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Abstract

Introduction Chemokines are a superfamily of small peptides
involved in leukocyte chemotaxis and in the induction of
cytokines in a wide range of infectious diseases. Little is known
about their role in meningococcal sepsis in children and their
relationship with disease severity and outcome.

Methods Monocyte chemoattractant protein (MCP)-1,
macrophage inflammatory protein (MIP) 1α, growth-related
gene product (GRO)-α and interleukin (IL)-8 were measured in
58 children with meningococcal sepsis or septic shock on
admission and 24 hours thereafter. Nine patients died. Serum
chemokine levels of survivors and nonsurvivors were compared,
and the chemokine levels were correlated with prognostic
disease severity scores and various laboratory parameters.

Results Extremely high levels of all chemokines were measured
in the children's acute-phase sera. These levels were

significantly higher in nonsurvivors compared with survivors and
in patients with septic shock compared with patients with sepsis
(P < 0.0001). The cutoff values of 65,407 pg/ml, 85,427 pg/ml
and 460 pg/ml for monocyte chemoattractant protein, for IL-8
and for macrophage inflammatory protein 1α, respectively, all
had 100% sensitivity and 94–98% specificity for nonsurvival.
Chemokine levels correlated better with disease outcome and
severity than tumor necrosis factor (TNF)-α and correlated
similarly to interleukin (IL)-6. In available samples 24 hours after
admission, a dramatic decrease of chemokine levels was seen.

Conclusion Initial-phase serum levels of chemokines in patients
with meningococcal sepsis can predict mortality and can
correlate strongly with disease severity. Chemokines may play a
key role in the pathophysiology of meningococcal disease and
are potentially new targets for therapeutic approaches.

Introduction
Neisseria meningitidis is one of the most feared causative
agents in childhood infectious diseases, mainly affecting chil-
dren below the age of four and adolescents. It can cause men-
ingitis, sepsis and septic shock, characterized by a rapid
development of petechiae or purpura fulminans. Meningococ-
cal lipopolysaccharide, a constituent of the bacterial outer
membrane, plays a central role in the pathophysiology of
meningococcal sepsis. The release of large amounts of
lipopolysaccharide into the blood stream induces a cascade of
reactions by the host immune response, including massive
activation of the complement system, activation of the coagu-

lation system and the induction of proinflammatory and anti-
inflammatory cytokines. High levels of these inflammatory
mediators, such as tumor necrosis factor alpha (TNF-α) and IL-
6, are associated with disease fatality.

Chemokines belong to a family of more than 40 relatively small
peptides, which are involved in chemoattraction and activation
of leukocytes to the site of inflammation and in the induction of
cytokine production. Chemokines are thus key determinants of
inflammatory reactions and immunity [1-3]. These peptides are
secreted by tissue cells, leucocytes and activated epithelial
cells [4]. Four different subfamilies can be identified based on
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CI = confidence interval; ELISA = enzyme-linked immunosorbent assay; GRO-α = growth-related gene product alpha; IL = interleukin; MCP-1 = 
monocyte chemoattractant protein 1; MIP-1α = macrophage inflammatory protein 1α; PRISM = Pediatric Risk of Mortality; RANTES = regulated on 
activation, normal T cell expressed and secreted; TNF-α = tumor necrosis factor alpha.
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the highly conserved presence of the first two cysteine resi-
dues, which are either separated or not by other amino acids:
the CC chemokines, the CXC chemokines, the CX3C chem-
okines and the C chemokines [5]. Chemokines act through a
family of chemokine receptors, which are present on cell types
such as leukocytes, dendritic cells and endothelial cells.

CXC chemokines, which include growth-related gene product
alpha (GRO-α) and IL-8, are potent chemoattractants for neu-
trophils, whereas the CC chemokines, including monocyte
chemoattractant protein 1 (MCP-1) and macrophage inflam-
matory protein 1α (MIP-1α), attract monocytes, lymphocytes,
basophils, eosinophils and natural killer cells. The C and CX3C
chemokine families are represented by only one chemokine
each: lymphotactin and fractalkine, respectively. Lymphotactin
is thought to be mainly involved in chemoattraction of lym-
pocytes whereas fractalkine, a membrane-bound molecule
expressed on endothelial cells, mediates the capturing and
adhesion of circulating leucocytes [6,7].

Chemokines and their receptors play an important role in the
innate immunity against infectious diseases such as HIV/AIDS
and malaria, but also play an important role in autoimmune dis-
eases [8,9]. The role of chemokines in meningococcal sepsis
or septic shock has not so far been studied intensively. In
meningococcal disease, lipo-oligosaccharide and outer mem-
brane proteins of the meningococcus induce a strong inflam-
matory response in patients. Studies in patients with bacterial
meningitis, caused by N. meningitidis, Streptococcus pneu-
moniae or Haemophilus influenzae, showed high levels of IL-
8 and MCP-1 in cerebrospinal fluid and variably increased lev-
els of GRO-α and MIP-1α [10-13]. In studies of chemokines
in patients with meningococcal sepsis or septic shock, only
serum levels of IL-8 and RANTES (regulated on activation, nor-
mal T cell expressed and secreted) have been reported. IL-8
levels are positively correlated with disease severity and out-
come, as opposed to RANTES, which is significantly lower in
patients with severe disease and in nonsurvivors [14-16].

The aim of this study was to measure the serum levels of CXC
and CC chemokines during the initial phase of meningococcal
sepsis in children and to determine their relationship with dis-
ease severity and outcome.

Materials and methods
Patients
Children with a clinical diagnosis of meningococcal sepsis or
septic shock were included between July 1997 and March
2000 and between December 2001 and July 2002 after writ-
ten informed consent was obtained from their parents or legal
guardians. This retrospective study was approved by the med-
ical ethics committee of Erasmus MC.

Inclusion criteria for meningococcal sepsis were: age between
1 month and 18 years, a petechial rash and/or purpura fulmin-

ans, tachycardia, tachypnea and a body temperature <36°C or
>38.5°C. Inclusion criteria for meningococcal septic shock
were all of the aforementioned and either persistent hypoten-
sion despite adequate volume supplementation or two or more
features of poor end-organ perfusion: pH ≤ 7.3, base deficit <-
5 or plasma lactate >2.0 mmol/l; arterial hypoxia defined as
pO2 <75 mmHg, a pO2/FiO2 ratio <250 or TcSaO2 saturation
<96% in patients without pre-existing pulmonary disease,
acute renal failure defined as urine output <0.5 ml/kg/hour for
at least 1 hour despite adequate fluid volume loading and with-
out renal disease, or a sudden deterioration of baseline mental
status not resulting from meningitis [17].

As soon as possible, but at least within six hours after admis-
sion to the pediatric intensive care unit, blood was drawn from
an arterial line and serum and plasma samples were collected
and stored at -80°C until assays were performed. For this
study, either serum or plasma was used to measure chemok-
ines by means of ELISA. When the arterial line was still
present, blood was again drawn 24 hours after inclusion and
serum or plasma samples were collected and stored.

Thirty-eight children with a meningococcal septic shock par-
ticipated in a randomized, placebo-controlled dose-finding
study of protein C concentrate [18]. In this study children
received either placebo or one of three dosages of protein C
concentrate every 6 hours for the first 3 days, followed by
every 12 hours with a maximum of 7 days. Serum samples
used in the present study were drawn just before infusion of
the study medication and 24 hours after the start of the treat-
ment.

Assays
Serum levels of GRO-α, MIP-1α and MCP-1 were measured
by ELISA (Quantikine; R&D Systems (Minneapolis, MN, USA)
according to the manufacturer's instructions. Samples were
first diluted 1:2 in the appropriate buffer and, when chemokine
concentrations of chemokines were above the upper limit of
the standard curve of the assay, additional dilutions up to
1:500 were made. The lower detection limit for GRO-α, MIP-
1α and MCP-1 was 20 pg/ml. IL-8 levels were also measured
by ELISA (Sanquin, Amsterdam, The Netherlands). Clinical
data were collected at inclusion, and the Pediatric Risk of Mor-
tality (PRISM) score, the Sepsis-related Organ Failure Assess-
ment score (adapted for pediatric use) and the Disseminated
Intravascular Coagulation score were assessed for all patients
on admittance to determine the disease severity [19-21]. Lab-
oratory parameters including white blood cell counts, lactate
concentrations and serum C-reactive protein were measured
on admission.

Statistical analysis
Clinical scores and parameters of patients are presented as
means and 95% confidence intervals (CIs). For statistical anal-
ysis, samples with chemokine levels below the detection limit
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Figure 1

Levels of growth-related gene product alpha (GRO-α), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1α (MIP-1α), IL-8, tumor necrosis factor alpha (TNF-α) and IL-6 in survivors versus nonsurvivors of meningococcal sepsis or septic shockLevels of growth-related gene product alpha (GRO-α), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1α (MIP-
1α), IL-8, tumor necrosis factor alpha (TNF-α) and IL-6 in survivors versus nonsurvivors of meningococcal sepsis or septic shock. Black lines in 
boxes represent median values, boxes represent interquartile ranges, bars represent the 10th and 90th percentiles, and black dots are outlying val-
ues.
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were assessed as the value of the detection limit of the assays.
Chemokine levels are presented as the median, percentiles
and ranges. Differences in chemokine levels between survi-
vors and nonsurvivors were analyzed by Mann-Whitney U
tests. Differences in chemokine levels between different time
points were analyzed by the Wilcoxon Signed Ranks test.
Receiver-operating characteristic curves were calculated for
all chemokines to determine the optimum cutoff values in pre-
dicting disease outcome. Correlations between chemokine
levels and disease severity parameters were investigated by
calculating Spearman's rho correlation coefficient (rs). All tests
were two-tailed and P < 0.05 was considered significant.

Results
Patients
Fifty-eight patients were included, of which six had a meningo-
coccal sepsis and 52 had septic shock according to the crite-
ria. The median age of the patients was 4.0 years (range 0.1–
16.1 years). Nine patients died of septic shock (15.5%), all but
one within 24 hours of admission. Thirty-seven patients
needed ventilatory support at the time of first sampling (64%).
The mean PRISM score on admission was 22.0 (95% CI,
19.6–24.4), the mean Sepsis-related Organ Failure Assess-
ment score was 10.2 (95% CI, 9.0–11.3) and the mean Dis-
seminated Intravascular Coagulation score was 5.1 (95% CI,
4.6–5.7). The mean lactate concentration was 4.4 mmol/l
(95% CI, 3.8–5.0), the mean C-reactive protein level was 96
mg/l (95% CI, 77–114) and the mean white blood cell count
was 11.6 × 109/l (95% CI, 9.4–13.8). The mean interval
between the onset of symptoms and the time of first blood
sampling was 13.9 hours (95% CI, 11.5–16.4).

Chemokines
MCP-1 and IL-8 were detectable in all patient samples at
inclusion with a median value of 5,340 pg/ml (range 91–
445,600 pg/ml) and 9,541 pg/ml (range, 28–427,500 pg/ml),
respectively. MIP-1α was detectable in 33 out of 58 patients
(57%) with a median value of 164 pg/ml (range, 20–9,784 pg/
ml), and GRO-α levels were detectable in 40 patients (69%)
with a median value of 892 pg/ml (range, 20–101,150 pg/ml).

MIP-1α, GRO-α and MCP-1 levels were significantly higher in
patients with septic shock than those in patients with sepsis
(P = 0.009, P = 0.005 and P = 0.006, respectively), whereas
there was no significant difference in IL-8 levels between
patients with sepsis and septic shock (P = 0.066).

Chemokine levels on admission strongly correlated with each
other, as well as with levels of IL-6 and TNF-α with Spearman
correlation coefficients ranging from 0.56 to 0.91 (data not
shown). Significant differences were seen between survivors
and nonsurvivors (Mann-Whitney U test, P < 0.0001) for all
serum chemokine levels, as well as for the cytokines TNF-α
and IL-6 (Figure 1). All nonsurvivors had higher levels of MCP-
1, MIP-1α, IL-8 and IL-6 compared with survivors. Using
receiver-operating characteristic curve analysis, cutoff values
of 65,407 pg/ml for MCP-1, 460 pg/ml for MIP-1α, 85,427
pg/ml for IL-8 and 361 ng/ml for IL-6 were determined, which
all had 100% sensitivity and a specificity between 94% and
98% in predicting nonsurvival.

We found positive correlations between chemokine levels and
PRISM scores (IL-8, rs = 0.72; MIP-1α, rs = 0.67; GRO-α, rs =
0.70; and MCP-1, rs = 0.62; P < 0.0001) (Figure 2). Correla-
tion coefficients between MIP-1α, GRO-α and MCP-1 and
PRISM scores were higher than between TNFα levels and
PRISM scores (rs = 0.56) and were slightly lower than
between IL-6 and PRISM scores (rs = 0.73). High correlations
were also found between serum chemokine levels and Dis-
seminated Intravascular Coagulation scores, Sepsis-related
Organ Failure Assessment scores and laboratory parameters
for disease severity and activation of coagulation such as lac-
tate concentration, C-reactive protein and white blood cell
counts, D-dimers and fibrinogen levels (Table 1). Furthermore,
initial serum levels of MCP-1 and MIP-1α, but not of GRO-α
and IL-8, were negatively correlated with the interval between
the appearance of petechiae and the time of blood sampling
(both rs = -0.28, P = 0.037).

Eight out of nine nonsurvivors died within 24 hours after
admission. Chemokine levels in available sera of children 24

Table 1

Spearman correlation coefficients between serum chemokine levels, laboratory parameters for disease severity and disease 
severity scores on admission

Sepsis-related 
Organ Failure 
Assessment 
score

Disseminated 
Intravascular 
Coagulation 

score

Lactate White blood 
cells

C-reactive 
protein

D-dimers Fibrinogen

IL-8 0.62 0.70 0.41 -0.57 -0.35 0.53 -0.69

MIP-1α 0.79 0.72 0.59 -0.66 -0.47 0.64 -0.83

GRO-α 0.78 0.72 0.52 -0.70 -0.43 0.66 -0.81

MCP-1 0.68 0.78 0.51 -0.70 -0.50 0.60 -0.79

GRO-α, growth-related gene product alpha; MCP-1, monocyte chemoattractant protein 1; MIP-1α, macrophage inflammatory protein 1α.
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hours after pediatric intensive care unit admission (n = 49)
showed a significant decrease (P < 0.0001 for all chemok-
ines) (Figure 3).

Discussion
A complex network of cytokines, complement factors and
coagulation and fibrinolysis factors are involved in the patho-

physiology of meningococcal sepsis as a response to the very
high loads of lipopolysaccharide and meningococcal outer
membrane proteins. Chemokines are involved in directing leu-
cocytes to the site of inflammation and are probably necessary
for the translation of the innate immune response against path-
ogens into a specific acquired response [22]. The present
study demonstrates the presence of extremely high levels of

Figure 2

Correlation between chemokine levels in serum samples of children with meningococcal sepsis or septic shock and Pediatric Risk of Mortality (PRISM) scores on admissionCorrelation between chemokine levels in serum samples of children with meningococcal sepsis or septic shock and Pediatric Risk of Mortality 
(PRISM) scores on admission. The horizontal lines in the charts for macrophage inflammatory protein 1α (MIP-1α) and growth-related gene product 
alpha (GRO-α) indicate the detection limit for the assay. MCP-1, monocyte chemoattractant protein 1.
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chemokines from the CC family as well as the CXC family in
sera obtained from children in the initial phase of meningococ-
cal sepsis or septic shock. This implies a generalized upregu-

lation of both chemokine families in the early stage of
meningococcal disease in children. Schinkel and colleagues
showed earlier that chemokines of both families are readily

Figure 3

Chemokine levels in serum samples of children with meningococcal sepsis or septic shock on admission and levels obtained 24 hours after admis-sion to the pediatric intensive care unit (pg/ml)Chemokine levels in serum samples of children with meningococcal sepsis or septic shock on admission and levels obtained 24 hours after admis-
sion to the pediatric intensive care unit (pg/ml). Black lines in boxes represent median values, boxes represent interquartile ranges, bars represent 
the 10th and 90th percentiles, and black dots are outlying values. GRO-α, growth-related gene product alpha; MCP-1, monocyte chemoattractant 
protein 1; MIP-1α, macrophage inflammatory protein 1α.
Page 6 of 8
(page number not for citation purposes)



Available online http://ccforum.com/content/10/1/R33
produced within 2 hours after endotoxin challenge in healthy
volunteers [23].

Median levels of IL-8, MCP-1 and MIP-1α were higher than
those described in patients with meningococcal meningitis
[10,11]. Furthermore, peak MIP-1α levels were 20 times
higher and IL-8 levels were 250 times higher than levels
described in adult patients with sepsis [24].

MIP-1α and GRO-α were moderately elevated or even unde-
tectable in moderately ill patients, but reached very high levels
in the severely ill patients. MCP-1 and IL-8 serum levels were
detectable in all patients and reached very high levels in
severely ill patients, especially in nonsurvivors. These results
are in accordance with those described by Møller and col-
leagues, who showed that levels of MCP-1, IL-8 and MIP-1α
were significantly higher in patients with fulminant meningoco-
cal septicemia as compared with patients with distinct menin-
gitis or mild disease [25]. In addition, we show strong
significant differences between survivors and nonsurvivors in
serum levels of MCP-1, MIP-1α and IL-8. Cutoff values with
100% sensitivity and 94–98% specificity in predicting out-
come were calculated for these chemokines. This is in contrast
to TNF-α, probably the most intensively studied cytokine in
meningococcal disease, for which a cutoff value of 22.5 had a
78% sensitivity and 98% specificity. IL-6, another cytokine
known to be involved in meningococcal sepsis, was also
higher in all nonsurvivors than in survivors [26,27]. In our study,
IL-6 had a cutoff value with a similar sensitivity and specificity
as chemokines.

The inverse correlation between MCP-1 and MIP-1α and the
interval between the appearance of petechiae suggests that
these chemokines play a major role in severely ill patients in
whom the course of disease is more rapid than in other
patients. Chemokine levels also correlated with disease sever-
ity, as indicated by the high correlations between disease
severity scores and laboratory parameters. Correlations
between chemokine levels and PRISM scores were higher
than correlations between TNF-α and PRISM scores, indicat-
ing that serum levels of these chemokines are a better predic-
tor for disease severity than TNF-α. Common polymorphisms
in the MIP-1α, MCP-1 and IL-8 genes have been recently dis-
covered and are associated with an increased production of
these chemokines [28-30]. Further research is needed to
determine the role of these genetic polymorphisms in the
severity of meningococcal disease in children.

The results of our study suggest that chemokine levels may be
suitable candidates for implementation in prognostic scores
based on laboratory parameters. Chemokines may play a key
role in the pathophysiology of meningococcal disease, and
chemokines as well as their receptors are potentially new tar-
gets for therapeutic approaches. Chemokine receptor antago-
nists, antichemokine antibodies and broad-spectrum

chemokine inhibitors are currently under development [31,32].
Future research will have to show their applicability in menin-
gococcal disease.

Conclusion
Serum levels of CXC and CC chemokines in children in the ini-
tial phase of meningococcal sepsis can predict disease sever-
ity and outcome.
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