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The life table provides a systematic
record of the rate at which members of
a cohort withdraw from that cohort as

it ages. The cohort can consist of any

collection of elements having one or

more characteristics in common, with
withdrawal taking place whenever an

element loses a key characteristic. In
public health applications the elements
composing the cohort are live human
beings, but the common characteristic
and reason for withdrawal may vary

from problem to problem. Thus, the
characteristic might consist simply of
being alive and having been born at a

certain time, as in many demographic
problems, or it might consist of being
free of a specified disease after having
been treated for it. Withdrawal in the
first case would then occur at death, in
the second case either after recurrence

of the disease or at death.
In some problems it is desirable to

subclassify the elements by reason for
withdrawal. Thus, when withdrawal
takes place because of death, we may

classify the deaths by cause; when, as

in the second example, withdrawal takes
place because an element is no longer
alive and disease-free the withdrawn
elements may be classified as either
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(a) alive and disease present, or (b)
dead with disease present at time of
death, or (c) dead with disease absent
at time of death. In any problem in
which the key characteristic, whose loss
leads to withdrawal, can be subdivided
into two or more mutually exclusive
categories, we say, speaking purely for-
mally, that these categories compete
with each other. Thus, diabetes and
coronary heart disease are competing
causes of death. The existence of com-
peting risks raises certain problems in
the calculation and interpretation of
life table probabilities that do not arise
when we are concerned only with the
fact of withdrawal and are not con-
cerned with subclassification by reason
for withdrawal.

Before indicating what these problems
are, let me make clear one thing that
they are not. The problems arising
from the existence of competing risks
are in no way related to the important,
but independent, set of problems arising
in coding causes of death when two or
more causes are simultaneously present.
In the usual joint cause problem we
should like to assign all deaths either to
disease category A, or to B, or to C, and
so forth, but in some cases death occurs
in the presence of two or more diseases,
say, A and B, and a decision must be
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For the reader who is-shall we
say-not comfortably at home in
mathematics, the appearance of
the illustrative computation in this
discussion may tempt him to turn
to the next paper. No matter what
his interests, one cannot help but
gain from this presentation a whole-
some caution about accepting seem-
ingly obvious assumptions.
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made as to which category to assign the
death. The way in which such decisions
are made can have important effects on
the results, but no matter how they are
made a problem of competing risks re-
mains. This is true whether all deaths
for which both A and B are present are
assigned entirely to A, or to B, or to a
new category called "both A and B." A
problem of competing risks exists when-
ever withdrawals can be subdivided into
a set of mutually exclusive classes, and
its existence is no way dependent on how
these classes are defined.
The nature of this problem is perhaps

most easily seen by considering an over-
simplified version of a common labora-
tory experiment. We have a toxic agent
whose administration to some laboratory
animal will result in the development of
a particular disease during some speci-
fied time interval. We wish to estimate
the probability that an animal exposed
to this agent will develop the disease
during this time. It is a simple enough
matter to design an experiment in which
a cohort of animals is exposed to the
agent and the number developing the
particular disease during the time inter-
val observed. But, suppose, as often
happens, that the time interval is a
lengthy one. In experiments on tumor
induction, for example, six or more
months may elapse between the initial
application of the carcinogen and the
appearance of a tumor. In an interval
of this length a number of untoward
events may occur; in particular, animals
may die of other causes. Now these
other causes of death compete with the
development of the disease of interest in
two quite different senses: (a) In a
purely formal sense if an animal dies
from some extraneous cause it has no
chance to develop the disease in which
we are interested. In this formal sense
the presence of other causes of death
must decrease the observed proportion
developing the disease of interest; (b)
in an empirical (as contrasted with

formal) sense the animals dying of
extraneous causes may have a probabil-
ity of developing the disease which dif-
fers from that of other animals.
Now if we wish to eliminate the em-

pirical effects of competing causes of
death we have no alternative but to con-
duct the experiment in such a way that
these other competing causes are not
present. This is not always easy to do,
and in many cases is completely impos-
sible. In such cases the probability of
developing the disease of interest is de-
fined only in the presence of these other
competing causes. But there is a formal
effect still present and one we must
recognize in interpreting the results.

Consider for example, a hypothetical
experiment designed to compare the
probabilities that an agent will cause the
development of a disease in young and
old experimental animals. We may, by
taking sufficient care, reduce the prob-
ability that young animals will develop
any disease but the one of interest close
to zero; in general it will be impossible
to do this for older animals, some of
which will die during any protracted
experiment simply because they are
older. We may be unable to do anything
about this experimentally, but we must
recognize that for this reason alone the
older animals will appear to have a lower
probability of developing the disease of
interest. Thus, if the weekly incidence
rate for a surviving young animal
for the disease of interest was 0.1,
while the equivalent rate for an old ani-
mal was twice as high, 0.2, it is an easy
calculation to show that nevertheless the
older animals would have a smaller pro-
portion developing the disease over the
course of seven or more weeks, if their
weekly mortality rate from other causes
was also 0.2. Thus,

Proportion of
younger animals 7
developing the = | 0.1 x e-O-lt dt
disease JO

= 0.503
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Proportion of
older animals 7
developing the = C 0.2 x e-O.lt dt
disease J0

= 0.470

In the face of difficulties such as this
experimenters have sought a numerical
way of "correcting" their results for the
disturbing effects of competing causes.
In the study of dose-response curves we
have Abbott's correction for natural
mortality,' i.e., mortality even in the
absence of any dose of the toxic agent.
In the study of experimental carcino-
genesis several methods have been de-
veloped2, 3 including a direct applica-
tion of life table methods by J. 0.
Irwin.4 In all cases the purpose, al-
though not always made explicit, has
been to estimate the probabilities that
would have been observed if it had been
possible to eliminate the other causes of
death without affecting the short-term
probabilities for the disease of interest.

At this point it is convenient to intro-
duce some terminology. We shall call
the probability of developing the disease
of interest during a time interval for a
cohort subject to competing risks a
mixed probability. We shall call a pure
probability that idealized probability
that would have been observed had it
been possible to eliminate all competing
risks, and if these competing risks had
no empirical effects.*
Now, when we turn to human popula-

tions we find the same problems as in
animal experimentation but, since our
objectives are usually more complicated
than the experimenters, things are not
as clear cut. In experimental studies
one is usually interested in isolating
effects, i.e., in analysis, whereas in study-

* The mixed and pure probabilities are
identical with what Fix and Neyman 5,6 have
called crude and net probabilities in a problem
in long-term survival involving competing risks.
Because net and crude have different mean-
ings in demography than those assigned by
Fix and Neyman as well as the fact that it is
mnemonically awkward to have the net quan-
tity the larger one, I have used pure and mixed.

ing human populations we are interested
both in isolating effects, and in studying
them in combination, i.e., in both
analysis and synthesis. The experimen-
ter wants a pure probability; the epi-
demiologist may want both a pure and
a mixed probability. In the usual prob-
lem of estimating the probability that a
human being will develop a specific
disease between two specified ages, we
proceed by (a) computing the life table
implied by current mortality rates, (b)
applying incidence rates for the disease
to the surviving population at each age,
(c) summing the new cases developing
between the stated-ages, and (d) divid-
ing that total by the number of survivors
at the initial age. The estimate obtained
is of a mixed probability. It provides
an answer to the question: In a cohort
subject for some future number of years
to both the pure risk of developing the
disease and to the pure risk of dying
from some other cause what proportion
will develop the disease in question?

If we are interested in isolating effects,
however, and wish to study, say, changes
in the pure risk of developing a disease,
without regard to changes in other
causes of death, such a proportionate
frequency may be misleading. Thus, if
such a calculation tells us that the
probability of developing cancer is
higher now than it was in the past, this
may be either because the pure risk of
developing cancer has increased, or
because the chance of dying of other
causes has decreased. Nor are these
difficulties entirely hypothetical. In a re-
cent study of the changing probability of
developing cancer in Upstate New York,
for example, it was found that the
probability of a female developing can-
cer at some time during her life had
increased by 25 per cent over a seven-
year period, but that the largest part
of this increase was accounted for by
decreases in other forms of mortality.7
From a control point of view the mere
decrease in other forms of mortality
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makes cancer control a more pressing
problem, even in the absence of any
change in the pure probability of its
development. The synthetic measure is
thus a useful one, but we cannot use it
without some modification if our pur-
pose is the purely analytic one of meas-
uring the effects of changing risks, in
the absence of changes in other causes.

There is no reason, of course, why
one could not compare two different pe-
riods or two different places by stand-
ardizing for the competing causes of
death and this is, in fact, what was done
in the New York State study. For com-
parative purposes this provides a useful
analytic measure, although the-at least
theoretical-difficulty of selecting a
standard set of mortality rates for com-
peting causes of death remains. But it
does not provide an absolute measure
which is independent of competing
causes of death and this is the question
to which we now turn.
The only thing new about a pure

probability is its name. The basic
analytic apparatus necessary for making
the estimates was developed by Bernoulli
and D'Alembert as part of a considera-
tion of the effect of eliminating smallpox
as a cause of death on the probability of
surviving to a given age. A good sum-
mary of their method is given by
Todhunter8 (who finds nothing of
"special interest" in D'Alembert's con-
tribution and regards it as "not of prac-
tical use") and Karns 9 (who bases her
methods on D'Alembert's modification
of Bernoulli's procedure). When, 100
years later, the British actuary, W. M.
Makeham, was considering theoretical
problems involved in preparing life
tables for populations subject to multiple
sources of decrement he drew upon and
simplified the earlier work 10 so that the
Bernoulli-D'Alembert-Makeham method
provides the basis for current actuarial
methods of handling this problem. Good
contemporary accounts are given by
Jordan 11 and Bailey and Haycocks.12

We shall not require much of this
theory for our purposes. We start by
defining the survivorship curve for a
cohort, 1(X), the number of survivors
at age X. Withdrawal from the cohort
can occur either because of death, or
the development of a particular disease.
X is considered a continuous variable,
and the interval of time from X to
X + 1 is referred to as unit time. The
age at which the cohort starts is denoted
by XO. Corresponding to any increment
of time, A X, we shall have some cor-
responding change in the survivorship
curve, say A 1(X). Since 1(X) is a
decreasing function of age, the negative
of A 1(x) gives the number of with-
drawals during the interval. Specify N
mutually exclusive causes of withdrawal
and denote the number attributable to
the ith cause by -AI (X). Then

N

(1) -Al (X) = -ZAI 1(X).

The total probability of withdrawing
during the interval is -AL(X)/1(X),
while the mixed probability of with-
drawing because of the ith cause is
-Ail (X) /1 (X). We denote the former
by q(X,X+ A X) and the latter by
qi(X,X+ A X). The complements, i.e.,
the total and mixed probability of sur-
viving, are denoted by p(X,X+ A X)
and pi (X,X+AX). The total with-
drawal rate per unit time for the interval
X is then given by

(2)
- A1 (X)

AX1 (X)

Now as the interval of time, A X, is
shortened the total rate so defined will
change slowly and as A X approaches
zero the rate itself may approach a limit.
This limit is referred to by the actuaries
as the total force of decrement per unit
time at age X. We denote it by u (X).
Thus, when this limit exists
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rim -A1 (X) -dl (X)
(3) = (X).

A\X-+0 AMX (X) dXl (X)

Integrating both sides of (3) we obtain
the fundamental relationship between
the survivorship curve and the force of
decrement,

rx
- j(t) dt.

(4) 1(X) = 1(X.) e Jx
We may define a partial force of decre-
ment for the ith cause of withdrawal just
as we did for all causes, and if we denote
it by jui(x), we have

lim -tA1(X)
(5) = ,U1 (X)

LX-+ O L\X1 (X)

In view of (1) the sum of the partial
forces is equal to the total force, i.e.,

(6)
N

.u(x)= ,(x).
i = 1

With this machinery we may now

make precise the notion of the pure

probability of developing a disease. We
consider a hypothetical cohort for which
all causes of withdrawal but the one of
interest, say the ith, have been elim-
inated without affecting the partial force
of decrement for that cause. Then, from
(4) the survivorship curve for that
cohort, which we denote by li(x) is

('X

(7) 1l (x) = 11(X.) e- Ai,(t) dt.
X.

The pure probability that an element
of a cohort subject only to the ith cause

of withdrawal will survive from ages
X, to X2 we denote by p*j (XI, X2).
Clearly,

1I (X2) - X2
(8) p*i(X,,X2) = - e IA,(t)dt.

11(X1) JX1

The pure probability of withdrawing for
the ith cause is then I-p*i (X1, X2)
The pure probabilities as defined have

a very interesting property. The actual
probability of surviving from age X, to

age X2 is the product of the individual
pure probabilities. Thus, the individual
pure probabilities of surviving combine
as if they were independent of each
other. This is more than a computa--
tional convenience. It provides addi-
tional insight into the effect of the indi-
vidual causes on the total death rate.
The proof of this multiplicative relation
is straightforward.

~~-N
7r p*i(X1 X2)=e

i= 1
i = 1

X2
S ILI(t) dt
Xi

- N

i=

-X2
e/S(t)dt

JXI

p (X1, X2)

For the actual computation of a pure
probability we must find a numerical
approximation to the required integral.
The usual raw material will be a central
withdrawal rate for an interval for a
particular cause. If we apply the usual
methods and treat these rates as if they
were the only rates in a single decrement
table, an l1(X) curve will result.
By how much will a pure probability

differ numerically from a mixed one?
There is of course no general answer to
such a question but the following calcu-
lations may be of interest. Several years
ago Cutler and Loveland undertook a
comparison of the lifetime probabilities
of developing lung cancer for different
classes of smokers.'3 They did this by:
(a) projecting the lung cancer incidence
rate for cohort 1910 for each age up to
age 80; (b) breaking this rate down
among the different smoking classes on
the basis of several retrospective studies
relating the incidence of lung cancer to
amount smoked; and (c) assuming the
continued applicability of the 1950 life
table for all other causes. These calcu-
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lations supply estimates of the mixed
probability of developing lung cancer

among different classes of smokers.
Such estimates appropriately weight

the chance of developing lung cancer

and the chance of dying from other
causes before lung cancer has had a

chance to occur. They supply the ap-

propriate factual basis for decision for

those hypothetical individuals whose
smoking habits are determined by con-

sideration of consequences. They do
not supply an estimate of the pure risk
of developing lung cancer for persons

exposed to different amounts of tobacco
in the absence of competing risk. Cutler
and Loveland have kindly made their
data available to me. The comparison
between their mixed probabilities and
the pure ones calculated by me is shown
in Table 1 for different smoking classes
and for different ages. It will be ob-
served that the pure and mixed probabil-
ities of developing lung cancer by age 60
for this cohort are not very different.
The age 70 probabilities differ by more,

approximately 25 per cent, while the age

80 probabilities are quite different.
Thus, those who smoke 25-49 cigarettes
per day have a mixed probability of
0.082 of developing lung cancer by age

80, but a pure probability of 0.134. We

may conclude on the basis of these esti-
mates that the pure risk of developing
lung cancer by age 80 for the smoker of
a pack or more cigarettes per day is
about one in eight, while the mixed risk
is about one in 13.
Having worked one's way through the

theory of multiple decrement tables it is
easy to fall into the semantic trap of
believing that a calculation which elim-
inates the formal effects of competing
risks also eliminates their empirical
effects. Thus, even as careful a writer
as Jordan says that the partial force of
decrement "being an instantaneous rate
of decrement, is not based upon any

time interval, and is not affected by the
operation of competing causes."'1
Taken literally this statement means that
the actual physical elimination of one

competing cause would of necessity leave
the force of mortality for all others un-

altered. It is hard to see why this must
be so, and in particular how its truth
could be established by anything short
of an experimental demonstration.
Makeham, it is interesting to note, con-

cluded his article 10 with a caution
against this confusion.

Although this paper is concerned
primarily with the formal effects of com-

peting causes, an additional word on

Table I-Comparison, Pure and Mixed Probability that White Males Born in 1910
and Alive at Age 40 Will Subsequently Develop Lung Cancer, by Smoking

Class and Age at Which Developed

Age

Smoking Class 80 70 60

Pure Mixed Pure Mixed Pure Mixed

Probability x 100
Nonsmoker 0.8 0.5 0.4 0.3 0.1 0.1
Smoker:

Cigarettes per day
1-14 5.6 3.4 2.8 2.1 1.0 0.9
15-24 7.9 4.8 3.9 3.0 1.3 1.2
25-49 13.4 8.2 6.7 5.2 2.3 2.1
50 or more 21.6 13.7 11.0 8.7 3.8 3.5

Note: The estimates of the mixed probabilities are due to Cutler and Loveland 1 and are based on observations
of Doll and Hill.1
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the empirical effects may not be out of
order. Many applications of mortality
and morbidity data involve the tacit as-
sumption that the empirical effects can
be disregarded. Thus, when we observe
an increase in mortality from lung can-
cer we are likely to conclude that some
new environmental influences have been
introduced. But as Berkson points out
this need not necessarily be the case.
"It is entirely possible and even likely
that at least part of the increase in death
rate from lung cancer which has been
recently noted is attributable to deaths
in adulthood from this disease of indi-
viduals who have not been eliminated,
as in former years they would have
been, by death in early life from tuber-
culosis or some other pulmonary
malady." 15 The same problem arises
for comparison among different places.
Thus, urban-rural differences or differ-
ences among different countries in the
incidence of a particular disease may or
may not be related to differences in in-
tensity of exposure to some environ-
mental agent of interest, but the possible
empirical effects of competing risks can-
not be overlooked.
With respect to actual knowledge of

the magnitude of possible empirical ef-
fects of competing risks we seem to have
made no advance beyond Bernoulli. One
way of expanding our knowledge and
insight in this area is by means of the
kind of experimental epidemiology that
we have not seen since the work of
Greenwood, Hill, Topley, and Wilson.16
Thus it is possible to produce both tuber-
culosis and lung cancer experimentally.
If they could be produced in the same
laboratory animal, we could obtain a
direct comparison of the pure probabili-
ties of developing lung cancer in animals
that were and were not exposed to the
risk of mortality from tuberculosis.
Needless to say the bearing of these
results on human experience would still
remain to be established.

Finally, we can ask with John Graunt,

"to what purpose tends all this laborious
buzzling and groping?" I would say
the purpose is to remind us that in the
presence of competing risks the question,
"What is the probability of developing
a particular disease?" is not an unam-
biguous one, and depending on what was
meant, may have several different
answers. In particular, it is suggested
that the elimination of the formal effects
of competing causes by computation of
a pure probability may often serve a
useful purpose.
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