video S3. QuickTime Video of a SBFSEM Stack Comprising 150
Serial Sections from an Uninfected Cell, Sectioned at 50 nm

Found at DOI: 10.1371/journal.ppat.0020085.sv003 (1.4 MB MOV).
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