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We investigated the infectivities and replicative capacities of a large panel of variants of the molecular
human immunodeficiency virus type 1 (HIV-1) NL4-3 clone that differ exclusively in the V3 region of the viral
envelope glycoprotein and the nef gene. Our results demonstrate that Nef enhances virion infectivity and HIV-1
replication independently of the viral coreceptor tropism.

Nef is a myristoylated membrane-associated protein that is
important for efficient replication and pathogenicity of human
and simian immodeficiency viruses (HIV and SIV, respec-
tively) (15, 25, 27). Nef increases viral spread both indirectly by
mechanisms of immune evasion and directly by enhancing viral
infectivity and replication (reviewed in references 14, 17, and
37). Enhancement of virion infectivity and stimulation of viral
replication are well-conserved properties of primary nef alleles
and most likely contribute to HIV type 1 (HIV-1) virulence
(7). The exact molecular mechanisms that mediate both of
these Nef functions remain elusive. The ability of Nef to en-
hance viral infectivity involves enhanced proviral DNA synthe-
sis (2, 12). It has been proposed that targeting to lipid rafts (43,
45), increased Env incorporation (30), altered viral Env func-
tion (1, 9, 46), enhanced efficiency of reverse transcription (26,
41), or particle disassembly (32, 40) might account for the
more effective initiation of proviral DNA. Nef is found in the
core of the virions and is cleaved by the viral protease (5, 28,
36, 44). However, cleavage seems not to be required for the
enhancement of infectivity (10), and the relevance of virion
association is unclear. It has been proposed that Nef-mediated
CD4 down-regulation is important for enhanced virion infec-
tivity and effective release of viral particles (30, 39). Further-
more, down-modulation of CD4 correlates with the efficiency
of viral replication in peripheral blood mononuclear cells
(PBMC) and in human lymphoid tissue ex vivo (7, 21, 31).
However, Nef also enhances the infectivity of HIV-1 particles
produced from CD4-negative cells (6, 21). Several recent stud-
ies suggest that the effect of Nef on infectivity might not ac-
count for the enhanced growth kinetics of HIV-1 containing a
functional open nef gene in primary lymphocyte culture (7, 21,
31). The enhanced replication kinetics of nef-open viruses are
observed predominantly in PBMC that have been infected
immediately after isolation and stimulated several days later
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and not in prestimulated lymphocyte cultures or in most im-
mortalized T-cell lines (11, 34, 42). It is well established that
Nef alters intracellular signaling pathways (reviewed in refer-
ence 22) and that increased replication of nef-open virus is
most likely due to lymphoid cell activation (3, 19).

Infection of cells by HIV-1 requires binding of the viral
envelope glycoprotein to CD4 and subsequent interactions
with G protein-coupled coreceptors, usually CCRS (RS) or
CXCR4 (X4) (reviewed in reference 4). Some aspects of Nef
and Env functions are overlapping. For example, both proteins
reduce cell surface expression of CD4 (8, 20), alter CD3 sig-
naling (23, 24), and affect apoptosis (reviewed in reference 38).
It has been suggested that Nef might support virus-cell fusion
or change the envelope structure, resulting in enhanced release
of the core into the cytoplasm (32, 40, 46). The interaction of
the envelope glycoprotein with CD4 and coreceptors trans-
duces intracellular signals (13) and might cause cellular acti-
vation independently of Nef function. For example, it has been
described that both the gp120 signaling cascade and Nef can
activate the mitogen-activated protein kinase pathway (16, 33).

These previous studies suggest that the interaction of the
HIV-1 Env protein with different coreceptors might have an
impact on the effect of Nef on both virion infectivity and viral
replication. To evaluate this possibility, we generated a series
of nef-open and nef-defective mutants of the molecular HIV-1
NL4-3 clone containing the V3 regions derived from 28 pri-
mary isolates or molecular HIV-1 clones with differential co-
receptor tropism (Table 1). Splice overlap extension PCR was
used to replace the V3 loop sequence of NL4-3, and virus
stocks were generated by transient transfection of 293T cells as
described previously (35). Coreceptor utilization of the HIV-1
NL4-3 V3 variants was determined by infection of X4.15 and
R5.3 cells as described previously (29, 35). Infectivity assays
performed in triplicate with three independent virus stocks
demonstrated that 13 of these NL4-3 V3 recombinants were
R5-tropic, 3 were X4-tropic, 2 were dualtropic, and 10 were
noninfectious (Table 1). As expected, the ability to utilize X4
correlated with a high positive charge of the V3 loop amino
acid sequence (Table 1).
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TABLE 1. Properties of HIV-1 NL4-3 V3 loop recombinants

Replication”

Clone V3 loop sequence” Charge Tropism
PM-1 PBMC
CTRPNNNTRKSI H QRGPGRAFYTTGE! . . | GDI RQAHC
NLA4-3wt r V—i —=k—. . . =nNM——— +8 X4 ++ ++
005pf130 — g—n— +5 R5 (+) (+)
005pf135 g——. . .. +5 RS + +
011jr101 p—. . .= +5 R5 (+) (+)
046jm109 p—. . .. +5 RS + (+)
165dh103 S .. —q dv. . +5 R5 (+) +
92th014.12 1.. W q-. . +5 RS ++ +
92ug037.8 vr-. . —qt —a—d-. . ————— +5 RS + ++
91us005.11 g p—. . a——d—. . +5 RS ++ ++
93br0259 = ———— r— .—q a . +5 RS + +
92rw020.5 = gvr—. . ——q a—g—. . +5 RS + +
92br020.4 . a—d-—. . +5 R5 + +
YU2 n—. . | +5 R5 ++ +
93br029.2 q—. . —_— +6 R5 + ++
93br020.17 = ————————— r—si. % a—-—. . K— +7 R5X4 + ++
92ht593.1 -———S—-S—, . ————— ra—. k—. . —n—m—— +7 R5X4 ++ ++
P59-S/27 ——gspq—r—r—. . ———— w wyar gng——————— +7 X4 ++ ++
P51-§¢ ——g—-k—r—nB—-., . ————— ia-rgq-..——— k— +8 X4 + ++
P34-s hi s—r—-s— . ———— ra-er—. . ———— kK——— +8 X4 ++ ++
032an108 ..a ed—. . t +5 - - -
161kc105 ~ ————— pm . —k a——d-—. +5 - - -
166pw101 S La a .. +5 - - -
167rw103 rg—f..—ktl—.dv. . —————— +5 - - -
92ug024-2 ———y—i-—-qrtp-..-l-q-l —.rr.. —-e———r—— +7 - - -
P59-S/25 ————gSi p—r—r—. . ———— w wyar gggmen————— +7 - - -
P61-A -———y——g-S-. . ———S-vaar k—. . ———————— +7 - - -
P58-A - —g———r—f .. —rs—| —-eq-. . v—t kr —— +7 - - -
sG3-1 kk—r—tt.. vy Y +8 - - -
89-6 0000 rrls—. . arrn—. . +8 - - -

“ All sequences are shown in comparison to the V3 consensus sequence (top row). Dashes indicate amino acid identity, and dots indicate gaps introduced to optimize
the alignment. All recombinants differ only in the V3 sequence from the parental X4-tropic NL4-3 isolate.

b ++, highly efficient; +, efficient; (+), low; —, not significant.

¢ The P51-S env construct was kindly provided by A. Werner (Langer, Germany).

Nef-defective forms of the infectious NL4-3 V3 recombi-
nants containing either a deletion of the nef unique region
(Anef) (6) or premature stop codons (nef*) at positions 73 and
74 of the nef open reading frame were generated by standard
cloning techniques. P4-CCRS cells expressing CD4 and both
RS and X4 were infected with aliquots of virus stocks contain-
ing 20 ng of p24 antigen as described previously (18). Consis-
tent with the results obtained with the X4.15 and R5.3 cells, the
infectivities of the various molecular clones varied consider-
ably, independently of the viral coreceptor tropism (Fig. 1).
Importantly, however, all viral particles produced in the pres-
ence of an intact nef gene were more infectious than the cor-
responding nef-defective forms (Fig. 1). Compared to the re-
spective Anef mutants, an intact nef open reading frame
enhanced the infectivity of R5-tropic forms 8.1 * 6.3-fold
(mean = standard deviation) (n = 108, where n is the number
of infections performed), the infectivity of X4-tropic variants
17.3 = 5.9-fold (n = 36), and the infectivity of X4R5-tropic
recombinants 8.5 = 2.5-fold (» = 18). Similar results were
obtained when the infectivity of the nef-open NL4-3 V3 recom-
binants was compared with that of the corresponding nef-de-
leted forms: for R5-tropic forms, 11.0 * 2.5-fold (n = 78); for
X4-tropic forms, 14.3 = 7.8-fold (n = 24); and for X4R5-tropic
forms, 7.9 £ 1.2-fold (n = 12). Concordant with previous
results obtained with HIV-1 particles pseudotyped with one

X4-tropic and one R5-tropic HIV-1 Env protein (9), our data
demonstrate that Nef increases the infectivity of HIV-1 parti-
cles independently of the viral coreceptor tropism.

We then investigated whether the stimulation of viral replica-
tion in PBMC cultures is affected by the gp120 interaction with
different entry cofactors. CD4* T cells were isolated using mag-
netic beads as described in the protocol of the manufacturer
(Miltenyi, Bergisch-Gladbach, Germany). Cells were either pre-
stimulated with phytohemagglutinin (PHA; 3 pg/ml) for 3 days
prior to infection or infected with virus stocks containing 20 ng of
p24 antigen immediately after isolation and then stimulated with
PHA 3 days later. All NL4-3 V3 recombinants replicated in pre-
stimulated PBMC (data not shown). Under these experimental
conditions, an intact nef gene increased the efficiency of viral
replication only moderately. As expected from previous studies
(12, 34), HIV-1 NLA-3 V3 recombinants expressing functional nef
genes replicated with considerably higher efficiency than the cor-
responding nef-defective forms in PBMC infected immediately
after isolation and stimulated 3 days later (Fig. 2). The effect of
Nef on viral replication was to some extent dependent on the
PBMC donor (data not shown). Altogether, however, infection of
PBMC derived from six different donors with different virus
stocks clearly demonstrated that an intact nef gene enhances
HIV-1 replication in primary blood monocytes independently of
the viral coreceptor tropism (see Fig. 2 for examples). Substantial
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FIG. 1. Nef enhances HIV-1 infectivity independently of the viral coreceptor tropism. P4-CCRS5 cells were infected with NL4-3 variants
containing an intact nef gene or a deletion in the nef unique region. Infections were performed in triplicate with three different virus stocks
containing 20 ng of p24 antigen. Shown are average values of nine measurements * standard deviations. Comparable results were obtained with
the variants containing a premature stop codon in the nef gene. CPS, counts per second; WT, wild type.

variations were observed between the different HIV-1 NLA4-3 V3 respective nef-open constructs. On average, the nef-open HIV-1

recombinants analyzed. Altogether, however, the infectivity (P < variants showed about 1-log increases in infectivity and levels of
0.0001) and replicative capacity (P = 0.0008) of the nef-defective viral replication relative to those of the nef-defective viruses.
viruses correlated significantly with the replicative capacity of the In conclusion, our study demonstrates that Nef increases
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FIG. 2. Nefincreases replication of R5-tropic, X4-tropic, and dualtropic HIV-1 NL4-3 V3 variants in human PBMC. Unstimulated PBMC were
infected with HIV-1 variants containing intact nef genes (filled symbols) and either a deletion (A) or a premature stop codon (B) in nef (empty
symbols) immediately after isolation and stimulated 3 days later. Virus production was monitored by a reverse transcriptase (RT) assay. Results
were derived from a single experiment using PBMC from two different donors. Similar results were obtained in five independent experiments with
different virus stocks and PBMC from different donors. PSL, photon-stimulated light emission.
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virion infectivity and viral replication independently of the viral
coreceptor tropism. The finding that Nef enhances the infec-
tivity of R5-tropic, X4-tropic, and dualtropic forms is consis-
tent with recent findings that this function is generally pre-
served among primary rnef alleles obtained at different clinical
stages of HIV-1 infection (7). Enhancement of virion infectiv-
ity by Nef is obviously also advantageous for the spread of
HIV-1 variants that show an expanded coreceptor tropism.
Our findings do not exclude the possibility that the interaction
of the viral Env protein with RS and/or X4 induces intracellu-
lar signals which already cause some activation of the cell
during the entry process and lead to accelerated viral replica-
tion. Our data clearly demonstrate, however, that Nef is gen-
erally required for the full replicative potential of HIV-1 in
primary human cells.
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