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Abstract

The Atlas human cDNA expression array was used to

evaluate gene expression profile changes in the genesis

of human lung adenocarcinomas and squamous cell

carcinomas. Gene expression changes between adeno-

carcinomas and squamous cell carcinomas were also

analyzed. Of the 588 gene targets, 262 genes were

expressed in these tissues and, of these, 45 genes were

differentially expressed by at least two-fold in tumor

tissues compared to corresponding normal tissues.

Semiquantitative reverse - transcriptase polymerase

chain reaction was used to confirm gene expression

changes. Only those genes that reflected changes in

>50% of the analyzed tissues were included in the final

analysis. Ultimately, 26 genes were evaluated with 14

genes overexpressed and 12 genes underexpressed

compared to matching normal lung tissues. Although

similar expression changes were detected in adenocar-

cinomas and squamous cell carcinomas for most of the

genes analyzed, some subtype-specific differences

were also found. Genes encoding cell cycle regulators,

intracellular signal transducers, cell receptor and adhe-

sion molecules, growth factors, oncogenes, and apop-

totic effectors were differentially expressed in this

study. These gene expression changes may directly

contribute to the initiation or progression of human lung

cancer or may be secondary effects of the tumori-

genesis process. Regardless, many of these differences

may be useful in the diagnosis and/or treatment of this

deadly disease.
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Introduction

An estimated 553,400 Americans will lose their lives to

cancer in the year 2001. Lung cancer is the most common

type of cancer death among men and women in the United

States, with an estimated 169,500 new cases and 157,400

deaths predicted for the year 2001 [1]. The molecular

pathogenesis of human cancer involves the accumulation

of genetic and epigenetic alterations in cancer- related

genes [2,3]. Progression to lung cancer is believed to

involve 10 to 20 alterations, including the activation of

proto-oncogenes and the inactivation of tumor suppressor

genes [4]. In addition to overriding growth control mecha-

nisms, transformed cells must also avoid programmed cell

death that can ensue when cell cycle checkpoint control is

lost. Although most tumors have high rates of apoptotic

death, cancer cells frequently inactivate components of

apoptotic pathways and induce cell survival genes [5].

Additional alterations may include disruption of DNA repair

genes and chromosomal fragile sites as well as activation of

invasive, metastatic, and/or angiogenic factors. Genetic

susceptibility may also contribute to the development of

human lung cancer [4,6 ].

Lung cancers are broadly categorized into two histologic

groups. Small cell lung cancer (SCLC) is diagnosed in

approximately 20% to 25% of all lung cancer cases and

non–small cell lung cancer (NSCLC) is diagnosed in the

remaining 75% to 80% of cases [7,8]. NSCLC is further

subdivided into three groups: 1) squamous cell carcinoma

is characterized by rapidly growing epidermoid cells that

produce keratin (�25%); 2) adenocarcinoma arises periph-

erally and is composed of cuboidal or columnar cells that

can form glandular patterns and produce mucin (�30%); 3)

large cell carcinoma consists of a heterogeneous mix of

poorly differentiated cells that do not resemble cells from

the other two categories (�10%) [7,8 ].

Cytogenetic and molecular studies have revealed different

genetic alterations in these two histologic subgroups. For
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example, the expression frequency of Bcl -2 is much higher

in SCLC (75% to 95%) than in NSCLC (10% to 35%) [6,9-

11]. Additionally, within NSCLC, squamous cell carcinomas

express higher levels of Bcl-2 more frequently than

adenocarcinomas (25% to 35% vs. �10%, respectively)

[6,10,12,13]. Abnormal Rb protein expression is detected in

over 90% of SCLC but only 15% to 30% of NSCLC [14-16].

p16INK4a inactivation is more frequently detected in NSCLC

(�10% to 40%) and very rarely in SCLC ( <1%) [6,17,18].

Activating point mutations in the ras gene family occur in

20% to 30% of adenocarcinomas and 15% to 20% of all

NSCLC but in <1% of SCLC [6,19]. In contrast, the

frequency of abnormal p53 expression detected by immu-

nohistochemistry is �40% to 70% for both SCLC and

NSCLC [20-22]. Most studies have reported a higher

frequency of abnormal expression of the p53 gene in

squamous cell carcinomas compared to adenocarcinomas

[6]. In SCLC, losses from chromosomes 1p, 3p, 5q, 17p, and

10q predominate [23,24]. Common alterations in NSCLC

include 3p, 6q, 8p, 9p, 9q, 13q, 17p, 18q, 19p, 21q, 22q, as

well as +7, i(5)(p10) and i(8)(q10) [23,25]. Genetic

alterations appear to differ between SCLC and NSCLC and

possibly even between NSCLC subtypes.

Using a human cDNA expression array, we determined

gene expression profile changes between human lung

NSCLCs and normal human lung tissues. We also analyzed

the gene expression profile changes between human lung

squamous cell carcinomas and adenocarcinomas with

respect to their matching normal lung tissues. The cDNA

expression arrays allow for rapid, high-throughput analyses

of gene expression patterns in tissues. Analysis of differ-

entially expressed genes in human lung tumors may reveal

additional, unsuspected genes involved in lung tumori-

genesis, provide novel diagnostic markers or chemopreven-

tive targets, and/or implicate the involvement of other

molecular pathways in cancer development.

Materials and Methods

Tissue Specimens

Frozen lung cancer specimens and matching normal

tissues were obtained from Cooperative Human Tissue

Network through The Ohio State University Department of

Pathology. Fourteen pairs of clinical samples (seven

squamous cell carcinomas with their normal controls and

seven adenocarcinomas with their normal controls) were

used in this study (Table 1). Frozen tumor tissues were

microdissected to determine the tumor versus normal cell

ratio for each specimen. Tissues were embedded in Tissue

Tek OCT compound (VWR Scientific Products, West

Chester, PA), cryostat sectioned, and stained with hemo-

toxin and eosin for microscopy. Tumor tissue sections

corresponding to the microscopic sections containing

�70% tumor cells were isolated and stored at �808C for

subsequent RNA isolation. Matching normal tissues were

also microdissected to ensure that specimens consisted of

purely normal lung tissue. Figure 1 shows the typical

Table 1. Description of Adenocarcinomas and Squamous Cell Carcinomas Used in This Study.

Patient No. Description Location Diagnosis Other Relevant Facts

8322 48Y, W, F RLL Invasive, moderately differentiated SCC Smoker: 1 ppd�25 years; prior SCC of the lung treated with radiation;

mother died of breast cancer

8326 72Y, W, F RLL Moderately differentiated SSC; vascular

invasion; lymph node metastasis

Smoker: 1 / 2 ppd�30 years; prior SCC of the lung treated with

chemotherapy�5

8599 62Y, F RA Lung Moderately to poorly differentiated SCC; pleural

and intrapulmonary lymphatic invasion

Prior right lung cancer

8611 67Y, M LUL Moderately differentiated bronchogenic

SSC with desmoplastic reaction

Atelectasis and inflammation with cavitation and hemorrhage

8706 74Y, M LUL Poorly differentiated SSC with extensive necrosis Emphysematous change with focal chronic interstitial pneumonitis

and fibrosis; atelectasis

94 -10 -A039 68Y, W, M RUL Moderately differentiated SCC with no

evidence of keratin formation;

adenosquamous in some areas

Moderate emphysema in normal lung tissue

94 -11 -A120 58Y, W, M LLL Poorly differentiated endobronchial SSC with

lymph node metastasis

Prior asbestos exposure

5796 69Y, F RUL Moderately to poorly differentiated alveolar AdC

with extensive central necrosis

Moderate lymphocytic host response

8252 70Y, W, F RML Poorly differentiated AdC with bronchioalveolar

pattern at its periphery; lymph node metastasis

Prior cervical carcinoma but compatible with primary lung carcinoma

8606 52Y, W, F LLL Poorly differentiated AdC with lymph node

metastasis

Smoker: 1.5 ppd�32 years; prior RU lobe tumor; post - obstructive

chronic pneumonia

8607 45Y, W, F LUL;

LLL

Adenocarcinoma; mass present at hilum and

junction of LU lobe and LL lobe

Brain metastasis

8641 68Y, B, F RML Moderately differentiated AdC invading into

bronchus and vasculature

Tumor destroys and fills one bronchus; chronic bronchitis and

centrilobular emphysema

8712 76Y, W, F RUL Moderately differentiated AdC with lymph

node metastasis

History of skin cancer and primary RU lobe lung cancer

94 -11 -C066 51Y, M RLL Poorly differentiated AdC Smoker: 1.5 ppd�30 years

Abbreviations: AdC, adenocarcinoma. SCC, squamous cell carcinoma. W, white. B, black. F, female. M, male. Y, years old. ppd, packs per day.

Location: first position: R, right; L, left; second position: U, upper; M, middle; L, lower; third position: L, lobe.

142 Gene Expression in Non-small Cell Lung Cancer McDoniels - Silvers et al.

Neoplasia . Vol. 4, No. 2, 2002



morphology of normal alveoli and an adenocarcinoma as

well as a normal bronchiole and a squamous cell carcinoma

used in this study.

PolyA+ RNA Isolation

Total RNA was extracted using TRI-Reagent according to

standard protocol (Molecular Research Center, Cincinnati,

OH). Briefly, after homogenization in 5.0 ml TRI-Reagent,

1.0 ml chloroform was added per sample, shaken vigorously,

and centrifuged for 15 minutes at 48C, 12,000g. The clear,

upper phase containing total RNA was collected for isolation

of the polyA+ RNA fraction. One volume of aqueous phase

was mixed with 0.1 volume of 1 M Tris ( free base) and 0.8

volume isopropanol and stored at room temperature for

approximately 5 minutes. Meanwhile, oligo(dT)-cellulose

columns (Molecular Research Center ) were washed with 1.0

ml binding buffer (0.5 M LiCl, 50 mM sodium citrate, 0.1%

SDS). The RNA suspension was applied to the cellulose

column to which the polyA+ RNA adheres. The columns

were then washed with 0.5 ml 75% ethanol and 1.0 ml

binding buffer. Finally, the polyA+ RNA fraction was eluted

from the column with 0.6 ml elution buffer (1 mM sodium

citrate, 0.1% SDS), quantitated by spectrophotometry, and

precipitated with a final concentration of 0.3 M NaCl and 1.5

volumes isopropanol. Pellets were dissolved in nuclease-

free water to a final concentration of 1 �g/�L.

cDNA Expression Array Hybridization

A total of 5 �g of polyA+ RNA was reverse transcribed

using 0.2�CDS primer mix (Clontech Laboratories, Palo Alto,

CA); 10 mM DTT; 1� reverse transcription buffer (50 mM

Tris–HCl, pH 8.3; 75 mM KCl; 3 mM MgCl2); 1 mM each of

dATP, dTTP, and dGTP; 80 U RNAsin (Promega, Madison,

WI); 50 �Ci [� - 32P]dCTP and 800 units MMLV reverse

transcriptase (Gibco BRL Life Technologies, Carlsbad, CA).

The mixture was incubated at 378C for 1 hour and then purified

by centrifugation through G50 Sephadex columns, denatured

at 958C for 10 minutes, and hybridized to Atlas cDNA

Figure 1. Histology of normal and tumor tissues used in this study.
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expression arrays (Clontech Laboratories, Palo Alto, CA) for

16 to 20 hours at 428C. Membranes were then washed twice,

each for 10 minutes in 2�SSC, 0.1% SDS at room temper-

ature, and twice, each for 30 minutes in 0.1�SSC, 0.1% SDS

at 558C, followed by exposure to Molecular Dynamics

Phosphorimager screens (Sunnyvale, CA) overnight. Densi-

tometry was performed using ImageQuant software.

Reverse Transcription PCR

Primers for each differentially expressed gene were

designed and ordered from Gibco BRL Life Technologies.

Each primer was diluted to 1 OD/100 �L and forward

primers were then end- labeled with [� - 32P]dATP using

T4 polynucleotide kinase (New England Biolabs, Beverly,

MA). A total of 4 �g normal / tumor tissue total RNA and

2.5 �g oligo-dT primer were denatured at 658C for

10 minutes and placed on ice. To this mixture the following

components were added: 1�reverse transcription buffer

(50 mM Tris–HCl, pH 8.3; 75 mM KCl; 3 mM MgCl2);

10 mM DTT; 1.0 mM of each dATP, dTTP, and dGTP;

100 �Ci [� -32P]dCTP or 1.0 mM dCTP; 60 U RNAsin

(Promega); and 800 U MMLV reverse transcriptase (Gibco

BRL Life Technologies). Reaction mixtures were incubated

at 378C for 1 hour. Glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) was used as an internal control in each

PCR amplification. The coamplification of the control cDNA

and the target gene cDNA in tumor and normal tissues

provided a means to control for PCR amplification and

enabled the relative level of the target gene expression

to be quantified. PCR reactions using 1 �L cDNA,

1�reaction buffer, 2 mM MgCl2, 0.2 mM dNTPs, 0.75 units

of Taq DNA Polymerase (Promega), labeled forward

primers, and unlabeled reverse primers were subjected to

18 to 24 cycles of amplification at 958C for 1 minute, 558C
for 1 minute, and 728C for 1 minute per cycle. To determine

the linear range of each set of PCR reactions, a series of 3

to 4 PCR reactions using 18, 20, 22, or 24 cycles were

performed for each target gene, and one of the reactions

that fitted into the linear range was used for further

quantitation. PCR products were then electrophoresed on

Table 2. Differentially Expressed Genes in Adenocarcinomas and Squamous Cell Carcinomas.

No. Gene GenBank No. RT RT Frequency

Oncogenes, tumor supressor genes, and cell cycle regulators

1 protein tyrosine kinase c - kit X06182 � 5 / 7S, 6 / 7A, 1S&1A( + )

2 c - jun J04111 � 2 / 7S, 5 / 7A

3 protein tyrosine kinase receptor tyro3 D17517 � 5 / 7S, 5 / 7A

4 c - src K03214 � 5 / 7S, 3 / 7A, 4S( + )

5 c - fgr proto - oncogene M19722 � 5 / 7S, 4 / 7A, 1A( + )

6 TR3 orphan receptor L13740 � 6 / 7S, 6 / 7A, 1S( + )

7 cdc25A M81933 + 5 / 7S, 3 / 7A, 2A( � )

Stress response and modulators, effectors, and intracellular transducers

8 ephrin type - A receptor 1 M18391 + 3 / 7S, 6 / 7A, 1S&2A( � )

9 LIM domain kinase 1 ( LIMK - 1 ) D26309 + 3 / 7S, 4 / 7A, 1S( � )

10 ras - related protein RAB6 M28212 + 3 / 7S, 3 / 7A, 1S( � )

11 ras - related protein RAB2 M28213 + 0S, 5 / 7A

12 janus kinase 3 ( JAK3 ) U09607 + 4 / 7S, 3 / 7A, 1S&2A( � )

13 c - jun N - terminal kinase1 ( JNK1 ) L26318 + 4 / 7S, 3 / 7A, 1S( � )

14 ephrin A3 ( EFNA3 ) U14187 + 7 / 7S, 6 / 7A

15 transmembrane receptor PTK7 U40271 + 3 / 7S, 5 / 7A, 1S( � )

Apoptosis and DNA synthesis, repair, and recombination

16 adenosine A1 receptor ( ADORA1) S56143 � 5 / 7S, 3 / 7A, 2S( + )

17 caspase 8 U60520 � 3 / 7S, 4 / 7A, 3A( + )

Receptors, cell surface antigens, and cell adhesion

18 insulin receptor ( INSR ) M10051 + 3 / 7S, 4 / 7A, 2S( � )

19 IL2R� X01057 + 4 / 7S, 7 / 7A

20 CD27L antigen receptor M63928 + 5 / 7S, 5 / 7A

21 ICAM1 J03132 � 7 / 7S, 2 / 7A, 1S&1A( + )

Growth factors, cytokines, chemokines, and interferons

22 HGF activator D14012 + 4 / 7S, 6 / 7A, 2S&1A( � )

23 AR M30704 � 6 / 7S, 5 / 7A, 2A( + )

24 vascular endothelial growth factor C U43142 � 4 / 7S, 2 / 7A, 1S&1A( + )

25 platelet - derived growth factor A (PDGFA ) X06374 + 4 / 7S, 4 / 7A, 2S&1A( � )

26 macrophage inflammatory protein 2 alpha X53799 � 5 / 7S, 6 / 7A

A, adenocarcinoma. S, squamous cell carcinoma. � , underexpressed; + , overexpressed compared to normal lung tissue from the same patient. RT, reverse

transcription – PCR analysis.

RT Frequency, ratio of the number of tumors with differential expression over the total number of normal / tumor tissue pairs analyzed; S / A( + / � ), differential

expression detected in tumors that did not reflect what was found in the majority of normal / tumor tissue pairs.
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Figure 2. Differential expression of c - jun. ( A ) cDNA expression array hybridization with the squamous cell carcinoma 8706 and its matching normal tissue and the

adenocarcinoma 94 - 11 - C066R ( 66R ) and its matching normal tissue 94 -11 - C065R ( 65R ). ( B ) RT - PCR confirmation. The first two pairs of tumor / normal tissues

from the left are squamous cell carcinomas of the lung. The remaining three pairs of tumor / normal tissues are lung adenocarcinomas.

Figure 3. Differential expression of AR. (A ) cDNA expression array hybridization with the squamous cell carcinoma 8706 and its matching normal tissue and the

adenocarcinoma 94 -11 - C066R ( 66R ) and its matching normal tissue 94 -11 -C065R ( 65R ). (B ) RT - PCR confirmation. The first two pairs of tumor / normal tissues

from the left are squamous cell carcinomas of the lung. The remaining three pairs of tumor / normal tissues are lung adenocarcinomas.
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8% polyacrylamide gels with urea and exposed to

Molecular Dynamics Phosphorimager screens for analysis.

Densitometry was performed by ImageQuant software.

Results

The 588 human cDNAs immobilized on each Atlas human

cDNA expression array consisted of 200 to 600 base pair

fragments amplified from mRNA regions without polyA tails,

highly homologous sequences, or base sequence repeats.

This ensured that nonspecific background and cross hybrid-

ization of closely related gene family members was

minimized. The low background levels acquired from use

of primers specific for the genes immobilized on the nylon

membrane allowed for the detection of mRNAs as rare as 10

to 20 copies per cell [26]. The cDNA spot signal intensity

was compared to three housekeeping gene spot signal

intensities (GAPDH, � -actin, and 60S ribosomal RNA gene)

to determine the relative abundance of target cDNA in the

hybridized sample.

Six different sets of cDNAs were immobilized on cDNA

expression arrays at approximately 10 ng per spot includ-

ing: 1) oncogenes, tumor suppressor genes, and cell cycle

regulators; 2) ion channel and transport, stress response,

and modulators, effectors, and intracellular transducer

genes; 3) genes involved in apoptosis, DNA synthesis,

repair and recombination; 4) transcription factors and DNA

binding proteins; 5) receptors, cell surface antigens, and

cell adhesion molecules; 6) growth factors, cytokines,

chemokines, hormones, interleukins, and interferons [26].

Using the Altas human cDNA expression array, four sets

of hybridizations were performed with reverse- transcribed

polyA+ RNA of two squamous cell carcinomas and their

matching normal tissues (patients 8611 and 8706) and two

adenocarcinomas and their matching normal tissues

(patients 8641 and 94-11-C066/65R). Representative

examples of the pathologic features of an adenocarcinoma

and its paired normal alveoli as well as a squamous cell

carcinoma and its paired normal bronchiole are shown in

Figure 1.

Of the 588 cDNAs present on the cDNA expression array,

an average of 262 spots (45%) were detected after hybrid-

ization. After normalization to housekeeping genes GAPDH,

� -actin, and 60S ribosomal protein L13A, sequences that

were differentially expressed by at least two- fold between

tumor and normal tissues were selected for further con-

firmation. Because each housekeeping gene standardized

the cDNA spot intensities to different relative levels, only

those cDNAs that were differentially expressed by at least

two- fold when normalized to each of these housekeeping

genes were examined further. The two- fold expression

differences also needed to be detected in at least two of the

Figure 4. Differential expression of IL - 2R�. (A ) cDNA expression array hybridization with the squamous cell carcinoma 8706 and its matching normal tissue and the

adenocarcinoma 94 - 11 - C066R ( 66R ) and its matching normal tissue 94 -11 - C065R ( 65R ). ( B ) RT - PCR confirmation. The first two pairs of tumor / normal tissues

from the left are squamous cell carcinomas of the lung. The remaining three pairs of tumor / normal tissues are lung adenocarcinomas.
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four individual hybridizations that were performed, with two

expression differences occurring in the same lung cancer

subtype. Forty- five genes (17%) were differentially

expressed in the cDNA expression array screening and

selected for reverse- transcriptase polymerase chain reac-

tion (RT-PCR) confirmation. Of these, 22 were overex-

pressed and 23 were underexpressed in the tumor tissues

compared to their normal counterparts. The initial RT-PCR

analysis was performed using seven pairs of matching

normal / tumor tissues ( three squamous cell carcinomas and

four adenocarcinomas). Only the genes that displayed

differential expression in >50% of the squamous cell

carcinomas and/or adenocarcinomas were reanalyzed

using the second set of seven matching normal / tumor

tissues ( four squamous cell carcinomas and three adeno-

carcinomas). Final analysis included 26 of the initial 45

genes (58%) that were differentially expressed by cDNA

expression array analysis.

Of the 26 genes, 14 genes were overexpressed and

12 genes were underexpressed in the tumor tissues

compared to their corresponding normal tissues (Table 2).

Most of the differentially expressed genes were detected in

both squamous cell carcinomas and adenocarcinomas.

Eight genes were overexpressed or underexpressed in at

least 70% of adenocarcinomas and squamous cell carcino-

mas. Of these, two were overexpressed (CD27L antigen

receptor and ephrin A3) whereas six were underexpressed

(c-kit, protein tyrosine kinase receptor tyro3, c- fgr proto-

oncogene, TR3 orphan receptor, amphiregulin (AR), and

macrophage inflammatory protein 2 alpha). However, some

expression differences were more common in adenocarci-

nomas (c- jun, ephrin type A receptor 1, and interleukin

2 receptor alpha [ IL2R� ] ). Differential expression of

intercellular adhesion molecule 1 ( ICAM1) was more

frequently detected in squamous cell carcinomas. The ras-

related gene, rab2, was only differentially expressed in

adenocarcinomas. Some genes were overexpressed in one

NSCLC subtype but were variable or underexpressed in the

other subtype. Cdc25A was overexpressed by at least two-

fold in some squamous cell carcinomas but underexpressed

in some adenocarcinomas compared to their respective

normal tissues. Caspase 8 and insulin receptor were

overexpressed in most adenocarcinomas but underex-

pressed in squamous cell carcinomas. Because sample

sizes were small, more NSCLC subtypes need to be

analyzed to substantiate these tendencies. Figures 2� 4

show the representative results of differential expression of

c- jun, AR, and IL2R�. Further verification of differential gene

expression in either squamous cell carcinomas or adeno-

carcinomas by Northern blot analysis could not be performed

due to the limited amount of microdissected tumor tissues

available for the present study.

Discussion

In this study, we compared the gene expression patterns of

two subtypes of human NSCLC, adenocarcinomas and

squamous cell carcinomas, to their matching normal lung

tissues using Atlas human cDNA expression arrays. The use

of this limited cDNA microarray with known genes, which

were potentially related to cancer, certainly enriched for

genes that might appear to be related directly to the cancer

process. Approximately half of the 588 spotted cDNAs were

detected in these normal and tumor tissues. Forty- five of the

262 cDNAs were differentially expressed according to the

parameters set at the beginning of the study and were

selected for further RT-PCR confirmation. Twenty-six

genes including oncogenes, cell cycle regulators, intra-

cellular signal transducers, apoptotic genes, cell receptors

and adhesion molecules, and growth factors were differ-

entially expressed in adenocarcinomas and/or squamous

cell carcinomas compared to normal lung tissues obtained

from the same patient. We found eight genes that were

reproducibly (>70% of samples) altered in both adenocarci-

nomas and squamous cell carcinomas when compared with

their normal controls. In general, the expression of genes

identified in both adenocarcinomas and squamous cell

carcinomas were routinely increased or decreased by more

than two- fold.

Proto-oncogenes

Several members of this group were routinely altered in

expression in both adenocarcinomas and squamous cell

carcinomas. Interestingly, most of the genes with aberrant

expression had decreased expression relative to their own

controls including c-kit, c- fgr, c-src, and c- jun. c-Kit

encodes a transmembrane tyrosine kinase receptor. It

functions in cell survival, proliferation, migration, and

differentiation [27]. The c-kit and stem cell factor (SCF)

autocrine loop in SCLC may mediate chemotaxis and/or

provide a growth advantage in these tumors [28,29].

Chemotactic and chemokinetic mobility was detected in

lung cancer cell lines expressing c-kit and SCF [30].

Tonary et al. reported that c-kit expression was decreased

in advanced stages of ovarian cancer and was associated

with decreased survival [31].

Non–receptor tyrosine kinase, c-src, has been implicated

in the tumorigenesis of multiple human cancers. Reported

alterations involved both increases and decreases in

enzymatic activity, gene copy number, and protein levels

[32]. In lung cancer, elevated c-src expression was found in

60% of tumors of different histologic types, including

adenocarcinomas and squamous cell carcinomas, com-

pared to normal bronchial tissue [33,34]. Budde et al.

reported high c-src activity for NSCLC cell lines but low

activity in SCLC cell lines [35]. In our study, c-src levels

were elevated in the majority of squamous cell carcinomas

but were decreased in three of seven adenocarcinomas.

This may suggest different functional roles for this proto-

oncogene in these NSCLC subtypes.

c-Jun is a tightly regulated component of the activator

protein-1 transcription factor complex. It is involved in cell

proliferation and survival but can also induce apoptosis,

growth arrest, and differentiation [36]. Expression analysis

of c- jun in lung cancer has yielded conflicting results.

Koomagi et al. reported elevated levels of c- jun in tumor
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tissues of lung cancer patients compared to adjacent normal

tissues [37]. However, in an additional study comparing 101

NSCLC specimens to adjacent normal lung tissue, 72% of

the normal tissues expressed higher levels of c- jun [38]. In

light of these observations, additional studies will need to be

performed to define the role of c-kit, c - fgr, c -src, and c- jun

in tumorigenesis.

Growth Factors and Related Genes

Several growth factors and related genes were also

expressed differentially in the NSCLC subtypes compared

to normal lung tissues. Hepatocyte growth factor (HGF) is

a potent inducer of cell proliferation, motility, and morpho-

genesis [39]. A probable autocrine loop involving HGF and

its receptor c-met exists in NSCLC [6,40]. HGF is

secreted in an inactive form and must be proteolytically

activated by factors such as HGF activator (HGFA) [41].

Although HGFA levels have not been examined in many

tissues ( including lung), significantly higher HGFA levels

were reported in breast cancer tissue than in normal

control tissues [39]. Increased HGFA expression was

found in two of seven squamous cell carcinomas and five

of seven adenocarcinomas.

Another differentially expressed gene in this study was

AR. It is a strong growth promoter for breast, colon, lung, and

ovarian epithelial cells and may function in autocrine and

paracrine loops with the epidermal growth factor receptor

(EGFR) to promote tumorigenesis [42,43]. However, it has

also been reported to inhibit growth of carcinoma cell lines

[44,45]. Both reduced (63%) and increased (11%) AR

expression levels have been reported in NSCLC tumors

compared to uninvolved lung tissue [46]. Most of the NSCLC

samples in our study exhibited reduced AR expression

compared to normal lung tissue. Only two of seven (28%)

adenocarcinomas showed increased expression of AR

compared to normal lung counterparts.

Intracellular Signal Transducers

Several modulators, effectors, and intracellular trans-

ducers showed increased expression in the human lung

tumors. The receptor tyrosine kinase erythropoietin-produc-

ing hepatocellular (eph) family transduces signals to

proteins involved in cytoskeletal organization, adhesion,

migration, and proliferation [47,48] and may also be involved

in angiogenesis [49-51]. Overexpression of eph receptors

has been detected in gastric carcinomas, malignant mela-

nomas, and hepatomas [52]. Overexpression of ephA1

receptor was able to transform NIH3T3 cells [48]. We found

frequent overexpression of both ephA1 receptor and ephrin

A3 ligand in both squamous cell carcinomas and adenocar-

cinomas compared to matching normal tissues.

LIM domain kinase (LIMK-1) is a serine/ threonine kinase

involved in the Rho GTPase signaling pathway that leads to

actin cytoskeleton reorganization and the formation of

lamellipodia [53-55]. Although LIMK-1 has not previously

been implicated in cancer, it was overexpressed in two of

seven squamous cell carcinomas and four of seven

adenocarcinomas in this study.

Apoptotic Factors

Another component of neoplastic transformation is the

prevention of apoptosis. Death receptor–dependent and –

independent activation of caspase 8 leads to cleavage and

activation of effector caspases 3, 6, and 7 and other

intermediate apoptotic signaling proteins [56,57] that then

initiate cell death. In neuroblastoma, caspase 8 was often

inactivated by gene deletion and/or DNA methylation in cells

with N-myc amplification [58]. However, in several other

cancers including high-grade non-Hodgkins lymphoma,

breast carcinoma, pancreatic carcinoma, and gallbladder

carcinoma, caspase 8 gene expression was upregulated

[59-62] and was strongly associated with the extent of

apoptosis [58,60,62]. In this study, caspase 8 was down-

regulated in several squamous cell carcinomas (3/7) but

primarily upregulated in adenocarcinomas (3/7).

Using the rapid, high- throughput human Atlas cDNA

expression array system, we examined the gene expres-

sion profiles of 14 NSCLCs and their matching normal

tissues. Numerous cell surface receptors, proto-onco-

genes, growth factors, and signal transduction molecules

were differentially expressed in these NSCLC subtypes

and may have significant roles in lung tumorigenesis. The

divergent expression patterns of c-src, caspase 8, cdc25A,

rab2, and ICAM1 (see Table 2) suggest subtle but

probable molecular differences between human lung

adenocarcinomas and squamous cell carcinomas. These

differences may ultimately play a role in determining the

best treatments for these two NSCLC subtypes. Differential

gene expression in tumor and normal lung tissues does not

necessarily suggest tumor promoter or tumor inhibitory

function. These differences may be a consequence of

other biochemical changes that occur in a cell on its path

to neoplastic transformation. Nevertheless, the changes in

gene expression may serve as diagnostic or prognostic

tumor biomarkers. Others may prove to be modulated by

therapeutic or preventative agents and, thus, serve as

surrogate endpoint biomarkers.
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