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Abstract
Electronic colon cleansing (ECC) aims to segment the colon lumen from a patient abdominal image
acquired using an oral contrast agent for colonic material tagging, so that a virtual colon model can
be constructed. Virtual colonoscopy (VC) provides fly-through navigation within the colon model,
looking for polyps on the inner surface in a manner analogous to that of fiber optic colonoscopy. We
have built an ECC pipeline for a commercial VC navigation system. In this paper, we present an
improved ECC method. It is based on a partial-volume (PV) image-segmentation framework, which
is derived using the well-established statistical expectation-maximization algorithm. The presented
ECC method was evaluated by both visual inspection and computer-aided detection of polyps
(CADpolyp) within the cleansed colon lumens obtained using 20 patient datasets. Compared to our
previous ECC pipeline, which does not sufficiently consider the PV effect, the method presented in
this paper demonstrates improved polyp detection by both visual judgment and CADpolyp measure.
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1. Introduction
Colon cancer is the third most common human malignancy and the second leading cause of
cancer-related deaths in the United States in 2004 [1]. It results in more than 130,000 new cases
and 56,000 deaths each year. The overall risk of developing the disease is approximately 5%
over a lifetime. More than 90% of colon cancers develop from adenomatous polyps, which
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take five to 15 years for malignant transformation. Early detection and removal of the polyps
will dramatically reduce the risk of death [2].

Currently available detection methods include fecal occult blood test, sigmoidoscopy, barium
enema, and fiber optic colonoscopy (OC), where OC is the gold standard for examination of
the entire colon. Virtual colonoscopy (VC) is an emerging method for polyp detection
throughout the entire colon. VC utilizes advanced medical imaging and computer technologies
to mimic the OC navigation procedure, looking for polyps via fly-through in a virtual colon
model which is constructed from patient abdominal images [3-9]. Compared to OC, VC has
demonstrated the potential to become a mass screening modality in terms of safety, cost, and
patient compliance [10-15]. Therefore, only suspicious findings uncovered using non-invasive
VC screening would need to be re-examined by invasive OC follow-up [16,17]. As a screening
modality, VC has another advantage of utilizing computer-aided detection (CAD) techniques
to examine the internal tissue image textures beyond the inner surface of the colon. A CAD
scheme that automatically detects potential polyp candidates could substantially reduce the
radiologists’ interpretation time (i.e., fly-through of the entire colon model may no longer be
necessary) and improve their diagnostic performance with reduced false positives and false
negatives [18-22]. However all current implementations of VC and CAD require a rigorous
cleansing of the colon prior to the virtual examination. With some stool residues and colonic
fluids remaining during patient image acquisition, the efficiency of VC and CAD will be
lowered dramatically because the residues mimic polyps while the fluids may cover polyps.

Electronic colon cleansing (ECC) is a new technology that has been under development to
remove the colonic materials from the acquired images [23-32]. First, the patient undergoes a
less-stressful bowel preparation with oral contrast to tag the colonic materials, so that the
residue stool and fluid have an enhanced image density compared with the colon/polyp tissues.
Taking advantage of image segmentation and pattern recognition techniques, an ECC method
can identify the enhanced colonic materials and restore a “cleansed” colon model for both VC
navigation and CAD analysis. A simple approach is to apply thresholds to the images for
segmentation and removal of the tagged materials. However this simple approach suffers from
the partial volume (PV) effect that causes unexpected layers at the air-material interface and
the tissue-material interface. In order to mitigate this PV effect, Lakare et al. [27] introduced
a ray-based detection technique which utilizes a predefined profile pattern to detect the
interfaces. Zalis et al. [31] presented a technique of using morphological and linear filters to
mitigate the PV effect. Chen et al. [24] explored image gradient information while Liang et
al. [23] explored a priori models to address the PV effect. In this paper, we propose a new
ECC method for VC navigation and CAD analysis. This new method is based on PV image
segmentation which quantifies the tissue mixtures in each image element or voxel rather than
assuming a single tissue type in each voxel as was done in previous techniques. Following PV
segmentation, a series of dilation and erosion operations are performed to remove the tagged
colonic materials.

The content of this work is organized as follows. Section 2 presents the new ECC method.
Validation of the method using 20 patient datasets is reported in Section 3, followed by
discussion and conclusion in Section 4.

2. Methods
The ECC method presented in this section assumes that the images are obtained using a
computed tomography (CT) scanner, which is the current standard for VC examination.
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2.1. Partial Volume Image Segmentation Algorithm
2.1.1. Partial Volume Image Model—Let the acquired CT image density distribution Y
be represented by a column vector [y1, y2,...,yN]T, where yi is the observed density value at
voxel i and N is the total number of voxels in the image. Assume the acquired image { yi }
contains K tissue types distributed inside the body. Within each voxel i, there possibly are K
tissue types, where each tissue type has a contribution to the observed density value yi at that
voxel. Let tissue type k contribute xik to the observation yi at voxel i, then we have
yi = ∑k=1

K xik .

Assume the unobservable variable xik follows a Gaussian distribution with mean μik and
variance σik

2 . If voxel i is fully filled by tissue type k, then xik becomes an observable variable,
i.e., yi in this case, with Gaussian probability distribution characterized by tissue parameters,
μk and σk

2. If voxel i is partially filled by tissue type k and let mik be the fraction of tissue type

k inside that voxel, then we have μik
def
=

mikμk  and σik
2 def

=
mikσk

2, where ∑k=1
K mik = 1,

0≤mik≤1 and (μk, σk
2, μik, σik

2 ) ≥ 0. Therefore, the observed image density value at voxel i is

expressed as yi = ∑k=1
K mikμk = εi and also follows a Gaussian distribution, where εi is

Gaussian noise associated with the observation yi at voxel i and has zero mean and a variance
of σyi

2 = ∑k=1
K σik

2 = ∑k=1
K mikσk

2. The probability distribution of sampling { yi }, given the

parameters { mik, μk, σk
2}, is

Pr(Y ∣ M , μ, σ) = ∏
i=1

N
Pr(yi ∣ mi, μ, σ) = ∏

i=1

N 1

2π∑k=1
K mikσk

2
exp −

(yi − ∑k=1
K mikμk)2

2∑k=1
K mikσk

2
(1)

where the NK×1 vector M=[m1, m2,...,mN]T with mi=[mi1,mi2,...,miK]T, μ = [μ1,μ2,...,μK]T and
σ 2 = σ1

2, σ2
2, …, σK

2 T . The probability distribution of sampling { xik }, given the parameters

{ mik, μk, σk
2 }, is

Pr(X ∣ M , μ, σ) = ∏
i,k=1

N,K 1

2πmikσk
2
exp

− (xik − mikμk)2
2mikσk

2 (2)

where the NK×1 vector X= [x1,x2,...,xN]T with xi = [xi1, xi2,...,xik]T. The above independent
noise model represented by equations (or likelihood functions) (1) or (2) is consistent with the
derived results in [33,34]. Due to the one-to-one correspondence between the voxel density
(the data: Y and X) and its label (the parameters: M, μ and σ), the independence of the
conditional likelihoods (1) and (2) can be assumed. Furthermore, when signal-to-noise ratio is
not small, the correlation of voxel densities can be ignored, thus, equations (1) and (2)
approximately hold. The local signal correlative information will be considered by an a
priori model (to be described later) for an a posteriori distribution toward a maximum a
posteriori probability (MAP) solution.

A similar PV image model has been described which performs down-sampling of the acquired
image using discrete labels [35]. When the down sampling is performed infinite times, the
previous discrete label model becomes similar to the above presented continuous model for
continuous mixtures { mik } in the range 0 ≤ mik ≤ 1. Partial volume image segmentation aims
to determine (a) the tissue mixtures { mik }, (∑k=1

K mik = 1 and 0 ≤ mik ≤ 1), and (b) the tissue

model parameters {μ, σk
2} from the acquired image data { yi }. This is a well-known problem
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of parameter estimation from incompletely observed data { yi }, which is related to the complete
unobservable data { xik } by yi = ∑k=1

K xik . The well-established EM (expectation-
maximization) algorithm [36,37] is the method that we will use to estimate the parameters via
conditional expectation and maximization in an iterative manner, given the measurements
{ yi }.

2.1.2. Parameter Estimation by the EM Algorithm—The conditional expectation or the
E-step in the EM algorithm [36], given the observed data { yi } and the estimate { M(n),μ(n),
σ2(n) } in the n-th iteration, has the form of [38]

Q(M , μ, σ ∣ M (n), μ (n), σ 2(n)) = E lnPr(X ∣ M , μ, σ) ∣ Y , M (n), μ (n), σ 2(n)

= − 1
2 ∑
i,k

ln(2π) + ln(mikσk
2) + 1

mikσk
2 (xik2(n) − 2mikμkxik

(n) + mik
2 μk

2) (3)

where the conditional means for xik and xik
2  are given, respectively, by

xik
(n) = E xik ∣ yi, M (n), μ (n), σ 2(n) = mik

(n)μk
(n) +

mik
(n)σk

2(n)

∑ j=1
K mij

(n)σj
2(n) ⋅ (yi − ∑ j=1

K mij
(n)μj

(n)) (4)

xik
2(n) = E xik

2 ∣ yi, M (n), μ (n), σ 2(n) = (xik(n))2 + mik
(n)σk

2(n)∑ j≠k
K mij

(n)σj
2(n)

∑ j=1
K mij

(n)σj
2(n) . (5)

The maximization or the M-step in the EM algorithm determines the estimate in the (n+1)-th
iteration, which maximizes the conditional expectation of equation (3). For the tissue model
parameter { μk }, we have ∂Q(.) ∕ ∂μk ∣

μk=μk
(n+1)

= 0, which leads to

μk
(n+1) =

∑i=1
N xik

(n)

∑i=1
N mik

(n) . (6)

For the other tissue model parameter {σk
2}, we obtain

σk
2(n+1) = 1

N ∑
i=1

N xik
2(n) − 2mik

(n)μk
(n)xik

(n) + mik
2(n)μk

2(n)

mik
(n) . (7)

Maximizing the conditional expectation function Q(.) with respect to the tissue mixture
parameter { mik }, under the conditions of ∑k=1

K mik = 1 and 0 ≤ mik ≤1, does not generally
have a closed-form solution as those shown in equations (6) and (7). When only a single CT
image { yi } is available (where each voxel has only an observed density value, i.e., yi) and
under the condition of ∑k=1

K mik = 1, then if a solution exists, it is limited to have a maximum
number of two tissue types in each voxel. When noise is present in the image, constraints may
be needed for a regularization solution. In image processing applications, a Markov random
field (MRF) a priori regularization is typically used for a MAP solution. The MRF a priori
model has the following form of Pr(mi ∣ Ni) = 1

Z exp( − β∑k=1, j∈Ni
K αij(mik − m jk )2, where

Ni denotes the neighborhood of voxel i, β is a parameter controlling the degree of the penalty
on the mixture M, αij is a scale factor reflecting the difference among different orders of the
neighboring voxels, and Z is the normalization factor for the MRF model. In this study, only
the first-order neighborhood system is considered and αij is the same for the six first-order
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neighbors if the image has a uniform spatial resolution in three dimensions (e.g., αij = 1). When
the axial resolution is two times lower than the transverse resolution, then αij is twice as small
for the two neighbors in the axial direction than for the four neighbors in the transverse plane
(e.g., αij = 1 in transverse plane and αij = 0.5 in axial direction). Adding the MRF prior to
equation (3), we then have a conditional a posteriori distribution about the tissue mixture
{ mik }. The conditional expectation of the posteriori distribution at the n-th iteration has a
quadratic form when the variance σik

2 = mikσk
2 is fixed for the (n+1)-th iterated estimate. Then,

maximizing this quadratic form Q(.) + Pr(mi ∣ Ni) with respect to the tissue mixture parameter

{ mik }, under the conditions of ∑k=1
K mik = 1 and 0 ≤ mik ≤1, has a closed-form solution. By

limiting each voxel to a maximum of two tissue types, i.e., mi2 = 1 - mi1, we have

mi1
(n+1) =

xi1
(n)σi2

2(n)μ1
(n) + σi1

2(n)μ2
2(n) − xi2

(n)σi1
2(n)μ2

(n) + 4βσi1
2(n)σi2

2(n) ∑
j∈Ni

αijmj1
(n)

μ1
2(n)σi2

2(n) + μ2
2(n)σi1

2(n) + 4βσi1
2(n)σi2

2(n) ∑
j∈Ni

αij
. (8)

Equations (6), (7) and (8) provide a MAP-EM solution for PV image segmentation under the
constraint that each voxel has a maximum of two tissue types. However, there is no limitation
on the number of tissue types in the image. In our case, the CT image may contain four tissue
types with different image densities, i.e., K = 4: (i) air in the colon lumen and lungs, (ii) fat or
soft tissues, (iii) muscle, and (iv) bone or tagged colonic materials. Such information can be
utilized to facilitate the segmentation of a CT image into mixtures with a maximum of two
tissue types in each voxel. Given a global concave posteriori distribution, the EM algorithm
has been proven to climb up the hill or converge to the maximum point [36,39]. In our study,
the quadratic form is concave, but not necessarily global concave, therefore, the MAP-EM
solution could be a local maximum.

2.1.3. Use of Available Tissue Types to Improve the PV Image Segmentation—
MRF prior model is generally applicable to any number of tissue types in each voxel. However,
given a single CT image, a solution exists for a maximum of two tissue types in each voxel.
When there are four tissue types present in the CT image, we have a total of 15 possible tissue
mixtures as shown in Table 1. In practice, there is a very small probability that all four tissue
types will be in a voxel. Most voxels are dominated by a single tissue type. The next most
common scenario is when voxels contain two tissue types because they are situated on the
boundary. Some voxels may contain three tissue types when they are on the intersection of two
borders of three tissue types, e.g., the border of the air and the tagged colonic material intersects
the colon wall. In this case, only the two dominating tissue types will be considered. A general
rule to constrain the possible tissue mixtures shown in Table 1 into two tissue mixtures is
outlined below.

By considering three-dimensional (3D) spatial information around a voxel, the maximum
number of two tissue types can be enforced by selecting the most likely solution. In this study,
we use an iterative algorithm for PV image segmentation. After each iteration, the PV
segmentation result can easily be transferred into a hard segmentation by labeling each voxel
with the dominant tissue type in that voxel. This hard segmentation result reflects the
neighborhood voxels’ tissue types. The mixture in the current voxel is comprised of the two
most dominant tissue types in the neighboring voxels. For example, if the first-order
neighborhood system is considered, we have a total of 6 neighbors. These six voxels are labeled
as either air, tissue, muscle, or bone/tagged materials (TM). If three voxels are labeled as bone/
TM and two are labeled as air, the current voxel is highly likely to contain a mixture of air and
bone/TM. If the six voxels are labeled equally as air, tissue, and bone/TM, then the air
components in the corresponding voxels will be added. We repeat this process for the tissue
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and bone/TM components. The two types with larger summations will be assumed as the
mixture in the current voxel.

2.1.4. Implementation of the PV Image Segmentation Algorithm—Implementation
of the presented iterative PV image segmentation algorithm starts with an initialization step.
A simple threshold is used for hard segmentation. From this hard segmentation, the initial four
tissue-type (i.e., the air, soft tissue, muscle, and bone/TM) or model parameter sets
{μk

(0), σk
2(0)} are estimated using the labeled voxel density values. The initial tissue mixture

{mik
(0)} is determined from the hard segmentation result by assuming each voxel is 100%

occupied by a single tissue type. As the iteration proceeds, convergence is assumed when the

following termination criterion is satisfied: Max ( ∣ μk
(n+1)

μk
(n) − 1 ∣

k=1,2
) < γ . When the

maximum difference between the means of each tissue class at the n-th and the (n+1)-th
iterations is less than the specified threshold γ, the iteration process is terminated. In this work,
γ is set to be 0.05. Our experiments show that four iterations are usually sufficient to satisfy
the criterion and converge to good segmentation results. The penalty parameter β was chosen
in the range of [0.1, 1.0] and good noise control was observed.

2.2. Cleansing Colon Lumen from the PV Segmentation
After the iterative PV image segmentation is terminated, the voxels in the colon lumen are
classified as air, mixture of air with tissue, mixture of air with tagged materials, or mixture of
tissue with tagged materials. Cleansing the colonic materials is performed by a series of dilation
and erosion operations [40] as well as region growing strategies.

In general, there exist two major challenges for electronic colon cleansing (ECC). The first is
the removal of the interface layer between the air and the tagged colonic materials in Figure 1
(d). Due to the PV effect and other errors (from scanner, patient motion, and image
reconstruction procedure, especially the interpolation), the CT image density at the interface
layer varies from the low end of -900HU (air) to the high end of 400HU (enhanced residues),
see Figure 1(c). This layer covers the density values of colon tissues and so it is impossible to
distinguish the voxels of colonic materials in this layer from that of the colon tissues. A simple
threshold approach generates this interface layer in Figure 1(b). Another challenge is the
restoration of the CT density values of colon tissues in the enhanced mucosa layer in Figure 1
(c) and (d). A good ECC method should identify the enhanced mucosa layer and remove the
portion with tagged colonic materials. Partial volume image segmentation is a desirable
(theoretically-based) approach to identify the layers, quantify the material/tissue mixtures in
the layers and restore the true CT density values of the colon mucosa layer. In the following,
the voxels which are related to the layers will implicitly indicate the potential PV voxels, while
others outside the layers are almost assured to be non-PV voxels, in order to take the errors of
non-PV effect into the presentation.

2.2.1. Identifying the Interface Layer—Normally, PV image segmentation provides
correct tissue/material mixtures within the interface and mucosa layers. A region growing on
the PV segmentation is sufficient to cleanse the colonic materials. However in some cases, it
may identify an incorrect mixture component in these layers. Figure 2(b) shows an example
of such incorrectly segmented mixtures in voxels around location 30 along the vertical profile.
In order to avoid such cases when identifying the interface layer, we utilize the well-known
dilation-erosion strategy [40]. Let the colon air segmentation volume be Sa, which consists of
the air component { mair } in the voxel array. Similarly, we define the tagged colonic material
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segmentation volume as St. For each volume, we apply a 3D dilation operation by a three-cubic
strel matrix

Da = Dilation(S a, strel), D t = Dilation(S t, strel), strel = 1 1 1 T ⋅ 1 1 1 . (9)

Then we construct a new volume Se by applying the erosion operation on the sum of Da and
Dt, i.e., Se = Erosion((Da + Dt), strel).

The new volume Se covers the entire colonic (lumen plus mucosa) space including the tagged
material region and the interface layer, as shown in Figure 2(c). Based on the three volumes
Da, Dt and Se, we divide the entire colonic space into three parts according to the following
criteria

P m = {voxeli ∣ Si
e > 0, Di

a > 0, Di
t > 0}

P a = {voxeli ∣ voxeli ∉ P m, Si
e > 0, Di

a > 0, Di
t = 0}

P t = {voxeli ∣ voxeli ∉ P m, Si
e > 0, Di

a = 0, Di
t > 0}

(10)

where Pa represents the colonic air space or region I in Figure 2(d), Pt reflects the tagged
material region III in the figure, and Pm indicates the interface layer area II.

2.2.2. Cleansing the Colon Lumen and Restoring the CT Density Values of the
Colon Tissues in the Enhanced Mucosa Layer—The colon lumen consists of the entire
region I, the majority of region II and a small contribution from region III in Figure 2. Therefore,
all voxels in region I or space Pa are classified as colon lumen voxels. For each voxel i in spaces
Pt and Pm, their CT image density values Ii

new are altered by

Ii
new = {Iioriginal + (μ1 − μ4) ⋅ mi4 + (Ī i − Ii

original) ⋅ mi4 if Ī i ≥ Ii
original

Ii
original + (μ1 − μ4) ⋅ (mi4 +

(Iioriginal − Ī i) ⋅ mi4
μ4 ) if Ī i < Ii

original
(11)

where Ī i = ∑k=1
4 mikμk , and μk and mik have been defined before as the mean parameter of

tissue type k in the image and the fraction of tissue type k in voxel i respectively. In equation
(11), index 1 refers to the segmentation of colonic air and index 4 refers to the segmentation
of the bone/TM. Using equation (11), the CT density values of all voxels in regions II and III
are altered. In region III, the CT density values of those voxels containing mixtures of colon
tissues and tagged materials (TM) are restored, and other voxels are converted to air or
classified as colon lumen voxels by equation (11). The remaining task in our new ECC method
is to restore and classify the voxels in region II.

In region II, the voxels on each side (or at each boundary) of the interface layer are altered by
equation (11), but not completely restored due to the presence of more than two tissue types.
Some small spots may be retained along the horizontal direction in region II after processing
by equation (11) and is shown in Figure 3(b). We have conducted experiments to demonstrate
that the PV effect at the interface layer has been transformed to a patch-like effect after equation
(11), similar to Figure 3(b). To alleviate this effect, we introduce another equation to restore
the CT density for each voxel in region II or space Pm. First, we define a subtraction volume
SUB which is generated by iteration

SU Bi
(0) = Ii

new

SU Bi
(n)

= SU Bi
(n−1) + ∑

n∈neighbor(i)
e
−(∇nSU B (n−1))2

⋅ ∥ ∇nSU B (n−1) ∥
(12)
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where ▽ represents the first-order derivative at the given position and the neighborhood of
this voxel includes that voxel itself. After three iterations of equation (12), the CT density at
the interface layer is further adjusted by Ii

newII = Ii
new − SUB interface layer. The CT density

values in the interface layer are then reduced to a reasonable level Ii
newII toward that of air

level. Thus the patch-like effect is removed and the CT density restoration at both ends of
region II is improved, as shown in Figure 3(c) and (f).

The converted air voxels in regions I, II and III make up the colon lumen space, from which a
virtual colon model is built for VC examination. Within this space, a centerline or fly-path is
determined and a potential field is constructed to facilitate the VC navigation through the entire
lumen space, looking for polyps [41-46]. The geometric information of the lumen border can
be analyzed by a surface-based CAD technique to detect the polyps [18-20,47]. The restored
CT density values of the mucosa layer, which is comprised of five to ten voxels beyond the
lumen border, can be extracted for texture analysis for improved CAD performance [21,22,
48]. This improved CAD is called texture-based CAD below.

3. Results
Computed tomography (CT) datasets from twenty patients were used to evaluate the efficiency
of the new electronic colon cleansing (ECC) method presented in this paper and compared to
our previously developed ECC pipeline in the FDA-approved commercial V3D-Colon Module
(http://www.viatronix.com). These datasets were acquired from patients who followed a less-
stressful bowel preparation including a low-residue diet and oral contrast tagging of the colonic
materials [17]. A single-slice spiral CT scanner was used with clinically available protocols to
cover the entire abdominal volume during a single breath hold. The detector collimation was
5 mm and the images were reconstructed as 1 mm thick slices of 512×512 array size. Each
patient study or dataset included both supine and prone scans (resulting in a total of 40 scans).
Each dataset (including both supine and prone scans) contained approximately 800 images.
Nine of these twenty patient datasets contained at least one polyp larger than 5 mm in diameter.
Their polyp sizes and positions were documented by optical colonoscopy (OC) reports and
also verified by radiologists’ VC navigation through their colon models.

Each dataset was processed by the presented ECC method and also by our previous ECC
pipeline. If the colonic materials are fully tagged, both ECC methods can cleanse the colon
lumen well. The covered polyps and colon folds can be exposed for visualization and CAD
analysis. In some cases, the colonic residues may not be fully tagged due to patient variation,
as shown in the top row of Figure 4. The resulting CT density values are similar to that of the
colon tissues. Furthermore the density variation follows an irregular pattern. Insufficient
tagging is a major reason for decreased performance of our previous ECC pipeline, as seen in
the middle row of Figure 4. In our previous ECC pipeline, cleansing the colon lumen is based
on a hard image segmentation which assumes that each voxel contains a single tissue type and
ignores the PV effect [24,27]. In the present ECC method, cleansing the lumen is based on a
PV image segmentation which quantifies the material mixtures in each voxel. An improvement
is expected and can be seen in the bottom row of Figure 4.

In addition to the above 2D visual examination, all colon lumens were cleansed using each
ECC method and input to the V3D-Colon Module for construction of virtual colon models and
navigation through the colon lumens. During the fly-through navigation, the operator inspected
the colon inner wall using volume-rendered 3D endoscopic views [46,49]. Some endoscopic
views are illustrated in Figure 5. The operator was asked to score the 80 virtual colon models
(40 were cleansed using the present ECC method and 40 with our previous ECC pipeline) based
on their endoscopic views and without knowing which ECC method was used. Both ECC
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methods received similar scores for nearly half of the 80 samples, however, the present ECC
method was scored better on the remaining half.

In addition to the above visual judgment, we also performed computer-aided detection of
polyps (CADpolyp) on the 80 cleansed colons obtained using both ECC methods. One CAD
measure is the surface- or shape-based approach [47]. It combines both the traditional local
principal curvature measures and a modified or smoothed version (which is called global
principal curvature measures) to quantify the shape of the extracted mucosa layers from both
ECC methods. Polyp detection is based on the quantitative measure of the local shape change
which mimics the polyp shapes. The shape-based CADpolyp results are shown in Table 2. The
present ECC method results in a noticeable improvement (less false positives) in the shape
description of the extracted mucosa layers from the cleansed colons. In addition to the surface-
based CAD measure, we applied our texture-based CAD to the extracted mucosa layers. This
texture-based CADpolyp utilizes additional morphological and texture information of the
polyp suspects detected by the shape-based approach to reduce the false positives [22,48].
Improvement of the internal feature description of the extracted mucosa layers is also evident
using the present ECC method when compared with the previous one. Given that the same
CAD parameters were used for both ECC methods, the sensitivity and false-positive (FP) rate
for each dataset shall reflect the varied performance of these two different ECC methods. For
100% detection sensitivity, both the surface- and texture-based CADpolyp schemes produce
fewer false positives when the presented ECC method is used. This improvement is due to the
improved ECC performance which handles the PV effect more accurately.

The presented ECC method was coded using the C++ programming language and implemented
on a Pentium PC with 1.8GHz CPU speed and 1.5GB RAM memory. It took less than 20
minutes to read each DICOM volume image of approximately 400 slices, segment the image
into mixtures, perform the dilation-erosion operations and write out the results for VC
visualization-navigation and quantitative CADpolyp measure.

4. Discussion and Conclusion
A new ECC method was presented and evaluated with 20 patient studies. The improved
performance of the new ECC method, when compared with our previous ECC pipeline, was
demonstrated by visual judgment of the 2D slice show and 3D endoscopic view of the cleansed
colons and also by quantitative measure using CADpolyp on the extracted mucosa layers. The
improvement is mainly due to PV image segmentation which preserves more details than our
previous hard segmentation does and is shown in Figure 6. Because of the lack of ground truth
on the subjects, a quantitative measure on the segmented potential PV voxels from the two
ECC methods is not feasible. A quantitative comparison on their segmentations by phantom
experiments is desired and is under progress.

The presented PV image segmentation is fully within the EM framework which maximizes the
conditional expectation of the underlying tissue process given the acquired data. This differs
from previous techniques [50,51] which maximize the probability likelihood of the acquired
incomplete data directly. A thorough comparison between this EM framework and the previous
approaches [50,51] is in progress.

The PV image model in this work is equivalent to the discrete PV model of [35] when the
discrete down-sampling is performed infinite times and the number of labels becomes infinite.
A through comparison between our continuous PV model and the discrete PV model [35] is
an interesting topic and is also in progress.

The current PV presentation and that of previous work [35] share the same practice of
constraining the maximum number of tissue types in each voxel to two, when even a single
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image can have more than two tissue types. Prior knowledge of the available tissue types may
be helpful to improve the segmentation of more than two tissue types in a voxel from a single
image [35,50,51]. In our opinion, use of multi-spectral images is a more statistically-robust
approach. This multi-spectral approach to image segmentation can be based on magnetic
resonance images of T1-, T2-, and proton density-weighted scans [38]. From these three images,
we can determine with greater statistical significance the composition of a voxel with up to
four tissue types. Further improvement is expected if the gravity of the tagged materials can
be used as an a priori information [23], which results in a nearly horizontal surface between
the air and the tagged materials.

In the derivation of the closed form of equation (8), we assumed the variance is fixed at the
n-th iteration. This assumption results in a quadratic form for the posteriori cost function and
makes its maximization (or minimization if the minor sign is changed to plus) numerically
tractable. However, its effect on the segmentation of tissue mixture { mik } has not been
rigorously studied, and the MAP-EM iterative convergence for { mik } needs to be proven
mathematically. This is another interesting topic of our current research. Despite the lack of a
mathematical proof, an iterative convergence for { mik } was observed in the experiments on
all 80 data samples.

Due to many unexpected situations in the clinic, an automatic model-based approach will not
provide perfect segmentation of the acquired images. Therefore, a task-specific post operation
is necessary and manifested by the dilation-erosion operation employed in this paper in
cleansing the colon lumen from the PV image segmentation. Other post operation shall be
explored and is in progress.
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Figure 1.
A CT image slice of the colon with enhanced colonic materials (a). The white vertical line
indicates a sample path for the profile of picture (c). A threshold of 200HU (Hounsfield unit)
generates a segmentation of picture (b). Picture (d) shows the corresponding density profile
from (b) along the vertical line in (a). The interface layer is a mixture of air and tagged colonic
materials. The enhanced mucosa layer is a mixture of colon tissues and tagged materials.
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Figure 2.
Picture (a) shows the mixture-based PV segmentation result from the corresponding image
slice of Figure 1(a). In this picture, the red color (or air space) indicates the segmentation result
for the colon air class; the white color (or tagged material space) indicates the segmentation
result for the bone/tagged material (TM) class. Between these two colors/spaces is the interface
layer. Picture (b) shows the corresponding segmentation profiles along the sample vertical line
(or blue color) which is the same as shown in Figure 1(a). In most cases, the PV segmentation
provides correct material mixtures in the layers, but in some cases, it may identify an incorrect
mixture component. Picture (b) shows an example, where some voxels around location 30
along the vertical profile in the interface layer contain colon tissue component. This error must
be corrected. Picture (c) illustrates the border of volume Se (i.e., the entire lumen enclosure).
Picture (d) shows the divided regions in the enclosure volume. Region I is the air space Pa,
region II is marked as the interface layer space Pm, and region III is the tagged material space
Pt .
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Figure 3.
The restored CT image density values. Picture (a) is the original CT image slice of Figure 1
(a). Picture (b) shows the cleansed CT image after equation (11). In the image, all the tagged
colonic materials are removed and the CT densities of the mucosa layer are restored, except
for some small spots retained along the horizontal direction in the interface layer. Picture (c)
shows the final cleansed CT image after equation (12). Pictures (d), (e) and (f) show the
corresponding density profiles from the images along the vertical line in (a).
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Figure 4.
Comparison of two different cleansing methods. The pictures at the top row are the original
CT image slices. The results by our previous ECC pipeline are shown in the middle row. The
results by this present ECC method are shown at the bottom row. The left column shows a case
with a polyp covered by the colonic residues. Both methods removed the residues and
uncovered the polyp successfully (see the short red arrow). However, the previous pipeline
failed to cleanse a part indicated by the long blue arrow. The middle column shows an example
for residues of irregular shape (but uniform tagging). The previous method left some small
spots which could mimic polyps as indicated by the red arrows, while the new method did not.
The right column shows an example for residues of non-uniform tagging. Due to the non-
uniform density variance inside the residues as indicated by the red arrows, the previous method
failed to cleanse these non-uniform tagging residues, while the new method succeeded.
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Figure 5.
The 3D VC images or endoscopic views of the original and cleansed CT data. The left column
shows the images generated from the original CT data. The middle column shows the images
from the cleansed CT data by this present ECC method. The results by our precious ECC
pipeline are shown on the right column. The top row shows the reconstructed 3D virtual models
of the colon lumens from the original and cleansed CT data. Due to the presence of the colonic
residues, the whole colon is separated into several disconnect segments. After ECC operation,
the whole colon is obtained. There are some external parts retained for both ECC methods.
This is a typical error from any automated image processing operation. This error can be easily
corrected by the operator or by more sophisticated computer algorithm. Since it does not affect
VC task of looking for polyps inside the colon, this error is ignored in this work. The middle
row shows the endoscopic views before and after ECC operation. In picture (d), the navigation
route is blocked by the residues. After ECC of the residues, the route resumes and more details
can be seen in pictures (e) and (f). The bottom row shows a case where a polyp is covered by
the residues. After ECC operation, the polyp and the colon folds under the residues are revealed.
Improved performance of this presented ECC over our previous one is seen for uncover of the
polyps (bottom row) and preservation of the colon folds (middle row).
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Figure 6.
Comparison of two different image segmentation methods. The pictures in the top row are the
original CT image slices. The middle row shows the results of our previous hard segmentation
algorithm. The results of our current PV segmentation method are shown in the bottom row.
The PV image segmentation preserves more details because of its consideration of the PV
effect than the hard image segmentation which does not consider the PV effect. The arrows
indicate some example locations where the PV segmentation preserves more details.
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Table 1
A total of 15 possible tissue mixtures for four tissue types in a CT image.

Index Tissue types Index Tissue type

1 Air only 9 Tissue and bone
2 Tissue only 10 Muscle and bone
3 Muscle only 11 Air, tissue and muscle
4 Bone only 12 Air, tissue and bone
5 Air and tissue 13 Air, muscle and bone
6 Air and muscle 14 Tissue, muscle and bone
7 Air and bone 15 Air, tissue, muscle and bone
8 Tissue and muscle
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Table 2
Comparison of CADpolyp on the virtual colons cleansed by two different ECC methods, where FP is the
abbreviation of false positive as defined in the text.

Shape-based CAD (Sensitivity∼FP Rate) Texture-based CAD (Sensitivity∼FP Rate)

Previous ECC pipeline 100% ∼ 153.7/per dataset 100% ∼ 2.19/per dataset
Current ECC method 100% ∼ 147.7/per dataset 100% ∼ 2.06/per dataset

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2006 November 1.


