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Abstract
Optimality principles of biological movement are conceptually appealing and straightforward to
formulate. Testing them empirically, however, requires the solution to stochastic optimal control and
estimation problems for reasonably realistic models of the motor task and the sensorimotor periphery.
Recent studies have highlighted the importance of incorporating biologically-plausible noise into
such models. Here we extend the Linear-Quadratic-Gaussian framework –which is currently the only
framework where such problems can be solved efficiently –to include control-dependent, state-
dependent, and internal noise. Under this extended noise model, we derive a coordinate-descent
algorithm guaranteed to converge to a feedback control law and a non-adaptive linear estimator
optimal with respect to each other. Numerical simulations indicate that convergence is exponential,
local minima do not exist, and the restriction to non-adaptive linear estimators has negligible effects
in the control problems of interest. The application of the algorithm is illustrated in the context of
reaching movements. A Matlab implementation is available at www.cogsci.ucsd.edu/~todorov.

List of Notation

xt ∊ ℝ
m state vector at time step t

ut ∊ ℝ
p control signal

yt ∊ ℝ
k sensory observation

n total number of time steps
A, B, H system dynamics and observation matrices
ξt, ωt, ɛt, ∊t, ηt zero-mean noise terms
Ωξ, Ωω, Ωɛ, Ω∊;, Ωη covariances of noise terms
C1 · Cc scaling matrices for control-dependent system noise
D1 · Dd scaling matrices for state-dependent observation noise
Qt, R matrices defining state- and control-dependent costs
x̂t state estimate
et estimation error
∑t conditional estimation error covariance
∑t

e, Σt
x̂ , Σt

x̂e unconditional covariances

νt optimal cost-to-go function
St

x, St
e, st parameters of the optimal cost-to-go function

Kt filter gain matrices
Lt control gain matrices

1 Introduction
Many theories in the physical sciences are expressed in terms of optimality principles, which
often provide the most compact description of the laws governing a system’s behavior. Such
principles play an important role in the field of sensorimotor control as well (Todorov, 2004).
A quantitative theory of sensorimotor control requires a precise definition of “success” in the
form of a scalar cost function. By combining top-down reasoning with intuitions derived from
empirical observations, a number of hypothetical cost functions for biological movement have
been proposed. While such hypotheses are not difficult to formulate, comparing their
predictions to experimental data is complicated by the fact that the predictions have to be
derived in the first place, i.e. the hypothetical optimal control and estimation problems have
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to be solved. The most popular approach has been to optimize, in an open-loop, the sequence
of control signals (Chow and Jacobson, 1971; Hatze and Buys, 1977; Anderson and Pandy,
2001) or limb states (Nelson, 1983; Flash and Hogan, 1985; Uno et al., 1989; Harris and
Wolpert, 1998). For stochastic partially-observable plants such as the musculoskeletal system,
however, open-loop approaches yield suboptimal performance (Todorov and Jordan, 2002b;
Todorov, 2004). Optimal performance can only be achieved by a feedback control law, which
uses all sensory data available online to compute the most appropriate muscle activations under
the circumstances.

Optimization in the space of feedback control laws is studied in the related fields of Stochastic
Optimal Control, Dynamic Programming, and Reinforcement Learning. Despite many
advances, the general-purpose methods that are guaranteed to converge in a reasonable amount
of time to a reasonable answer remain limited to discrete state and action spaces (Bertsekas
and Tsitsiklis, 1997; Sutton and Barto, 1998; Kushner and Dupuis, 2001). Discretization
methods are well-suited for higher-level control problems, such as for example the problem
faced by a rat that has to choose which way to turn in a two-dimensional maze. But the main
focus in sensorimotor control is on a different level of analysis, i.e. on how the rat chooses a
hundred or so graded muscle activations at each point in time, in a way that causes its body to
move towards the reward without falling, hitting walls, etc. Even when the musculoskeletal
system is idealized and simplified, the state and action spaces of interest remain continuous
and high-dimensional, and the “curse of dimensionality” prevents the use of discretization
methods. Generalizations of these methods to continuous high-dimensional spaces typically
involve function approximations whose properties are not yet well understood. Such
approximations can of course produce good enough solutions, which is often acceptable in
engineering applications. However, the success of a theory of sensorimotor control ultimately
depends on its ability to explain data in a principled manner. Unless the theory’s predictions
are close to the globally optimal solution of the hypothetical control problem, it is difficult to
determine whether the (mis)match to experimental data is due to the general (in)applicability
of optimality ideas to biological movement, or the (in)appropriateness of the specific cost
function, or the specific approximations – both in the plant model and in the controller design
–used to derive the predictions.

Accelerated progress will require efficient and well-understood methods for optimal feedback
control of stochastic, partially-observable, continuous, non-stationary, and high-dimensional
systems. The only framework that currently provides such methods is Linear-Quadratic-
Gaussian (LQG) control –which has previously been utilized to model biological systems
subject to sensory and motor uncertainty (Loeb et al., 1990; Hoff, 1992; Kuo, 1995). While
optimal solutions can be obtained efficiently within the LQG setting (via Riccati equations),
this computational efficiency comes at the price of reduced biological realism, because: (1)
musculo-skeletal dynamics are generally nonlinear; (2) behaviorally relevant performance
criteria are unlikely to be globally quadratic (Kording and Wolpert, 2004); (3) noise in the
sensorimotor apparatus is not additive, but signal-dependent (see below). The latter limitation
is particularly problematic, because it is becoming increasingly clear that many robust and
extensively studied phenomena –such as trajectory smoothness, speed-accuracy trade-offs,
task-dependent impedance, structured motor variability and synergistic control, cosine tuning
–are linked to the signal-dependent nature of sensorimotor noise (Harris and Wolpert, 1998;
Todorov, 2002; Todorov and Jordan, 2002b).

It is thus desirable to extend the LQG setting as much as possible, and adapt it to the online
control and estimation problems that the nervous system faces. Indeed, extensions are possible
in each of the three directions listed above:

1. Nonlinear dynamics (and non-quadratic costs) can be approximated in the vicinity of
the expected trajectory generated by an existing controller. One can then apply
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modified LQG methodology to the approximate problem, and use it to improve the
existing controller iteratively. Differential Dynamic Programming (Jacobson and
Mayne, 1970), as well as iterative LQG methods (Li and Todorov, 2004; Todorov
and Li, 2004), are based on this general idea. In their present form most such methods
assume deterministic dynamics, but stochastic extensions are possible (Todorov and
Li, 2004).

2. Quadratic costs can be replaced with a parametric family of exponential-of-quadratic
costs, for which optimal LQG-like solutions can be obtained efficiently (Whittle,
1990; Bensoussan, 1992). The controllers that are optimal for such costs range from
risk-averse (i.e. robust), through classic LQG, to risk-seeking. This extended family
of cost functions has not yet been explored in the context of biological movement.

3. Additive Gaussian noise in the plant dynamics can be replaced with multiplicative
noise, which is still Gaussian but has standard deviation proportional to the magnitude
of the control signals or state variables. When the state of the plant is fully observable,
optimal LQG-like solutions can be computed efficiently as shown by several authors
(Kleinman, 1969; McLane, 1971; Willems and Willems, 1976; Bensoussan, 1992;
El Ghaoui, 1995; Beghi and D., 1998; Rami et al., 2001). Such methodology has also
been used to model reaching movements (Hoff, 1992). Most relevant to the study of
sensorimotor control, however, is the partially-observable case –which remains an
open problem. While some work along these lines has been done (Pakshin, 1978;
Phillis, 1985), it has not produced reliable algorithms that one can use “off the shelf”
in building biologically relevant models (see Discussion). Our goal here is to address
that problem, and provide the model-building methodology that is needed.

In the present paper we define an extended noise model that reflects the properties of the
sensori-motor system; derive an efficient algorithm for solving the stochastic optimal control
and estimation problems under that noise model; illustrate the application of this extended LQG
methodology in the context of reaching movements; and study the properties of the new
algorithm through extensive numerical simulations. A special case of the algorithm derived
here has already allowed us (Todorov and Jordan, 2002b) to construct models of a wider range
of empirical results than previously possible.

In Section 2 we motivate our extended noise model, which includes control-dependent, state-
dependent, and internal estimation noise. In Section 3 we formalize the problem, and restrict
the feedback control laws under consideration to functions of state estimates that are obtained
by unbiased non-adaptive linear filters. In Section 4 we compute the optimal feedback control
law for any nonadaptive linear filter, and show that it is linear in the state estimate. In Section
5 we derive the optimal non-adaptive linear filter for any linear control law. The two results
together provide an iterative coordinate-descent algorithm, which is guaranteed to converge to
a filter and a control law optimal with respect to each other. In Section 6 we illustrate the
application of our method to the analysis of reaching movements. In Section 7 we explore
numerically the convergence properties of the algorithm, and observe exponential convergence
with no local minima. In Section 8 we assess the effects of assuming a nonadaptive linear filter,
and find them to be negligible for the control problems of interest.

2 Noise characteristics of the sensorimotor system
Noise in the motor output is not additive, but instead increases with the magnitude of the control
signals. This is intuitively obvious: if you rest you arm on the table it does not bounce around
(i.e. the passive plant dynamics have little noise), but when you make a movement (i.e. generate
control signals) the outcome is not always as desired. Quantitatively, the relationship between
motor noise and control magnitude is surprisingly simple. Such noise has been found to be
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multiplicative: the standard deviation of muscle force is well fit with a linear function of the
mean force, in both static (Sutton and Sykes, 1967; Todorov, 2002) and dynamic (Schmidt et
al., 1979) isometric force tasks. The exact reasons for this dependence are not entirely clear,
although at least in part it can be explained with Poisson noise on the neural level combined
with Henneman’s size principle of motoneuron recruitment (Jones et al., 2002). To formalize
the empirically established dependence, let u be a vector of control signals (corresponding to
the muscle activation levels that the nervous system attempts to set) and ɛ be a vector of zero-
mean random numbers. A general multiplicative noise model takes the form C (u) ɛ, where
C (u) is a matrix whose elements depend linearly on u. To express a linear relationship between
a vector u and a matrix C, we make the ith column of C equal to Ciu, where Ci are constant
scaling matrices. Then we have C (u) ɛ =∑i Ciuɛi, where ɛi is the ith component of the random
vector ɛ.

Online movement control relies on feedback from a variety of sensory modalities, with vision
and proprioception typically playing the dominant role. Visual noise obviously depends on the
retinal position of the objects of interest, and increases with distance away from the fovea (i.e.
eccentricity). The accuracy of visual positional estimates is again surprisingly well-modeled
with multiplicative noise –whose standard deviation is proportional to eccentricity. This is an
instantiation of Weber’s law, and has been found to be quite robust in a variety of interval
discrimination experiments (Burbeck and Yap, 1990; Whitaker and Latham, 1997). We have
also confirmed this scaling law in a visuo-motor setting, where subjects pointed to memorized
targets presented in the visual periphery (Todorov, 1998). Such results motivate the use of a
multiplicative observation noise model of the form D (x) ∊ = ∑i Dix∊i, where x is the state of
the plant and environment –including the current fixation point and the positions/velocities of
relevant objects. Incorporating state-dependent noise in analyses of sensorimotor control can
allow more accurate modeling of the effects of feedback and various experimental
perturbations; also, it can effectively induce a cost function over eye movement patterns, and
allow us to predict the eye movements that would result in optimal hand performance (Todorov,
1998). Note that if other forms of state-dependent sensory noise are found, the above model
can still be useful as a linear approximation.

Intelligent control of a partially-observable stochastic plant requires a feedback control law,
which is typically a function of a state estimate that is computed recursively over time. In
engineering applications the estimation-control loop is implemented in a noiseless digital
computer, and so all noise is external. In models of biological movement we usually make the
same assumption, i.e. treat all noise as being a property of the musculo-skeletal plant or the
sensory apparatus. This is in principle unrealistic, because neural representations are likely
subject to internal fluctuations that do not arise in the periphery. It is also unrealistic in modeling
practice. An ideal observer model predicts that the estimation error covariance of any stationary
feature of the environment will asymptote to 0. In particular, such models predict that if we
view a stationary object in the visual periphery long enough, we should eventually know exactly
where it is, and be able to reach for it as accurately as if it were at the center of fixation. This
contradicts our intuition as well as experimental data. Both interval discrimination experiments
and reaching to remembered peripheral targets experiments indicate that estimation errors
asymptote rather quickly, but not to 0. Instead the asymptote level depends linearly on
eccentricity. The simplest way to model this is to assume another noise process – which we
call internal noise –acting directly on whatever state estimate the nervous system chooses to
compute.

3 Problem statement and assumptions
Consider a linear dynamical system with state xt ∈ ℝm, control ut ∈ ℝp, feedback yt ∈ ℝk, in
discrete time t:
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Dynamics xt+1 = Axt + But + ξt +∑i=1
c ɛt

iCiut

Feedback yt = H xt + ωt +∑i=1
d ∊t

iDixt

Cost per step xt
TQtxt + ut

TRut

(1)

The feedback signal yt is received after the control signal ut has been generated. The initial
state has known mean x̂1 and covariance ∑1. All matrices are known and have compatible
dimensions; making them time-varying is straightforward. The control cost matrix R is
symmetric positive definite (R > 0), the state cost matrices Q1···Qn are symmetric positive
semi-definite (Qt ≥ 0). Each movement lasts n time steps; at t = n the final cost is xT

n Qnxn,
and un is undefined. The independent random variables ξt ∈ ℝm, ωt ∈ ℝk, ɛt ∈ ℝc, and εt ∈
ℝd have multidimensional Gaussian distributions with mean 0 and covariances Ωξ ≥ 0, Ωω >
0, Ωɛ = I and Ω∊ = I respectively. Thus the control-dependent and state-dependent noise terms
in Eq 1 have covariances ∑i Ciutut

TCi
T and ∑i Dixtxt

TDi
T . When the control-dependent noise

is meant to be added to the control signal (which is usually the case), the matrices Ci should
have the form BFi where Fi are the actual noise scaling factors. Then the control-dependent
part of the plant dynamics becomes B (I +∑i ɛi

tFi )ut.

The problem of optimal control is to find the optimal control law, i.e. the sequence of causal
control functions ut (u1···ut−1, y1···yt−1) that minimize the expected total cost over the
movement. Note that computing the optimal sequence of functions u1 (·) ··· un−1 (·) is a
different, and in general much more difficult problem, than computing the optimal sequence
of open-loop controls u1··· un−1.

When only additive noise is present, i.e. C1··· Cc = 0 and D1···Dd = 0, this reduces to the classic
Linear-Quadratic-Gaussian problem which has the well-known optimal solution (Davis and
Vinter, 1985)

Linear − Quadratic Regulator Kalman Filter
ut = − L t x̂t x̂t+1 = Ax̂t + But + Kt(yt − H x̂t)

L t = (R + BTSt+1B)−1 BTSt+1A Kt = AΣtH T(HΣtH T + Ωω)−1

St = Qt + ATSt+1(A − BL t) Σt+1 = Ωξ + (A − KtH )ΣtAT

(2)

In that case the optimal control law depends on the history of control and feedback signals only
through the state estimate x̂t, which is updated recursively by the Kalman filter. The matrices
L which define the optimal control law do not depend on the noise covariances or filter
coefficients, and the matrices K which define the optimal filter do not depend on the cost and
control law.

In the case of control-dependent and state-dependent noise the above independence properties
no longer hold. This complicates the problem substantially, and forces us to adopt a more
restricted formulation in the interest of analytical tractability. We assume that, as in Eq 2, the
entire history of control and feedback signals is summarized by a state estimate x̂t– which is
all the information available to the control system at time t. The feedback control law ut (·) is
allowed to be an arbitrary function of x̂t, but x̂t can only be updated by a recursive linear
filter with gains K1···Kn−1:

x̂t+1 = Ax̂t + But + Kt(yt − H x̂t) + ηt
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The internal noise ηt ∈ ℝm has mean 0 and covariance Ωη ≥ 0. The filter gains are non-adaptive,
i.e. they are determined in advance and cannot change as a function of the specific controls
and observations within a simulation run. Such a filter is always unbiased: for any K1···Kn−1
we have E xt | x̂t = x̂t for all t. Note however that under the extended noise model any non-
adaptive linear filter is suboptimal: when x̂t is computed as defined above, Cov xt | x̂t  is
generally larger than Cov [xt|u1···ut−1, y1···yt−1]. The consequences of this will be explored
numerically in Section 8.

4 Optimal controller
The optimal ut will be computed using the method of dynamic programming. We will show
by induction that if the true state at time t is xt and the unbiased state estimate available to the
control system is x̂t, then the optimal cost-to-go function (i.e. the cost expected to accumulate
under the optimal control law) has the quadratic form

vt(xt, x̂t) = xt
TSt

xxt + (xt − x̂t)
T St

e(xt − x̂t) + st = xt
TSt

xxt + et
TSt

eet + st

where et ≜ xt − x̂t is the estimation error. At the final time t = n the optimal cost-to-go is
simply the final cost xn

TQnxn, and so vn is in the assumed form with Sn
x = Qn, Sn

e = 0, sn = 0.
To carry out the induction proof we have to show that if vt+1 is in the above form for some t <
n, then vt is also in that form.

Consider a time-varying control law which is optimal at times t+1···n, and at time t is given by
ut = π(x̂t). Let vt

π(xt, x̂t) be the corresponding cost-to-go function. Since this control law is
optimal after time t, we have vt+1

π= vt+1. Then the cost-to-go function vt
π satisfies the Bellman

equation

vt
π(xt, x̂t) = xt

TQtxt + π(x̂t)
T Rπ(x̂t) + E vt+1(xt+1, x̂t+1)| xt, x̂t, π

To compute the above expectation term we need the update equations for the system variables.
Using the definitions of the observation yt and the estimation error et, the stochastic dynamics
of the variables of interest become

xt+1 = Axt + Bπ(x̂t) + ξt +∑i ɛt
iCiπ(x̂t)

et+1 = (A − KtH )et + ξt − Ktωt − ηt +∑i ɛt
iCiπ(x̂t) − ∑i ∊t

iKtDixt

(3)

Then the conditional means and covariances of xt+1 and et+1 are

E xt+1| xt, x̂t, π = Axt + Bπ(x̂t)

E et+1| xt, x̂t, π = (A − KtH )et

Cov xt+1| xt, x̂t, π = Ωξ +∑i Ciπ(x̂t)π(x̂t)
TCi

T

Cov et+1| xt, x̂t, π = Ωξ +∑i Ciπ(x̂t)π(x̂t)
TCi

T + Ωη + KtΩ
ωKt

T +∑i KtDixtxt
TDi

TKt
T

and the conditional expectation in the Bellman equation can be computed. The cost-to-go
becomes
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vt
π(xt, x̂t) = xt

T(Qt + ATSt+1
x A + Dt)xt + et

T(A − KtH )TSt+1
e (A − KtH )et

+ tr(Mt) + π(x̂t)
T(R + BTSt+1

x B + Ct)π(x̂t) + 2π(x̂t)
TBTSt+1

x Axt

where we defined the shortcuts Ct ≜ ∑i Ci
T(St+1

e + St+1
x )Ci, Dt ≜ ∑i Di

TKt
TSt+1

e KtDi, and

Mt ≜ St+1
x Ωξ + St+1

e (Ωξ + Ωη + KtΩ
ωKt

T). Note that the control law only affects the cost-go-to
function through an expression that is quadratic in π(x̂t), which can be minimized analytically.
But there is a problem: the minimum depends on xt while π is only allowed to be a function of
x̂t. To obtain the optimal control law at time t, we have to take an expectation over xt
conditional on x̂t, and find the function π that minimizes the resulting expression. Note that
the control-dependent expression is linear in xt, and so its expectation depends on the
conditional mean of xt but not on any higher moments. Since E xt | x̂t = x̂t,  we have

E vt
π(xt, x̂t)| x̂t = const + π(x̂t)

T(R + BTSt+1
x B + Ct)π(x̂t) + 2π(x̂t)

TBTSt+1
x Ax̂t

and thus the optimal control law at time t is

ut = π(x̂t) = − L t x̂t; L t ≜ (R + BTSt+1
x B + Ct)

−1BTSt+1
x A

Note that the linear form of the optimal control law fell out of the optimization, and was not
assumed. Given our assumptions, the matrix being inverted is symmetric positive-definite.

To complete the induction proof we have to compute the optimal cost-to-go vt, which is equal
to vt

π when π is set to the optimal control law − L t x̂t. Using the fact that Lt
T (R + BT

St+1
xB + Ct)Lt = Lt

T BT S t+1
xA = AT St+1

x BLt, and that
x̂TZ x̂ − 2x̂TZx = (x − x̂)TZ(x − x̂) − x TZx = eTZe − x TZx for a symmetric matrix Z (in our
case equal to Lt

T BT t+1
x A), the result is

vt(xt, x̂t) = xt
T(Qt + ATSt+1

x (A − BL t) + Dt)xt +

et
T(ATSt+1

x BL t + (A − KtH )TSt+1
e (A − KtH ))et + tr(Mt) + st+1

We now see that the optimal cost-to-go function remains in the assumed quadratic form, which
completes the induction proof. The optimal control law is computed recursively backwards in
time as

Controller ut = − L t x̂t

L t = (R + BTSt+1
x B +∑i Ci

T(St+1
x + St+1

e )Ci)
−1BTSt+1

x A

St
x = Qt + ATSt+1

x (A − BL t) +∑i Di
TKt

TSt+1
e KtDi; Sn

x = Qn

St
e = ATSt+1

x BL t(A − KtH )TSt+1
e (A − KtH ); Sn

e = 0

st = tr(St+1
x Ωξ + St+1

e (Ωξ + Ωη + KtΩ
ωKt

T)) + st+1; sn = 0

(4)

The total expected cost is x̂1
TS1

x x̂1 + tr((S1
x + S1

e)Σ1) + s1.

When the control-dependent and state-dependent noise terms are removed (i.e. C1·Cc = 0,
D1·Dd = 0) the control laws given by Eq 4 and Eq 2 are identical. The internal noise term η, as
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well as the additive noise terms ξ and ω, do not directly affect the calculation of the feedback
gain matrices L. However, all noise terms affect the calculation (see below) of the optimal filter
gains K, which in turn affect L.

One can attempt to transform Eq 1 into a fully-observable system by setting H = I, Ωω= Ωη =
0, D1·Dd = 0, in which case K = A, and apply Eq 4. Recall however our assumption that the
control signal is generated before the current state is measured. Thus, even if we make the
sensory measurement equal to the state, we would still be dealing with a partially-observable
system. To derive the optimal controller for the fully-observable case we have to assume that
xt is known at the time when ut is generated. The above derivation is now much simplified:
the optimal cost-to-go function vt is in the form xt

T Stxt +st, and the expectation term that needs
to be minimized w.r.t. ut = π (xt) becomes

E vt+1 = (Axt + But)
TSt+1(Axt + But) + ut

T(∑i Ci
TSt+1Ci)ut + tr St+1Ω

ξ + st+1

and the optimal controller is computed in a backward pass through time as

Fully − observable Controller ut = − L txt

L t = (R + BTSt+1B +∑i Ci
TSt+1Ci)

−1 BTSt+1A

St = Qt + ATSt+1(A − BL t); Sn = Qn

st = tr (St+1Ω
ξ) + st+1; sn = 0

(5)

5 Optimal estimator
So far we computed the optimal control law L for any fixed sequence of filter gains K. What
should these gains be fixed to? Ideally they should correspond to a Kalman filter, which is the
optimal linear estimator. However, in the presence of control-dependent and state-dependent
noise the Kalman filter gains become adaptive (i.e. Kt depends on x̂t and ut), which would
make our control law derivation invalid. Thus, if we want to preserve the optimality of the
control law given by Eq 4 and obtain an iterative algorithm with guaranteed convergence, we
need to compute a fixed sequence of filter gains that are optimal for a given control law. Once
the iterative algorithm has converged and the control law has been designed, we could use an
adaptive filter in place of the fixed-gain filter in run time (see Section 8).

Thus our objective here is the following: given a linear feedback control law L1·Ln−1 (which
is optimal for the previous filter K1·Kn−1) compute a new filter that, in conjunction with the
given control law, results in minimal expected cost. In other words, we will evaluate the filter
not by the magnitude of its estimation errors, but by the effect that these estimation errors have
on the performance of the composite estimation-control system.

We will show that the new optimal filter can be designed in a forward pass through time. In
particular we will show that, regardless of the new values of K1 · · · Kt−1, the optimal Kt can
be found analytically as long as Kt+1 · · · Kn−1 still have the values for which Lt+1 · · · Ln−1 are
optimal. Recall that the optimal Lt+1 · · · Ln−1 only depend on Kt+1 · · · Kn−1, and so the
parameters (as well as the form) of the optimal cost-to-go function vt+1 cannot be affected by
changing K1 · · · Kt. Since Kt only affects the computation of x̂t+1, and the effect of x̂t+1on
the total expected cost is captured by the function vt+1, we have to minimize vt+1 with respect
to Kt. But v is a function of x and x̂, while K cannot be adapted to the specific values of x and
x̂ within a simulation run (by assumption). Thus the quantity we have to minimize is the
unconditional expectation of vt+1. In doing so we will use that fact that

Todorov Page 8

Neural Comput. Author manuscript; available in PMC 2006 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



E vt+1(xt+1, x̂t+1) = Ext,x̂t
E vt+1(xt+1, x̂t+1)| xt, x̂t, L t

The conditional expectation was already computed as an intermediate step in the previous
section (not shown). The terms in E vt+1(xt+1, x̂t+1)| xt, x̂t, L t  that depend on Kt are

et
T(A − KtH )TSt+1

e (A − KtH )et + tr(Kt(Ωω +∑i Dixtxt
TDi

T)Kt
TSt+1

e )

Defining the (uncentered) unconditional covariances Σt
e ≜ E etet

T and Σt
x ≜ E xtxt

T ,  the
unconditional expectation of the Kt-dependent expression above becomes

a(Kt) = tr (((A − KtH )Σt
e(A − KtH )T + KtPtKt

T)St+1e ); Pt ≜ Ωω +∑i DiΣt
xDi

T

The minimum of a (Kt) is found by setting its derivative w.r.t. Kt to 0. Using the matrix identities
∂

∂ X tr (XU ) = U T and ∂
∂ X tr (XU X TV ) = VXU + V TXU T, and the fact that the matrices

Se
t+1,Ωω,∑e

t,∑x
t are symmetric, we obtain

∂a(Kt)

∂Kt
= 2St+1

e (Kt(HΣt
eH T + Pt) − AΣt

eH T)

This expression is equal to 0 whenever Kt = A∑e
tHT (H∑e

tHT + Pt)−1, regardless of the value
of Se

t+1. Given our assumptions, the matrix being inverted is symmetric positive-definite. Note
that the optimal Kt depends on K1 · · · Kt−1 (through ∑e

t and ∑x
t), but is independent of Kt+1 ·

· · Kn−1 (since it is independent of Se
t+1). This is the reason why the filter gains are re-optimized

in a forward pass.

To complete the derivation, we have to substitute the optimal filter gains and compute the
unconditional covariances. Recall that the variables xt, x̂t, et are deterministically related by
et = xt − x̂t,  so the covariance of any one of them can be computed given the covariances of
the other two, and we have a choice of which pair of covariance matrices to compute. The
resulting equations are most compact for the pair x̂t, et. The stochastic dynamics of these
variables are

x̂t+1 = (A − BL t)x̂t + KtHet + Ktωt + ηt +∑i ∊t
iKtDi(et + x̂t)

et+1 = (A − KtH )et + ξt − Ktωt − ηt − ∑i ɛt
iCiL t x̂t − ∑i ∊t

iKtDi(et + x̂t)
(6)

Define the unconditional covariances

Σt
e ≜ E etet

T ; Σt
x̂ ≜ E x̂t x̂t

T ; Σt
x̂e ≜ E x̂tet

T

noting that Σt
x̂ is uncentered and Σt

ex̂ = (Σt
x̂e)T. Since x̂1 is a known constant, the initialization

at t = 1 is Σ1
e = Σ1, Σ1

x̂ = x̂1x̂1
T, Σ1

x̂e = 0.With these definitions, we have

Σt
x = E (et + x̂t)(et + x̂t)

T = Σt
e + Σt

x̂ + Σt
x̂e + Σt

x̂e T
. Using Eq 6, the updates for the

unconditional covariances are
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Σt+1
e = (A − KtH )Σt

e(A − KtH )T + Ωξ + Ωη + KtPtKt
T +∑i CiL tΣt

x̂L t
TCi

T

Σt+1
x̂ = (A − BL t)Σt

x̂(A − BL t)
T + Ωη + Kt(HΣt

eH T + Pt)Kt
T

+ (A − BL t)Σt
x̂eH TKt

T + KtHΣt
ex̂(A − BL t)

T

Σt+1
x̂e = (A − BL t)Σt

x̂e(A − KtH )T + KtHΣt
e(A − KtH )T − Ωη − KtPtKt

T

Substituting the optimal value of Kt, which allows some simplifications to the above update
equations, the optimal non-adaptive linear filter is computed in a forward pass through time as

Estimator x̂t+1 = (A − BL t)x̂t + Kt(yt − H x̂t) + ηt

Kt = AΣt
eH T(HΣt

eH T + Ωω +∑i Di(Σt
e + Σt

x̂ + Σt
x̂e + Σt

ex̂)Di
T)−1

Σt+1
e = Ωξ + Ωη + (A − KtH )Σt

eAT +∑i CiL tΣt
x̂L t

TCi
T; Σ1

e = Σ1

Σt+1
x̂ = Ωη + KtHΣt

eAT + (A − BL t)Σt
x̂(A − BL t)

T

+(A − BL t)Σt
x̂eH TKt

T + KtHΣt
ex̂(A − BL t)

T; Σ1
x̂ = x̂1x̂1

T

Σt+1
x̂e = (A − BL t)Σt

x̂e(A − KtH )T − Ωη; Σ1
x̂e = 0

(7)

It is worth noting the effects of the internal noise ηt. If that term did not exist (i.e. Ωη = 0), the
last update equation would yield Σt

x̂e = 0 for all t. Indeed, for an optimal filter one would expect

Σt
x̂e = 0 from the orthogonality principle: if the state estimate and estimation error were

correlated, one could improve the filter by taking that correlation into account. However, the
situation here is different because we have noise acting directly on the state estimate. When
such noise pushes x̂t in one direction, et is (by definition) pushed in the opposite direction,
creating a negative correlation between x̂tand et. This is the reason for the negative sign in
front of the Ωη term in the last update equation.

The complete algorithm is the following: initialize K1 · · · Kn−1, and iterate Eq 4 and Eq 7 until
convergence. Convergence is guaranteed, because the expected cost is non-negative by
definition, and we are using a coordinate-descent algorithm which decreases the expected cost
in each step. The initial sequence K could be set to 0 –in which case the first pass of Eq 4 will
find the optimal open-loop controls, or initialized from Eq 2 –which is equivalent to assuming
additive noise in the first pass.

We can also derive the optimal adaptive linear filter, with gains Kt that depend on the specific
x̂tand ut = − L t x̂t within each simulation run. This is again accomplished by minimizing E
[vt+1] with respect to Kt, but the expectation is computed with x̂t being a known constant rather

than a random variable. We now have Σt
x̂ = x̂t x̂t

T andΣt
x̂e = 0,  and so the last two update

equations in Eq 7 are no longer needed. The optimal adaptive linear filter is

Adaptive estimator x̂t+1 = (A − BL t)x̂t + Kt(yt − H x̂t) + ηt

Kt = AΣtH T(HΣtH T + Ωω +∑i Di(Σt + x̂t x̂t
T)Di

T)−1

Σt+1 = Ωξ + Ωη + (A − KtH )ΣtAT +∑i CiL t x̂t x̂t
TL t

TCi
T

(8)

where Σt = Cov xt | x̂t  is the conditional estimation error covariance (initialized from ∑1

which is given). When the control-dependent, state-dependent, and internal noise terms are
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removed (i.e. C1 · · · Cc = 0, D1 · · · Dd = 0, Ωη = 0), Eq 8 reduces to the Kalman filter in Eq
2. Note that using Eq 8 instead of Eq 7 online reduces the total expected cost –because Eq 8
achieves lower estimation error than any other linear filter, and the expected cost depends on
the conditional estimation error covariance. This can be seen from

E vt(xt, x̂t)| x̂t = x̂t
TSt

xx̂t + st + tr((St
x + St

e)Cov xt| x̂t )

6 Application to reaching movements
We now illustrate how the methodology developed above can be used to construct models
relevant to Motor Control. Since this is a methodological rather than a modeling paper, a
detailed evaluation of the resulting models in the context of the Motor Control literature will
not be given here. The first model is a one-dimensional model of reaching, and includes control-
dependent noise but no state-dependent or internal noise. The latter two forms of noise are
illustrated in the second model, where we estimate the position of a stationary peripheral target
without making a movement.

6.1 Models
We model a single-joint movement (such as flexing the elbow) that brings the hand to a
specified target. For simplicity the rotational motion is replaced with translational motion, i.e.
the hand is modeled as a point mass (m = 1kg) whose one-dimensional position at time t is p
(t). The combined action of all muscles is represented with the force f (t) acting on the hand.
The control signal u (t) is transformed into force f (t) by adding control-dependent multiplicative
noise and applying a second- order muscle-like low-pass filter (Winter, 1990) of the form
τ1τ2 f̈ (t) + (τ1 + τ2) ḟ (t) + f (t) = u(t),  with time constants τ1 = τ2 = 0.04sec. Note that a
second-order filter can be written as a pair of coupled first-order filters (with outputs g and f)
as follows: τ1ġ(t) + g(t) = u(t), τ2 ḟ (t) + f (t) = g(t).

The task is to move the hand from the starting position p(0) = 0m to the target position p* =
0.1m and stop there at time tend, with minimal energy consumption. Movement durations are
in the interval tend ε [0.25sec; 0.35sec]. Time is discretized at Δ = 0.01sec. The total cost is
defined as

(p(tend) − p*)2 + (wv ṗ(tend))2 + (wf f (tend))2 + r
n − 1 ∑

k=1

n−1
u(kΔ)2

The first term enforces positional accuracy, the second and third terms specify that the
movement has to stop at time tend, i.e. both the velocity and force have to vanish, and the last
term penalizes energy consumption. It makes sense to set the scaling weights wv and wf so that
wv ṗ(t)and wf f(t) averaged over the movement have magnitudes similar to the hand
displacement p* − p(0). For a 0.1m reaching movement that lasts about 0.3 sec, these weights
are wv = 0.2 and wf = 0.02. The weight of the energy term was set to r = 0.00001.

The discrete-time system state is represented with the 5-dimensional vector

xt = p(t); ṗ(t); f (t); g(t); p *

initialized from a Gaussian with mean x̂1 = 0; 0; 0; 0; p * .The auxiliary state variable g (t) is
needed to implement a second-order filter. The target p* is included in the state so that we can
capture the above cost function using a quadratic with no linear terms: defining p = [1; 0; 0;
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0; − 1], we have pTxt = p (tend) − p* and so xT
t (ppT)xt = (p(tend) − p*)2. Note that the same

could be accomplished by setting p = [1; 0; 0; 0; − p*] and xt = p(t); ṗ(t); f (t); g(t); 1  The
advantage of the formulation used here is that because the target is represented in the state, the
same control law can be reused for other targets. The control law of course depends on the
filter, which depends on the initial expected state, which depends on the target– and so a control
law optimal for one target is not necessarily optimal for all other targets. Unpublished
simulation results indicate good generalization, but a more detailed investigation of how the
optimal control law depends on the target position is needed.

The sensory feedback carries information about position, velocity, and force:

yt = p(t); ṗ(t); f (t) + ωt

The vector ωt of sensory noise terms has zero-mean Gaussian distribution with diagonal
covariance

Ωω = (σsdiag 0.02m; 0.2m/ s; 1N )2

where the relative magnitudes are set using the same order-of-magnitude reasoning as before,
and σs = 0.5. The multiplicative noise term added to the discrete-time control signal ut = u(t)
is σcɛtut, where σc = 0.5. Note that σc is a unitless quantity that defines the noise magnitude
relative to the control signal magnitude.

The discrete-time dynamics of the above system is

p(t + Δ) = p(t) + ṗ(t)Δ
ṗ(t + Δ) = ṗ(t) + f (t)Δ/m
f (t + Δ) = f (t)(1 − Δ/τ2) + g(t)Δ/ τ2
g(t + Δ) = g(t)(1 − Δ/τ1) + u(t)(1 + σcɛt)Δ/ τ1

which is transformed into the form of Eq 1 by the matrices

A =

1 Δ 0 0 0
0 1 Δ/m 0 0

0 0 1 − Δ/τ2 Δ/τ2 0

0 0 0 1 − Δ/τ1 0

0 0 0 0 1

B =

0
0
0

Δ/τ1
0

H =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

C1 = Bσc; c = 1; d = 0

Σ1 = Ωξ = Ωη = 0

The cost matrices are R = r, Q1···n − 1 = 0, and Qn = ppT + vvT + ffT, where

p = 1; 0; 0; 0; − 1 ; v = 0; wv; 0; 0; 0 ; f = 0; 0; wf ; 0; 0

This completes the formulation of the first model. The above algorithm can now be applied to
obtain the control law and filter, and the closed-loop system can be simulated. To replace the
control-dependent noise with additive noise of similar magnitude (and compare the effects of
the two forms of noise) we will set c = 0 and Ωξ = (4.6N)2 BBT. The value of 4.6N is the average
magnitude of the control-dependent noise over the range of movement durations (found
through 10000 simulation runs at each movement duration).

We also model an estimation process under state-dependent and internal noise, in the absence
of movement. In that case the state is xt = p*, where the stationary target p* is sampled from
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a Gaussian with mean x̂1ɛ {5cm, 15cm, 25cm} and variance ∑1= (5cm)2. Note that target
eccentricity is represented as distance rather than visual angle. The state-dependent noise has
scale D1 = 0.5, fixation is assumed to be at 0cm, the time step is Δ = 10msec, and we run the
estimation process for n = 100 time steps. In one set of simulations we use internal noise Ωn=
(0.5cm)2 without additive noise. In another set of simulations we study additive noise with the
same magnitude Ωω = (0.5cm)2, without internal noise. There is no actuator to be controlled,
so we have A = H = 1 and B = L = 0. Estimation is based on the adaptive filter from Eq 8.

6.2 Results
Reaching movements are known to have stereotyped bell-shaped speed profiles (Flash and
Hogan, 1985). Models of this phenomenon have traditionally been formulated in terms of
deterministic open-loop minimization of some cost function. Cost functions that penalize
physically meaningful quantities (such as duration or energy consumption) did not agree with
empirical data (Nelson, 1983); in order to obtain realistic speed profiles it appeared necessary
to minimize a smoothness-related cost that penalizes the derivative of acceleration (Flash and
Hogan, 1985) or torque (Uno et al., 1989). Smoothness-related cost functions have also been
used in the context of stochastic optimal feedback control (Hoff, 1992) to obtain bell-shaped
speed profiles. It was recently shown, however, that smoothness does not have to be explicitly
enforced by the cost function; open-loop minimization of endpoint error was found sufficient
to produce realistic trajectories, provided that the multiplicative nature of motor noise is taken
into account (Harris and Wolpert, 1998). While this is an important step towards a more
principled optimization model of trajectory smoothness, it still contains an adhoc element: the
optimization is performed in an open-loop, which is suboptimal .especially for movements of
longer duration. Our model differs from (Harris and Wolpert, 1998) in that not only the average
sequence of control signals is optimal, but the feedback gains that determine the online sensory-
guided adjustments are also optimal. Optimal feedback control of reaching has been studied
by (Meyer et al., 1988) in an intermittent setting, and (Hoff, 1992) in a continuous setting.
However, both of these models assume full state observation. Ours is the first optimal control
model of reaching that incorporates sensory noise, and combines state estimation and feedback
control into an optimal sensorimotor loop. The predicted movement kinematics shown in
Figure 1A closely resemble observed movement trajectories (Flash and Hogan, 1985).

Another well-known property of reaching movements, first observed a century ago by
Woodworth and later quantified as Fitts’law, is the trade-off between speed and accuracy. The
fact that faster movements are less accurate implies that the instantaneous noise in the motor
system is control-dependent, in agreement with direct measurements of isometric force
fluctuations (Sutton and Sykes, 1967; Schmidt et al., 1979; Todorov, 2002) that show standard
deviation increasing linearly with the mean. Naturally, this noise scaling has formed the basis
of both closed-loop (Meyer et al., 1988; Hoff, 1992) and open-loop (Harris and Wolpert,
1998) optimization models of the speed-accuracy trade-off. Figure 1B illustrates the effect in
our model: as the (specified) movement duration increases, the standard deviation of the
endpoint error achieved by the optimal controller decreases. To emphasize the need for
incorporating control-dependent noise, we modified the model by making the noise in the plant
dynamics additive, with fixed magnitude chosen to match the average multiplicative noise
magnitude over the range of movement durations. With that change, the endpoint error showed
the opposite trend to the one observed experimentally (Figure 1B).

It is interesting to compare the effects of the control penalty r and the multiplicative noise
scaling σc. As Eq 4 shows, both terms penalize large control signals –directly in the case of
r, and indirectly (via increased uncertainty) in the case of σc. Consequently both terms lead to
a negative bias in endpoint position (not shown), but the effect is much more pronounced for
r. Another consequence of the fact that larger controls are more costly arises in the control of
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redundant systems, where the optimal strategy is to follow a “minimal intervention” principle,
i.e. to leave task-irrelevant deviations from the average behavior uncorrected (Todorov and
Jordan, 2002b;Todorov and Jordan, 2002a). Simulations have shown that this more complex
effect is dependent on σc, and actually decreases when r is increased while σc is kept constant
(Todorov and Jordan, 2002b).

Figure 1C shows simulation results from our second model, where the position of a stationary
peripheral target is estimated by the optimal adaptive filter in Eq 8, operating under internal
estimation noise or additive observation noise of the same magnitude. In each case, we show
results for 3 sets of targets with varying average eccentricity. The standard deviations of the
estimation error always reaches an asymptote (much faster in the case of internal noise). In the
presence of internal noise this asymptote depends on target eccentricity; for the chosen model
parameters the dependence is in quantitative agreement with our experimental results
(Todorov, 1998). Under additive noise the error always asymptotes to 0.

7 Convergence properties
We studied the convergence properties of the algorithm in 10 models of psychophysical
experiments taken from (Todorov and Jordan, 2002b), and 200 randomly generated models.
The psychophysical models had dynamics and cost functions similar to the above example.
They included two models of planar reaching, three models of passing through sequences of
targets, one model of isometric force production, three models of tracking and reaching with
a mechanically redundant arm, and one model of throwing. The dimensionalities of the state,
control, and feedback were between 5 and 20, and the horizon n was about 100. The
psychophysical models included control-dependent dynamics noise and additive observation
noise, but no internal or state-dependent noise. The details of all these models are interesting
from a Motor Control point of view, but we omit them here since they did not affect the
convergence of the algorithm in any systematic way.

The random models were divided in two groups of 100 each –passively stable, with all
eigenvalues of A being smaller than 1; and passively unstable, with the largest eigenvalue of
A being between 1 and 2. The dynamics were restricted so that the last component of xt was 1
–to make the random models more similar to the psychophysical models which always
incorporated a constant in the state description. The state, control, and measurement
dimensionalities were sampled uniformly between 5 and 20. The random models included all
forms of noise allowed by Eq 1.

For each model, we initialized K1…n−1 from Eq 2 and applied our iterative algorithm. In all
cases convergence was very rapid (Figure 2A,B), with the relative change in expected cost
decreasing exponentially. The jitter observed at the end of the minimization (Figure 2A) is due
to numerical round-off errors (note the log scale), and continues indefinitely. The exponential
convergence regime does not always start from the first iteration (Figure 2A). Similar behavior
was observed for the absolute change in expected cost (not shown). As one would expect,
random models with unstable passive dynamics converged more slowly than passively stable
models. Convergence was observed in all cases.

To test for the existence of local minima, we focused on 5 psychophysical models, 5 random
stable, and 5 random unstable models. For each model the algorithm was initialized 100 times
with different randomly chosen sequences K1…n−1, and run for 100 iterations. For each model
we computed the standard deviation of the expected cost obtained at each iteration, and divided
by the mean expected cost at that iteration. The results, averaged within each model class, are
plotted in Figure 2C. The negligibly small values after convergence indicate that the algorithm
always finds the same solution. This was true for every model we studied, despite the fact that
the random initialization sometimes produced very large initial costs. We also examined the
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K and L sequences found at the end of each run, and the differences seemed to be due to round-
off errors. Thus we conjecture that the algorithm always converges to the globally optimal
solution. So far we have not been able to prove this analytically, and cannot presently offer a
satisfying intuitive explanation.

Note that the system can be unstable even for the optimal controller. Formally that does not
affect the derivation, because in a discrete-time finite-horizon system all numbers remain finite.
In practice the components of xt can exceed the maximum floating point number whenever the
eigenvalues of (A − BLt) are sufficiently large. In the applications we are interested in (Todorov,
1998; Todorov and Jordan, 2002b) such problems were never encountered.

8 Improving performance via adaptive estimation
Although the iterative algorithm given by Eq 4 and Eq 7 is guaranteed to converge, and
empirically it appears to converge to the globally optimal solution, performance can still be
suboptimal due to the imposed restriction to non-adaptive filters. Here we present simulations
aimed at quantifying this suboptimality.

Because the potential suboptimality arises from the restriction to non-adaptive filters, it is
natural to ask what would happen if that restriction were removed in runtime, and the optimal
adaptive linear filter from Eq 8 were used instead. Recall that although the control law is
optimized under the assumption of a non-adaptive filter, it yields better performance if a
different filter –that somehow achieves lower estimation error – is used in runtime. Thus in
our first test we simply replace the non-adaptive filter with Eq 8 in runtime, and compute the
reduction in expected total cost.

The above discussion suggests a possibility for further improvement. The control law is optimal
with respect to some sequence of filter gains K1…n−1. But the adaptive filter applied in runtime
uses systematically different gains, because it achieves systematically lower estimation error.
We can run our control law in conjunction with the adaptive filter, and find the average filter
gains K̃ 1…n−1 that are used online. Now, one would think that if we re-optimized the control
law for the non-adaptive filter K̃ 1…n−1 – which better reflects the gains being used online by
the adaptive filter – this will further improve performance. This is the second test we apply.

As Figure 3 shows, neither method improves performance substantially for psychophysical
models or random stable models. However, both methods result in substantial improvement
for random unstable models. This is not surprising. In the passively stable models the
differences between the expected and actual values of the states and controls are relatively
small, and so the optimal nonadaptive filter is not that different from the optimal adaptive filter.
The unstable models, on the other hand, are very sensitive to small perturbations and thus
follow substantially different state-control trajectories in different simulation runs. So the
advantage of adaptive filtering is much greater. Since musculoskeletal plants have stable
passive dynamics, we conclude that our algorithm is well-suited for approximating the optimal
sensorimotor system.

It is interesting that control law re-optimization in addition to adaptive filtering is actually
worse than adaptive filtering alone –contrary to our intuition. This was the case for every model
we studied. Although it is not clear where the problem with the re-optimization method lies,
this somewhat unexpected result provides further justification for the restriction we introduced.
In particular, it suggests that the control law that is optimal under the best non-adaptive filter
may be close to optimal under the best adaptive filter.
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9 Discussion
Here we presented an algorithm for stochastic optimal control and estimation of partially-
observable linear dynamical systems, subject to quadratic costs and noise processes
characteristic of the sensorimotor system (Eq 1). We restricted our attention to controllers that
use state estimates obtained by non-adaptive linear filters. The optimal control law for any such
filter was shown to be linear, as given by Eq 4. The optimal non-adaptive linear filter for any
linear control law is given by Eq 7. Iteration of Eq 4 and Eq 7 is guaranteed to converge to a
filter and a control law optimal with respect to each other. We found numerically that
convergence is exponential, local minima do not to exist, and the effects of assuming non-
adaptive filtering are negligible for the control problems of interest. The application of the
algorithm was illustrated in the context of reaching movements. The optimal adaptive filter
(Eq 8), as well as the optimal controller for the fully-observable case (Eq 5), were also derived.
To facilitate the application of our algorithm in the field of Motor Control and elsewhere, we
have made a Matlab implementation available at www.cogsci.ucsd.edu/~todorov.

While our work was motivated by models of biological movement, the present results could
be of interest to a wider audience. Problems with multiplicative noise have been studied in the
optimal control literature, but most of that work has focused on the fully-observable case
(Kleinman, 1969; McLane, 1971; Willems and Willems, 1976; Bensoussan, 1992; El Ghaoui,
1995; Beghi and D., 1998; Rami et al., 2001). Our Eq 5 is consistent with these results. The
partially-observable case which we addressed (and which is most relevant to models of
sensorimotor control) is much more complex, because the independence of estimation and
control breaks down in the presence of signal-dependent noise. The work most similar to ours
is (Pakshin, 1978) for discrete-time dynamics, and (Phillis, 1985) for continuous-time
dynamics. These authors addressed a closely related problem using a different methodology.
Instead of analyzing the closed-loop system directly, the filter and control gains were treated
as open-loop controls to a modified deterministic dynamical system, whose cost function
matches the expected cost of the original system. With that transformation it is possible to use
Pontryagin’s Maximum Principle –which is only applicable to deterministic open-loop control
–and obtain necessary conditions that the optimal filter and control gains must satisfy. Although
our results were obtained independently, we have been able to verify that they are consistent
with (Pakshin, 1978) by: removing from our model the internal estimation noise (which to our
knowledge has not been studied before); combining Eq 4 and Eq 7; and applying certain
algebraic transformations. However, our approach has three important advantages: (i) We
managed to prove that the optimal control law is linear under a non-adaptive filter, while this
linearity had to be assumed before. (ii) Using the optimal cost-to-go function to derive the
optimal filter revealed that adaptive filtering improves performance, even though the control
law is optimized for a non-adaptive filter. (iii) Most importantly, our approach yields a
coordinate-descent algorithm with guaranteed convergence, as well as appealing numerical
properties illustrated in Sections 7 and 8. Each of the two steps of our coordinate-descent
algorithm is computed efficiently in a single pass through time. In contrast, application of
Pontryagin’s Maximum Principle yields a system of coupled difference (Pakshin, 1978) or
differential (Phillis, 1985) equations with boundary conditions at the initial and final time, but
no algorithm for solving that system. In other words, earlier approaches obscure the key
property we uncovered –which is that half of the problem can be solved efficiently given a
solution to the other half.

Finally, there may be an efficient way to obtain a control law that achieves better performance
under adaptive filtering. Our attempt to do so through re-optimization (Section 8) failed, but
another approach is possible. Using the optimal adaptive filter (Eq 8) would make E [vt+1] a
complex function of x̂t, ut, and the resulting vt would no longer be in the assumed parametric
form (which is why we introduced the restriction to non-adaptive filters). But we could force
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that complex vt in the desired form by approximating it with a quadratic in x̂t, ut. This yields
additional terms in Eq 4. We have pursued this idea in our earlier work (Todorov, 1998); an
independent but related method has been developed by (Moore et al., 1999). The problem with
such approximations is that convergence guarantees no longer seem possible. While (Moore
et al., 1999) did not illustrate their method with numerical examples, in our work we have
found that the resulting algorithm is not always stable. These difficulties convinced us to
abandon the earlier idea in favor of the methodology presented here. Nevertheless,
approximations that take adaptive filtering into account may yield better control laws under
certain conditions, and deserve further investigation. Note however that the resulting control
laws will have to be used in conjunction with an adaptive filter –which is much less efficient
in terms of online computation.
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Figure 1.
A) Normalized position, velocity, and acceleration of the average trajectory of the optimal
controller. B) A separate optimal controller was constructed for each instructed duration, the
resulting closed-loop system was simulated for 10000 trials, and the positional standard
deviation at the end of the trial was plotted. This was done with either Multiplicative (solid)
or Additive (dashed) noise in the plant dynamics. C) The position of a stationary peripheral
target was estimated over time, under Internal estimation noise (solid) or Additive observation
noise (dashed). This was done in 3 sets of trials, with target positions sampled from Gaussians
with means 5cm (bottom), 15cm (middle), and 25cm (top). Each curve is an average over 10000
simulation runs.
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Figure 2.
Relative change in expected cost as a function of iteration number, in A) psychophysical
models, B) random models. C) Relative variability (std/mean) among expected costs obtained
from 100 different runs of the algorithm on the same model (average over models in each class).
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Figure 3.
Numbers indicate percent improvement in expected total cost, relative to the cost of the solution
found by our iterative algorithm. The two improvement methods are described in the text. Each
method is applied to 10 models in each model class. For each model and method, expected
total cost is computed from 10000 simulation runs. A value of 0% indicates that with a sample
size of 10 models, the improvement was not significantly different from 0% (t-test, p=0.05
threshold).
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