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Abstract
In the social and health sciences, data are often structured hierarchically, with individuals nested
within groups. Dyads constitute a special case of hierarchically structured data with variation at both
the individual and dyadic level. Analyses of data from dyads pose several challenges due to the
interdependence between members within dyads and issues related to small group sizes. Multilevel
analytic techniques have been developed and applied to dyadic data in an attempt to resolve these
issues. In this article, we describe a set of analyses for modeling individual- and dyad-level influences
on binary outcomes using SAS statistical software; and we discuss the benefits and limitations of
such an approach. For illustrative purposes, we apply these techniques to estimate individual-dyad-
level predictors of viral hepatitis C infection among heterosexual couples in East Harlem, New York
City.
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1. Introduction
Many processes under study in the health sciences, such as treatment delivery, childcare, and
disease transmission, involve interpersonal relationships and mutual influence involving two
persons (e.g., physician-patient, parent-child, wife-husband). Conventional methods for
inferential data analyses, including analysis of variance (ANOVA) and general linear
regression, assume that observations obtained from each individual are independent. When
such analyses are applied to data obtained from interacting dyads, the assumption of
independent observations may be violated, leading to underestimation of standard errors and
invalid inferences (i.e., increased Type I error).

To overcome the problem of nonindependence in the case of distinguishable dyad members,
such as female-male couples, researchers often conduct separate analysis for each member
class. For example, in a study of the effects of spousal support on health indicators, Heffner et
al. (2004) performed separate analyses for females and males. Although this approach
maintains independence of observations, it can obscure class interactions that may be of
theoretical interest. In the example cited, although theory suggested that couple-level effects
might moderate health status through interactions with spousal support and other variables,
such effects could not be assessed in separate analyses. Several techniques have been developed
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to circumvent the problem of nonindependence while permitting estimation of dyad-level
effects, including interactions (e.g., Kenny, 1996; Gonzalez and Griffin, 1999; Newsom,
2002).

Multilevel linear modeling (MLM) is one such technique developed and applied to dyadic data
analysis (Barnett et al., 1993; Raudenbush et al., 1995; Windle and Dumenci, 1997; Kenny
and Cook, 1999; Kashy and Kenny, 2000; Hoff, 2005). To make multilevel modeling
techniques more accessible to data analysts, Campbell and Kashy (2002) have provided a
practical guide for MLM analysis of dyadic data with continuous outcomes using two
commercial software programs—SAS PROC MIXED and HLM. Here, we extend the work of
these authors by providing a guide for nonlinear multilevel modeling of dyadic data with
binary outcomes using NLMIXED and other procedures in SAS.

In Section 2, we briefly introduce multilevel modeling techniques and discuss limitations of
this approach to analysis of dyadic data with binary outcomes. We also present model equations
for both conditional and unconditional multilevel models and discuss methods for determining
the appropriate use of the multilevel approach with dyadic binary response data. Section 3 lists
the statistical assumptions of multilevel modeling with binary outcomes. In Section 4, we
identify different types of dyadic data and discuss the implications of data properties and
structure for multilevel modeling. An illustrative analysis involving risk factors for viral
hepatitis C within heterosexual couples is introduced in Section 5. In Section 6, we provide
practical guidelines for data preparation, using examples from the couples' risk study. In
Section 7, we describe SAS PROC NLMIXED and provide a step-by-step guide for performing
multilevel modeling analysis and interpretation using data from the couples risk study as
exemplar. We conclude with a discussion, including limitations of the approach, in Section 8.

2. Multilevel modeling approaches to dyadic analysis with binary outcomes
Multilevel linear modeling refers to a family of regression estimation techniques applied to
data organized into hierarchically structured clusters, such as students (level-1) nested within
classrooms (level-2) (Raudenbush and Bryk, 2002). Dyadic data represent a special case of
hierarchically clustered data, with individuals nested within dyads. Multilevel analysis
combines the effects of variables at different levels into a single model, while accounting for
the interdependence among observations within higher-level units. In a two-level MLM,
separate linear regressions are performed on observations within each level-2 cluster; and these
first-order regression estimates (intercepts and slopes) are then used as outcomes in regression
models involving level-2 units. These separate level-1 and level-2 regression models can be
combined into a single multilevel model that may contain both fixed and random effects. Fixed
effects are model components that assume no random variance or sampling error (e.g., group
means, experimental conditions), and are constant across units of a given level; whereas
random effects are model components that estimate population variance including sampling
error (e.g., residuals, unobservable random quantities), and exhibit variation across units of a
given level according to an error distribution. Multilevel models containing both fixed and
random effects are referred to as mixed models.

Research into the statistical properties of mixed model estimates with only two observations
per cluster has revealed a number of limitations (Newsom, 2002). One constraint on multilevel
analysis of dyadic data is that it is often not feasible to estimate random effects for both the
intercepts and slopes simultaneously, due to model identification problems. Specifically, a
dyadic multilevel analysis incorporating both random intercepts and slopes will result in an
overdetermined model—one with too many parameters to be estimated given the number of
covariance elements available (Newsom, 2002). More generally, statistical theory as well as
simulation studies indicate that estimates and confidence limits for the level-2 random variance
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components can be biased if the number of observations per cluster is small (Hox, 1998; Hox
and Maas, 2002; Raudenbush and Bryk, 2002). Our own experience with multilevel analyses
of dyadic data indicate that inclusion of random slope variance components, in particular, can
lead to severe convergence problems. Thus, in practical terms, such models may be limited to
inclusion of random intercepts for the random part.

Another limitation of multilevel modeling of dyadic data concerns estimation bias of level-2
coefficients stemming from the within-cluster variance-covariance structure. Carlin et al.
(2001) have shown that level-2 coefficient estimates are determined largely by clusters whose
members are not all homogeneous on the response variable. Accordingly, dyads in which both
members have identical response values do not contribute information to the likelihood
function.

Further restrictions apply when the outcome of interest is binary. One common approach to
modeling binary responses (0, 1) is the logit link function or log-odds transformation,

ηij = log( pij
1 − pij

), (1)

where pij is the probability of observing the response, yij 1, in the ith individual of the jth cluster;
and ηij is the log odds of observing the response,=which can take any real value.

Analysis of dyadic data using a 2-level random coefficients model with a single predictor at
each level and a binary outcome can be represented by three separate equations: the level-1
logistic model with one predictor takes the general form

ηij = β0 j + β1 jxij, (2)

where β0j is the within-dyad intercept in cluster j and β1j is the slope of ηij on xij in cluster j.
The intercept β0j represents the value of ηij when the predictor equals zero. Notice that the
individual-level residual term, rij, is omitted from the model because its variance, denoted
σ2, follows directly from the success probability (i.e., σ2 = pj [1 - pj]), and is therefore assumed
fixed under the log-odds transformation (Snijders and Bosker,1999; Raudenbush and Bryk,
2002). The intercept term, β0j, in Eq. (2) can be expanded into level-2 fixed and random
components:

β0 j = γ00 + γ01zj + u0 j, (3)

where γ00 is the average intercept across dyads, γ01 is the slope of the dyad intercepts regressed
on the level-2 predictor variable zj, and u0j is the unique effect of dyad j on the intercept
(conditional on zj). In the current example, the level-2 slope coefficient is viewed as fixed
across clusters:

β1 j = γ10. (4)

Substituting the level-2 equations for terms in the level-1 model yields the combined equation
ηij = γ00 + γ01zj + γ10xij + u0 j. (5)

In this formulation, u0j is the sole random effect in the model and the other terms are the fixed
effects.

Before evaluating these conditional models, however, the first step in the analysis is to
determine whether there is significant within-cluster interdependence to justify the use of a
multilevel approach. In conventional multilevel linear analysis this is typically achieved by
evaluating the unconditional model (i.e., one with no predictors) to determine if clustering can
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account for a significant proportion of the overall variance of the outcome variable yij. The
unconditional linear model takes the form

yij = β00 + u0 j + rij. (6)

The variance τ00 of the intercept random effect, u0j, and the variance σ2 of the level-1 residual
term, rij, are estimated and used to evaluate ρ, the intraclass correlation coefficient (ICC). The
ICC is a measure of the extent to which observations within a cluster are related as expressed
by the ratio of the between-cluster variance to the total variance

ρ =
τ00

σ 2 + τ00
. (7)

In multilevel linear modeling with continuous outcomes, the ICC is a convenient measure of
the proportion of the total variance attributed to clustering. However, this standard ICC
formulation is not valid in the case of binomial hierarchical models due to the previously
discussed properties of the level-1 residual term.

Ridout et al. (1999) evaluated 20 different methods for estimating the ICC with binary
outcomes and found that the kappa-type method originally proposed by Fleiss and Cuzick
(1979) performed best under a variety of conditions. For dyadic data with binary outcomes the
simple Pearson correlation coefficient (equivalent to the Phi coefficient) is a close
approximation to the Fleiss-Cuzick method, which has been shown to provide reliable
estimates for ρ using data with a reasonably large number of clusters (j > 50), each of relatively
small size (Zou and Donner, 2004). This method has been referred to as the pairwise intraclass
correlation coefficient (PICC) by Donner and Koval (1980). A favorable property of the
Pearson-type PICC as applied to dyadic data is that its lower limit is always 1, according to
the general formula for determining the PICC lower boundary: 1(n -1), where n is the number
of subjects per cluster (Kenny et al., 1998). It should be-noted-that whereas the conventional
ICC with linear unconditional models will give an estimate of the proportion of the total
variance in the outcome attributed to clustering, the Pearson-type PICC will provide only a
measure of dyadic interdependence.

Due to the propensity for Type II errors, Kenny and colleagues (Kenny and Kashy, 1991;
Kenny et al., 1998) recommend the use of a liberal alpha level (.20-.25) when interpreting the
Pearson-type PICC to determine whether within-dyad interdependence is evident. A liberal
alpha level is also preferred because it is possible that group effects only emerge after
controlling for covariates (Snijders and Bosker, 1999). Alternatively, a modified variance
formula for the PICC in the case of constant cluster size was derived by Zou and Donner
(2004); and these authors also suggest the use of a modified Wald method to construct
confidence intervals appropriate for cases in which ρ is close to 0 or 1 or the number of dyads
is small (Donner and Zou, 2002).

3. Statistical assumptions
There is no single definitive set of assumptions that apply to all multilevel logistic models. The
primary assumptions that are relevant to multilevel models involving binary outcomes using
the logit link function (as shown in Eq. (10)) are that (a) the probability of success (yij = 1) is
identical for individuals within clusters, (b) observations between clusters are independent,
whereas pairs of observations within clusters have a common correlation, (c) each random
effect is independent and follows a generalized distribution that can be estimated using
maximum likelihood, (d) random effects and model predictors at all levels are independent,
and (e) an appropriate model linking yi and ui exists with a joint probability density function.
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A more comprehensive discussion of the statistical assumptions under nonlinear multilevel
modeling can be found in Raudenbush and Bryk (2002).

4. Types of dyadic variables and data structure
In multilevel models, dyadic interdependence is accounted for by modeling variance and
covariance within and across dyads. Variance constraints on particular types of dyadic
variables are thus an important issue in multilevel analysis of dyadic data. Kashy and Kenny
(2000) have identified three types of dyadic variables based on their locus of variance:
between-dyads, within-dyads, and mixed. Between-dyad variables measure shared experiences
or behavior and do not vary within the dyad, but do vary across dyads. Examples include
relationship duration, number of doctor-patient visits, and frequency of intercourse between
sexual partners. Since variation occurs across dyads only, between-dyad variables are restricted
to level-2 analysis. Within-dyad variables are those that vary within each dyad, but sum to the
same value across dyads. Examples include gender in heterosexual couples and proportion of
childcare performed by adult caregivers. Within-dyad variables are restricted to level-1, since
there is no variation across dyads. Mixed variables can vary both within and between dyads.
Examples include age, monthly caloric intake, and psychiatric assessment scores. Mixed
dyadic variables can be included as level-1 or level-2 variables in multilevel models. Recoding
is required prior to use of mixed variables as level-2 predictors; for example, by calculating
dyad means.

Kenny and colleagues (Kenny, 1996; Kenny and Cook, 1999; Kashy and Kenny, 2000) have
also provided a conceptual and analytical framework for modeling between-, within- and
mixed-dyad variables while accounting for dyadic interdependence. The actor-partner
interdependence model (APIM) can be used to analyze data from dyads or small groups in a
variety of research designs (Kenny et al., 2002). In the APIM framework, each dyad member
is considered an actor as well as a partner in the dyad. Each individual outcome can be
influenced by actor effects (level-1), partner effects (level-1), interactions between actor and
partner effects (level-2), and by dyad-level effects (level-2). This framework does not require
dyads to be distinguishable, since both actor and partner effects and interactions are assessed
for both members.

5. Example: viral hepatitis C infection among heterosexual couples
To illustrate the application of multilevel modeling to dyadic data with binary outcomes, we
employed data from a recent epidemiological study conducted to examine risk for hepatitis C
and other viral infections among drug-using couples in East Harlem, New York City (Tortu et
al., 2003; McMahon et al., 2003). Heterosexual couples reporting recent substance use were
recruited from East Harlem and administered risk assessment surveys and screened for viral
hepatitis C antibodies. Protocols for this study have been described in detail elsewhere
(McMahon et al., 2003).

Hepatitis C virus (HCV) is the most common blood-borne pathogen in the United States with
nearly 2% of the general population infected. HCV is a major cause of chronic liver disease
and the leading indication for liver transplantation worldwide. Injection drug use (IDU) and
high-risk sexual activity are the most common risk factors associated with HCV infection
(Ramadori and Meier, 2001; CDC, 2004). Currently, there is no vaccine against HCV and
therapeutic treatments for chronic active infection are limited.

To illustrate the use of PROC NLMIXED to model actor, partner, and dyadic effects on a binary
outcome, we examined the effects of four predictors on actor HCV antibody reactivity,
including (1) actor gender, (2) actor injection drug use, (3) partner age, and (4) recent dyadic
sexual behavior. In the APIM framework, actor gender (binary) is a within-dyad variable,
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because variation occurs within-but not between-dyads; actor IDU status (binary) and partner
age (continuous) are mixed variables, in that they can vary both within and between couples;
and recent shared sexual behavior (continuous) is a between-dyad variable because variation
occurs between couples, not within each couple (members within each couple should report
the same number of acts of intercourse between them).

It must be emphasized that this limited model was not intended to be properly specified. Indeed,
the model is likely misspecified by the omission of several known risk factors for hepatitis C
infection, and our results should be viewed as illustrative rather than substantive.

Of the 353 couples recruited for the initial study, 265 provided conclusive HCV antibody test
results and were included in the present analyses. In our example, the prefix a denotes actor
variables, the prefix p denotes partner variables, and the prefix d denotes dyad variables. Table
1 describes the variables used in this illustrative analysis. Before proceeding with the analysis,
we first discuss several data preparation issues, including variable coding and centering.

6. Variable coding and centering
Between-dyad variables (such as frequency of intercourse reported by each couple) require
that a single value be entered in the dataset for each dyad. However, in cases in which data are
collected from both members of each dyad, responses can disagree (i.e., measurement error).
One way to resolve this problem is to employ the response of one dyad member only (e.g., the
female member of each couple); a second method is to use within-dyad means. The latter
method was used in the current analysis, such that dyad means were used for the variable
dSEX.

Binary independent variables are dummy coded (0, 1) to facilitate interpretation of results.
Dummy coding is preferred to other coding schemes (such as effect coding) because the 0 value
on which the intercept is interpreted corresponds to a real state (Snijders and Bosker, 1999).
Thus, actor gender (aGEN) was coded 1 for females and 0 for males; and actor IDU status
(aIDU) was coded 1 for respondents who reported a history of injection drug use and 0 for
those who reported no such history.

To further facilitate interpretation of the intercept, level-1 continuous mixed variables were
centered on the grand mean. Kreft et al. (1995) provide a good discussion of the consequences
of various centering schemes and justification for their use. In our example, we centered partner

age by subtracting the grand mean from each variate (xj − x
‒). Hence, the intercept, β0j,

represents the expected outcome (log odds) for an individual in dyad j whose age is equal to
the grand mean. Without centering, β0j would denote the outcome measure at age 0, a value
without meaningful interpretation. The suffix c denotes variables that were centered on the
grand mean (e.g., aAGEc, dSEXc). Unlike several other software packages, SAS procedures
have no automated variable centering capability, so variables must be centered prior to
execution of PROC NLMIXED.

7. SAS PROC NLMIXED
Previous versions of SAS software have provided a variety of procedures for constructing
multilevel mixed models. The MIXED procedure was developed to handle linear multilevel
random effects models with continuous outcomes. Two subsequent SAS macros—GLIMMIX
and NLINMIX—were written to extend the capabilities of PROC MIXED to include nonlinear
mixed models (Littell et al., 1996; Wolfinger, 1997). Although these macros provide several
different estimation options, most are iteratively fit to a set of generalized estimating equations
(GEE), which have been shown to work poorly for data with considerable heterogeneity and
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a small number of responses per cluster (Breslow and Clayton, 1993; Wolfinger and O'Connell,
1993; Ten Have and Localio, 1999). Moreover, GLIMMIX and NLINMIX provide only
approximate parameter estimations. In contrast, the NLMIXED procedure, which was
introduced in version 7 of SAS, delivers maximized, and theoretically exact, integrated
likelihood estimates based on an adaptive Gaussian quadrature (Pinheiro and Bates, 1995;
Agresti et al., 2000). This estimation method provides superior parameter estimates especially
when variance components are large or not normally distributed (Kuss, 2002). In addition, with
PROC NLMIXED the conditional distribution of the data given the random effects can take
any general form that can be programmed using the SAS language including normal, binary,
Poisson, and binomial. Kuss (2002) has provided a concise description and comparison of the
various SAS procedures that can be used to analyze mixed models with binary outcomes; and
Patefield (2002) has described several nonlinear model applications of PROC NLMIXED using
data with large samples.

7.1. Data structure for NLMIXED
In order to be read properly by the NLMIXED procedure within the framework of APIM, the
data need to be structured as shown in Table 2. This table contains a number of different actor,
partner, and dyadic variables to illustrate the APIM structure more fully. The dataset must
contain one record for each level-1 individual in the sample. Depending on the variable type
—within, between, or mixed—the dataset will consist of columns containing actor, partner
(individual, level-1) and dyadic (couple, level-2) data. Thus, each subject's actor data will be
the same as his or her partner's partner data. This structure has been referred to as pairwise
reverse column scores (e.g., actor and partner age variables in Table 2). Couple-level data are
identical for individuals within each dyad. NLMIXED assumes that data are ordered both
within and between clusters as shown in Table 2.

Below we provide example code in SAS for restructuring a dataset containing subject actor
variables into the APIM format. The first six records from the couples HCV data were read
into a SAS dataset named new. Note that a dyad identifier variable (id) and a within-dyad class
variable (in this case, aGEN where 0 = female and 1 = male, in ascending order) are required
in the raw dataset.

data new;

  input id aGEN aHCV aIDU aAGE aSEX;

  datalines;

  1  0  0  1  44  10

  1  1  1  1  54  7

  2  0  1  1  36  4

  2  1  1  0  40  3

  3  0  0  0  38  18

  3  1  0  0  37  12

run;
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The next program restructures the raw data into APIM-format by merging the initial dataset
with a second dataset in which gender is sorted in descending order; and the between-dyad
variable dSEX is constructed using dyad means.

proc sort data = new out = APIM;

  by id descending

data APIM;

   merge APIM (rename = (aHCV = pHCV aIDU = pIDU aAGE = pAGE aSEX = 

pSEX)) new;

  dSEX = (aSEX + pSEX)/2;

Finally, the continuous variables aAGE, pAGE, and dSEX were grand 

mean centered and read into a SAS dataset named 

couplesHCV.

proc means data = APIM;

  var aAGE dSEX;

  output out = meandata mean = mAGE mSEX;

data couplesHCV;

  if_N_ = 1 then set meandata;

  set APIM;

  aAGEc = round(aAGE - mAGE);

  pAGEc = round(pAGE - mAGE);

  dSEXc = round(dSEX - mSEX, .1);

run;

7.2. Test of within-dyad interdependence using complete dataset
As discussed in Section 2, the first step in the analysis is to determine whether there is
significant within-cluster interdependence to warrant the use of a multilevel approach. The
Pearson correlation coefficient for paired binary responses provides a measure of within-dyad
interdependence, based on the PICC method discussed previously. The Pearson coefficient can
be obtained in SAS using either the FREQ or CORR procedures (the former gives confidence
limits whereas the latter reports p-values). The correlation between female and male dyad pairs
for anti-HCV positivity was obtained using the following SAS code:

proc freq data = couplesHCV;
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  where aGEN= 0;

  table aHCV

*pHCV/ measures cl;

run;

With APIM-structured data, inclusion of the WHERE clause ensures that each dyad record
will be read only once, thus attaining the appropriate degrees of freedom for inferential tests
(note that substituting “where aGEN = 1” on this line will produce identical results). The
TABLE statement identifies the variables on which the analysis is performed; and the
MEASURES and CL options stipulate that the output will list measures of association, include
the Pearson correlation coefficient, and 95% confidence limits. Using the complete dataset
(N = 265 couples), this analysis produced a Pearson correlation coefficient of 0.298 with an
asymptotic standard error of 0.059 and confidence limits of 0.184 and 0.413. Based on this
result, we may reject the null hypothesis of no interdependence between members within dyads
on anti-HCV positivity. We conclude that the use of a multilevel modeling approach to the
data is warranted in the present example.

It should be noted that both the FREQ and CORR procedures in SAS employ conventional
methods for calculating the variance, confidence limits, and p-values for the Pearson
correlation coefficient, not the modified formulae recommended by (Zou and Donner,
2004;Donner and Zou, 2002). In our example, the sample prevalence for anti-HCV positivity
was not close to 0 or 1 and the number of dyads was reasonably large; therefore, the Zou-
Donner modified formulae gave nearly identical variance and confidence limits to those
generated by PROC FREQ. A SAS Interactive Matrix Language (IML) program for calculating
the Zou-Donner parameter estimates is provided in Appendix A.

7.3. Evaluation of conditional random intercepts model
Next, the (conditional) random intercepts model was evaluated using the following PROC
NLMIXED code:

proc nlmixed data = couplesHCV qpoints = 20 tech = newrap;

  parms beta0 = -1.7940 beta1 = -0.1762 beta2 = 3.0536 beta3 = 0.0562 

beta4 = 0.0162 s2u = 0.0418;

  eta = beta0 + beta1*aGEN + beta2*aIDU + beta3*pAGEc + beta4*dSEXc + 

u;

  mu = exp(eta) / (1 + exp (eta));

  model aHCV � binary (mu);

  random u�normal(0, s2u) subject = id;

run;

The preceding SAS program evaluates the multilevel model:Level-1 model:

ηij = β0 j + β1 jaGENij + β2 jaIDUij + β3 jpAGEcij. (8)
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Level-2 models:

β0 j = γ00 + γ01dSEXc j + u0 j,

β1 j = γ11,

β2 j = γ12,

β3 j = γ13.

(9)

Combined model:

ηij = γ00 + γ11aGENij + γ12aIDUij + γ13pAGEcij + γ01dSEXc j + u0 j. (10)

The PROC NLMIXED statement invokes the SAS procedure, and the DATA = option inputs
the APIM-structured dataset couplesHCV. The QPOINTS = option stipulates number of
quadrature points to be used to obtain integral approximations over the random effects. Carlin
et al. (2001) have shown in simulation studies that a reasonably large number of quadrature
points (i.e., 20) is required to ensure convergence on model parameter estimates. Indeed, in
our example, running the SAS program without the QPOINTS = 20 option led PROC
NLMIXED to adaptively select one (1) quadrature point, which resulted in a Type II error
involving the estimate for the level-2 random variance component, s2u. More complex models
may require an even greater number of quadrature points. However, if we require 20 quadrature
points for each random effect, the total number of quadrature points required will be 20k, where
k is the number of random effects to be estimated. Such a large number of quadrature points
can lead to excessive demands on memory and computation time.

The TECH = option specifies the optimization technique used in parameter estimation. PROC
NLMIXED provides seven alternative optimization techniques, which vary in degree of
reliability and performance. The most reliable optimization techniques compute the Hessian
matrix, but these techniques are also the most computationally demanding. The default
technique is the dual quasi-Newton (QUANEW) algorithm, which affords a good compromise
between reliability (it computes an approximation of the Hessian) and performance (it
converges relatively quickly for models of small to medium complexity). If computation time
is not an issue, the Trust Region method (TRUREG) or the Newton-Raphson algorithm
(NEWRAP) tends to be more reliable (SAS, 1999).

The PARMS statement defines the free parameters and their starting values, which are crucial
to achieve convergence. Good starting values can be obtained by running other SAS
procedures. For example, starting values for the intercept and slope parameters (beta0 through
beta3) can be obtained using PROC GENMOD with a marginal modeling approach such as
the generalized estimating equations (GEE) formulation; whereas initial values for s2u
(between-cluster variance, or variance due to dyads) can be obtained from PROC MIXED (see
Appendix B).

The ETA statement specifies the combined multilevel model in linear form. Variable u
represents the level-2 random effect. The MU = statement specifies the logistic mixed model.
The MODEL statement defines the dependent variable and its distribution and indicates the
model. The RANDOM statement defines the single random effect, u, and specifies that it
follows a normal distribution, with a mean of 0 and variance s2u. The SUBJECT = argument
indicates the distinction between level-1 and level-2 hierarchies; in this case, the couple id
number.
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7.4. NLMIXED results for random intercepts model
The preceding NLMIXED code was run in SAS Release 8.02 TS Level 02M0; and the output
is presented in Table 3.

The Specifications table lists the various options and specifications employed in the analysis,
including the dataset employed, the dependent variable and its distribution, the random effects
and their distributions, the subject variable used to identify level-2 membership, and the
optimization and estimation methods. The Dimensions output provides information about the
sample size and its hierarchical structure, and the number of parameters estimated in the model.
The starting values for the model parameters and the negative log likelihood given these values
are listed in the Parameters output. Convergence was achieved according to the GCONV
criterion in six iterations, as documented in the Iteration History table. GCONV is the default
termination criterion for model optimization based on relative gradient convergence. The Fit
Statistics table lists the final maximized value of the -2 Log Likelihood, and three other model
fit statistics: the Akaike Information Criteria (AIC and AICC) and Bayes Information Criterion
(BIC). The AIC, AICC and BIC apply various corrections for model complexity to the log
likelihood model fit (Cherkassky and Ma, 2003).

The Parameter Estimates table lists the six free parameters, their maximum likelihood
estimates, standard errors, and inferential statistics. Degrees of freedom are equal to j 1. The
estimate for the model intercept (beta0) is -2.35, and represents the log-odds of anti-HCV
reactivity for an individual with 0-values on the predictor variables. The log-odds can be
converted back to a probability using the inverse exponential transformation:

pij = ( e
ηij

1 − e
ηij ), (11)

where e
ηij is the exponent of the log-odds. Thus, the probability of anti-HCV positivity is .087

for an actor who is not an injection drug user (aIDU = 0), with a partner of average age (pAGE
= 39.7 years), and who has engaged in an average number of acts of unprotected intercourse
in the last 30 days (dSEX 14.7).

Estimated coefficients for the level-1 predictors aGEN, aIDU and pAGEc are beta1= -0.219,
beta2 4.042 and beta3 0.066, respectively. Examination of the confidence limits and p-values
indicate that both=beta2 and beta3 are significant at the .05 level, whereas beta1 is not. This
suggests that gender had no significant effect on the probability of testing anti-HCV positive,
taking into account the other predictors and the level-2 random variance. To make the
interpretation of beta2 and beta3 statistics more intuitive, the coefficients and 95% confidence
limits can be converted to adjusted odds ratios (AOR) by taking their exponents—exp(beta2)
= 56.94, CI: 21.05, 154.01; exp(beta3) = 1.07, CI: 1.03, 1.11. This means that (holding the
other terms constant) the odds of being anti-HCV positive for an injection drug user are nearly
60 times that of a non-IDU. The significant partner age effect indicates that for each 1-year
increase in an actor's partner's age, the odds of that actor being anti-HCV positive increase by
about .07.

The coefficient for the level-2 predictor dSEXc (beta4) can be interpreted in much the same
manner. The estimate of beta4 = 0.02 (AOR = 1.02), p = .024, indicates that for each additional
act of unprotected intercourse between actor and partner per 30 days, the odds of being anti-
HCV positive increase by about .02. However, as discussion in Section 2, interpretation of
level-2 coefficients in random effects models with binary responses must be viewed with
caution (Neuhaus and Kalbfleisch, 1998).

McMahon et al. Page 11

Comput Stat Data Anal. Author manuscript; available in PMC 2006 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The estimate for the level-2 random effect (s2u) in this model is 2.029 (p-value = 0.031).
Attainment of statistical significance for this parameter is typically interpreted as indicating
the existence of unexplained variance in the outcome variable associated with one or more
level-2 unobservable random quantities. However, these test statistics must be interpreted with
caution because sampling distributions can be skewed (Wolfinger, 1999).

8. Discussion and conclusions
The SAS procedures outlined in this paper provide a practical guide for evaluating multilevel
mixed models with binary outcomes using data from distinguishable dyads. One of the
strengths of the SAS NLMIXED procedure is the flexibility it allows for specifying a variety
of models, which may include any combination of actor, partner, and dyad-level effects, within-
level and cross-level interaction terms, and random components. Interaction terms may be
added to NLMIXED models directly using the SAS multiplication operator (*). For example,
an interaction term for actor IDU status and partner age can easily be added to the model
specified in Section 7.3 simply by adding the term beta5*aIDU*pAGEc into the ETA =
statement (with an appropriate seed value for beta5 specified in the PARMS statement).
Additionally, the wide array of options available for parameter estimation and hypothesis
testing (e.g., density function, degrees of freedom, optimization, integration, and convergence)
permit model evaluation to be tailored to specific data properties and research requirements;
although this same flexibility can be somewhat daunting for those unfamiliar with the various
combinations of options.

Along with these strengths, NLMIXED also has several limitations. Currently, only one
random statement is supported in PROC NLMIXED, so that nonlinear mixed models cannot
be assessed at more than two levels. Parameter estimation in NLMIXED is limited to maximum
likelihood (ML) solutions. The restricted maximum likelihood (REML) method, which
corrects for the downward bias of ML estimates, is not available in NLMIXED. The REML
method is especially useful for adjusting standard errors of the level-2 random effects (Maas
and Hox, 2004); and there is no alternative option in NLMIXED for robust correction of
standard errors, such as the Huber-White adjustment.

Other limitations derive from the use of the APIM. The practice of using dyad means for level-2
variables from between-dyad scores ignores within-dyad measurement error. A related
problem is how to handle between-dyad data in which dyad members disagree on a
dichotomous variable. It is not clear that using a mean of .5 in such cases will provide an
optimum solution. One potential solution to these problems is to apply simulation techniques
to model within-dyad uncertainty in the results (e.g., Phillips, 2003; Steenland and Greenland,
2004).

A similar approach might also be helpful in dealing with another problem related to analysis
of APIM-structured data. Due to the structure of APIM data, it is not possible to include both
an actor outcome variable and its corresponding partner variable as a predictor in the same
model. In our hepatitis C analysis, for example, we could not include partner HCV reactivity
(pHCV) as a main effect in the model because it contains the same data as the outcome variable
—actor HCV reactivity (aHCV). We could not, therefore, test various interactions of
theoretical interest, such as the relationship between couple's frequency of unprotected sex and
actor anti-HCV positivity moderated by partner HCV status. However, if uncertainty estimates
based on sensitivity and specificity parameters of the HCV testing procedures are incorporated
into the model (e.g., Neuhaus, 2002; McInturff et al., 2004), both actor dependent and paired
partner independent variables can be evaluated in the same model.

Research focusing on the effects of dyadic interactions and processes on health outcomes has
increased in recent years. Analyses of dyadic data pose special challenges due to small sample
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sizes and interdependence of observations within dyads. Several authors have outlined
procedures for conducting dyadic data analysis with continuous responses using commercially
available software packages. In this paper, we outline a step-by-step guide to estimate
multilevel effects on binary outcomes in data from dyads using PROC NLMIXED and other
SAS software procedures. Use of the analytic tools described in this guide were illustrated
within the APIM framework using an epidemiological example concerning risk factors for
viral hepatitis C infection among heterosexual couples. Our aim was to provide a worked
example of these procedures as context for a discussion on some of the main concepts, issues,
options, and interpretations involving nonlinear multilevel modeling of dyadic data. Along
with the set of procedures for analysis of continuous outcomes provided by Campbell and
Kashy (2002), the methods outlined here can be extended to include analysis of data from a
wide variety of generalized distributions. It is hoped that this guide will serve as a starting point
for researchers who wish to explore theories about dyadic effects on binary outcomes using
multilevel nonlinear models.
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Appendix A.
SAS PROC IML code for calculating the Zou-Donner modified variance estimate for the
Pearson-type PICC.

proc iml;

p = 0.298;          *Pearson correlation coefficient from PROC FREQ;

j = 265;           *Number of dyads (clusters in analysis);

n = 2;            *Number of subjects per dyad (cluster size);

t = 0.526;         *Proportion of outcome successes for entire sample;

*Zou and Donner (2004 modified formula for variance of Pearson-type 

ICC);

varp = ((1 - p)/j)*((2/(n*(n - 1)))- ((3 - (1/(t*(1 - t))))*p)+((n - 

1)/n)*((4 - (1/(t*(1 - t))))*(p**2)));

print varp;

run;

Appendix B.
SAS PROC MIXED and PROC GENMOD code and selected output for parameter starting
values to be used in PROC NLMIXED. The random intercepts' variance estimate is listed in
the Covariance Parameter Estimates table under the Mixed Procedure output line UN(1,1).
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Coefficient estimates are listed in the Analysis of GEE Parameter Estimates table under the
GENMOD Procedure output.

proc mixed data = couplesHCV method = REML;

  class id;

  model aHCV = aGEN aIDU pAGEc dSEXc /solution;

  random intercept /subject = id type = un;

run;

                   The Mixed Procedure

                 Covariance Parameter Estimates

Cov Parm                      Subject           Estimate

UN(1,1)                       id               0.04178

Residual                                       0.1227

proc genmod data = couplesHCV descending;

  class id;

  model aHCV = aGEN aIDU pAGEc dSEXc / dist = bin link = logit;

  repeated subject = id / type = un;

run;

                 The GENMOD Procedure

                Analysis Of GEE Parameter Estimates

                Empirical Standard Error Estimates

              Standard 95% Confidence

Parameter    Estimate   Error     Limits      Z Pr>|Z|

Intercept    -1.7940    0.2421    -2.2685 -1.3195 -7.41 <.0001

aGEN     -0.1762    0.1898    -0.5483 0.1959 -0.93 0.3534

aIDU      3.0536    0.2824    2.5001 3.6071 10.81 <.0001

pAGEc     0.0562    0.0184    0.0200 0.0923  3.05 0.0023
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dSEXc     0.0162    0.0069    0.0027 0.0297  2.35 0.0190
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Table 1
Description of variables used in the analysis (N = 265 couples)

Females Males Dyads

Dependent variable
Actor anti-HCV status (aHCV; % reactive) 50.6% 54.7%
(binary, level-1, mixed)
Independent variables
Actor self-reported IDU status (aIDU; % ever injected) 61.5% 65.3%
(binary, level-1, mixed)
Partner self-reported age (pAGE; mean years) 40.3 39.1
(binary, level-1, mixed)
Number of within-couple unprotected acts of intercourse in previous 30 days
(dSEX; mean acts) 14.7
(count, level-2, between)
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Table 2
APIM-structured dataset with variables from example analysis

Obs id aGEN aHCV pHCV aIDU pIDU aAGE pAGE dSEX

1 1 0 0 1 1 1 44 54 9
2 1 1 1 0 1 1 54 44 9
3 2 0 1 1 1 0 36 40 4
4 2 1 1 1 0 1 40 36 4
5 3 0 0 0 0 0 38 37 15
6 3 1 0 0 0 0 37 38 15
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Table 3
SAS output listing from PROC NLMIXED code

The NLMIXED procedure Specifications
Specifications

Data Set COUPLESHCV
Dependent Variable aHCV
Distribution for Dependent Variable Binary
Random Effects u
Distribution for Random Effects Normal
Subject Variable id
Optimization Technique Newton-Raphson
Integration Method Adaptive Gaussian

Quadrature
Dimensions

Observations Used 530
Observations Not Used 0
Total Observations 530
Subjects 265
Max Obs Per Subject 2
Parameters 6
Quadrature Points 20

Parameters
beta0 beta1 beta2 beta3 beta4 s2u NegLogLike
-1.794 -0.1762 3.0536 0.0562 0.0162 0.04178 264.187725

Iteration history
Iter Calls NegLogLike Diff MaxGrad Slope
1 16 260.334592 3.853133 11.49504 - 6.05858
2 24 258.901004 1.433588 2.728152 - 2.31961
3 32 258.565145 0.335859 0.546435 - 0.57772
4 40 258.536421 0.028725 0.072913 - 0.05392
5 48 258.536111 0.00031 0.000997 - 0.00061
6 56 258.536111 4.428E-8 5.86E-8 - 8.86E-8
NOTE: GCONV convergence criterion satisfied.

Fit statistics
-2 Log Likelihood 517.1
AIC (smaller is better) 529.1
AICC (smaller is better) 529.2
BIC (smaller is better) 550.6

Parameter estimates
Parameter Estimate Standard Error DF t Value Pr<|t| Alpha Lower Upper Gradient
beta0 - 2.3458 0.3747 264 - 6.26 <.

0001 0.05 - 3.0837 - 1.6080 2.342E-8
beta1 - 0.2187 0.2515 264 - 0.87 0.3854 0.05 - 0.7139 0.2765 9.256E-9
beta2 4.0416 0.5053 264 8.00 <.

0001 0.05 3.0466 5.0365 5.153E-8
beta3 0.06592 0.02039 264 3.23 0.0014 0.05 0.02577 0.1061 - 5.69E-8
beta4 0.02031 0.008921 264 2.28 0.0236 0.05 0.002743 0.03787 - 3.92E-8
s2u 2.0291 0.9356 264 2.17 0.0310 0.05 0.1869 3.8713 - 5.86E-8
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