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Recent progress in genome-scale sequencing and comparative mapping raises new challenges in studies of
genome rearrangements. Although the pairwise genome rearrangement problem is well-studied, algorithms for
reconstructing rearrangement scenarios for multiple species are in great need. The previous approaches to
multiple genome rearrangement problem were largely based on the breakpoint distance rather than on a more
biologically accurate rearrangement (reversal) distance. Another shortcoming of the existing software tools is
their inability to analyze rearrangements (inversions, translocations, fusions, and fissions) of multichromosomal
genomes. This paper proposes a new multiple genome rearrangement algorithm that is based on the
rearrangement (rather than breakpoint) distance and that is applicable to both unichromosomal and
multichromosomal genomes. We further apply this algorithm for genome-scale phylogenetic tree reconstruction
and deriving ancestral gene orders. In particular, our analysis suggests a new improved rearrangement scenario
for a very difficult Campanulaceae cpDNA dataset and a putative rearrangement scenario for human, mouse and
cat genomes.

The traditional phylogenetic tree reconstruction is based on
the analysis of individual genes (Graur and Li 2000). In con-
trast, genome rearrangement studies are based on genome-
wide analysis of gene orders rather than individual genes
(Palmer and Herbon 1988; Palmer 1992; Sankoff et al. 1992;
Olmstead et al. 1994; Bafna and Pevzner 1995; Hannenhalli et
al. 1995; Blanchette et al. 1999; Cosner et al. 2000). The study
of genome rearrangements started more than 60 years ago
(Dobzhansky and Sturtevant 1938), but interest in the sub-
ject has flourished in recent years due to progress in large-
scale sequencing and comparative mapping (O’Brien et al.
1999, Murphy et al. 2000; Lander et al. 2001; Venter et al.
2001).

In the context of genome rearrangements, genomes are
typically viewed as signed permutations where each integer cor-
responds to a unique gene/marker and the sign corresponds
to its orientation (strand). For unichromosomal genomes, the
most common rearrangements are inversions that are often
referred to as reversals in bioinformatics. A reversal �(i, j), ap-
plied to a permutation � = �1 . . . �i�1 �i . . . �j �j+1 . . . �n,
reverses the segment �i . . . �j and produces the permutation
� � �(i, j) = �1 . . . �i�1 � �j � �j�1 . . . � �i �j+1 . . . �n. For
example, the effect of the reversal �(4,8) on the identity per-
mutation is the following:

1 2 3 4 5 6 7 8 9 10
↓ �(4,8) ↓

1 2 3 �8 �7 �6 �5 �4 9 10

Given two permutations � and �, the reversal distance,
d(�,�), is defined as the minimum number of reversals re-
quired to convert one permutation into the other. The study
of reversal distance was pioneered by David Sankoff (Sankoff
1992, Kececioglu and Sankoff 1994), and increasingly effi-

cient polynomial-time algorithms have been developed to
compute the reversal distance (Hannenhalli and Pevzner
1995, Berman and Hannenhalli 1996, Kaplan et al. 1997,
Moret et al. 2000, Bergeron 2001).

The Multiple Genome Rearrangement Problem is to find a
phylogenetic tree describing the most “plausible” rearrange-
ment scenario for multiple species (Hannenhalli et al. 1995;
Sankoff et al. 1996). Formally, given a set of m signed permu-
tations (existing genomes) of order n, find a tree T with the m
permutations as leaf nodes and assign permutations (ancestral
genomes) to internal nodes such that D(T) is minimized,
where

D�T� = �
��,���T

d��,��

is the sum of reversal distances over all edges of the tree. The
special case of three genomes (m = 3) is called the Median
Problem (Fig. 6).

Although the reversal distance for a pair of genomes can
be computed in polynomial time (Hannenhalli and Pevzner
1999), its use in studies of multiple genome rearrangements
was somewhat limited since it was not clear how to combine
pairwise rearrangement scenarios into a multiple rearrange-
ment scenario. In particular, Caprara (1999) demonstrated
that even the simplest version of the Multiple Genome Rear-
rangement Problem, the Median Problem, is NP-hard. As a
result this line of research was later abandoned in favor of the
breakpoint analysis approach, and the existing tools use the
so-called breakpoint distance (Watterson et al. 1982; Nadeau
and Taylor 1984) to derive the rearrangement scenarios. How-
ever, the breakpoint analysis has some limitations in the
analysis of pairwise genome rearrangements (Pevzner 2000).
One of the reasons why the breakpoint distance dominated
the analysis of multiple rearrangements in the last few years is
that it was not clear how to compute the plausible reversal-
based evolutionary scenarios. This paper uses the reversal dis-
tance for computing multiple rearrangement scenarios and
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discusses some advantages of this approach over the break-
point distance approach.

Our algorithm explores the specifics of the reversal dis-
tance and is based on the observation that the reversal dis-
tance is a good approximation of the true distance for many
biologically relevant cases. Let � be a genome that evolved
from a genome � by k reversals (i.e., the true distance between
� and � is k). We say that � and � form a valid pair if d(�,�) =
k; otherwise we say that d(�,�) underestimates the true distance
(Wang and Warnow 2001). Typically two genomes form a
valid pair if the number of rearrangements between them is
relatively small, exactly the case in a number of genome re-
arrangement studies. Figure 1 illustrates that for a genome
with n = 100 markers, the reversal distance approximates the
true distance very well as long as the number of reversals
remains below 0.4n. In many biologically relevant cases (e.g.,
rearrangements of the X chromosome in mammalian spe-
cies), the number of rearrangement events is well below 0.4n.
As a result, the reversal distance often corresponds to valid (or
“almost valid”) pairs of genomes. Therefore the genome-
based evolutionary trees are often additive or “almost addi-
tive” (Buneman 1971). This property allows one to design
new genome rearrangement algorithms that explore the spe-
cifics of additive trees.

Let � and � be the leaves (existing genomes) in the evo-
lutionary tree T and let � = �1,�2, . . . ,�k�1,�k = � be a path
between � and � in T passing through the ancestral genomes
�2, . . . ,�k�1. Define

dT��,�� = �
1�i�k−1

d��i,�i+1�

For a valid pair, dT(�,�) = d(�,�). We define the deficit of � and
� as def(�,�) = dT(�,�) � d(�,�). The deficit of the tree T is
defined as def(T) = � def(�,�) where the sum is taken over all
pairs of leaves. The closer the tree is to being additive, the
smaller the deficit of the tree will be. Many genome-based
trees are “ almost additive;” for example, the herpes virus tree
from Hannenhalli et al. (1995) has deficit 1, while the mtDNA

tree from Sankoff et al. (1996) has deficit 3. Our algorithms are
implicitly based on this observation, and we demonstrate be-
low that they provide an accurate reconstruction of the an-
cestral genomes for trees with small deficit. They use pairwise
genomic distance software as a subroutine implemented by G.
Tesler (Tesler, 2002) and available via the GRIMM web server
of Pavel Pevzner’s laboratory web site http://www-
cse.ucsd.edu/groups/bioinformatics. The multiple genome re-
arrangement software described in this paper is available from
the same web server.

The paper is organized as follows. In the next section, we
review previous work on the Multiple Genome Rearrange-
ment Problem. We then describe a new algorithm to solve the
Multiple Genome Rearrangement Problem for unichromo-
somal genomes. Lastly, we study rearrangements of multi-
chromosomal genomes.

Previous Work
Studies of the Multiple Genome Rearrangement Problem
started from the special case of the Median Problem. That is,
given the gene order of three unichromosomal genomes G1,
G2, and G3, find the ancestral genome A which minimizes the
total reversal distance d(A, G1) + d(A, G2) + d(A, G3). The break-
point analysis (Blanchette et al. 1997; Sankoff and Blanchette
1997) attempts to solve the Median Problem by minimizing
the breakpoint distance instead of the reversal distance. A pair
of elements in permutations � and � form a breakpoint if they
are consecutive in one permutation but nonconsecutive in
the other. The breakpoint distance between two permutations
is simply the number of breakpoints. Blanchette et al. (1997)
and Sankoff and Blanchette (1997) generalized this notion for
the case of more than two genomes.

The drawback of breakpoint analysis is that the break-
point distance, in contrast to the reversal distance, does not
correspond to a minimum number of rearrangement events.
As a result, the breakpoint median, recovered by breakpoint
analysis, rarely corresponds to the ancestral median, the ge-
nome that minimizes the overall number of rearrangements
in the evolutionary scenario. Our simulations demonstrate
that in many cases the ancestral median correctly reconstructs
the ancestral genome. Another problem with breakpoint
analysis is that it is not clear how to adapt it to multichro-
mosomal genomes.

To illustrate the drawbacks of the breakpoint analysis,
consider the following simple example. Suppose that the ge-
nomes G1, G2, and G3 evolved from the ancestral genome A =
1 2 3 4 5 6 by one reversal each such that

G1 = 1 2 −4 −3 5 6
G2 = 1 −4 −3 −2 5 6
G3 = 1 2 3 4 −5 6.

Searching for the breakpoint median will produce 4 optimal
solutions. A, but also G1, G2, and G3. If the median is A, then
we have two breakpoints on each edge of the tree for a total of
six. But if the median is any of the three genomes, we also get
a total of 6 = 0+3+3 breakpoints. Hence, in this simple case,
the breakpoint median fails to unambiguously identify the
ancestor. Conversely, the only solution for the ancestral me-
dian is A since it is the only permutation generating a tree
with a total score of three reversals.

This paper studies the ancestral median problem because
it appears to be more biologically accurate than the break-
point median. Initial attempts to recover the ancestral me-

Figure 1 Reversal distance, d(��), versus actual number of reversals
performed to transform � into �, where � is a genome/permutation
that evolved from the identity permutation � = 1,2, . . . ,100 by k
random reversals. The simulations were repeated 10 times for every k.
We compute the average difference between the reversal distance
and the actual number of reversals performed (k).
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dian were made by Hannenhalli et al. (1995) and Sankoff et al.
(1996), who came up with approaches that may work well for
three close genomes. However, it is not clear how to general-
ize their approaches for more than three genomes. In particu-
lar, Hannenhalli et al. (1995) were successful in reconstruct-
ing a genome rearrangement scenario for three herpesviruses
but failed to resolve a very complicated dataset of 13 Cam-
panulaceae cpDNAs with 105 markers (the comparative maps
were constructed by Mary Beth Cosner and colleagues in the
early 1990s). The variety of rearrangements in these flowering
plants far exceeds that reported in any group of land plants,
thus making this dataset a challenging problem for any ge-
nome rearrangement study.

The first relatively large dataset of rearranged genomes
was studied by Blanchette et al. (1999), who used BPAnalysis,
the original implementation of breakpoint analysis (Blan-
chette et al. 1997), to analyze 11 metazoan mtDNA with 35
markers. As for the Campanulaceae problem, it remained un-
solved for almost ten years until Cosner et al (2000a,b) im-
proved on BPAnalysis and constructed a rearrangement sce-
nario with 67 reversals. Recently, Moret et al. (2001) devel-
oped the software GRAPPA, which further improved on
BPAnalysis. Finally, in a recent breakthrough, Moret et al.
(2001) described a million-fold speedup over GRAPPA and
reevaluated the Campanulaceae rearrangement scenario. Their
analysis returned 216 trees with reversal distance 67, com-
pared to only four such trees in the previous analysis. Our
MGR algorithm described below improves on this recent re-
sult by generating a rearrangement scenario with only 65 re-
versals that was overlooked by Moret et al. (2001).

Multiple Genome Rearrangement Problem

Algorithm
We first explain the idea of our algorithm for the case of three
genomes. Our algorithm evaluates all possible reversals for
each of the three genomes, identifying good reversals. Intu-
itively, a reversal is good if it brings a genome closer to the
ancestral genome. Of course, the ancestral genome is un-
known and therefore it is unclear how to find good reversals.
However, we argue (and confirm by simulations) that the re-
versals which bring G1 closer to both G2 and G3 are likely to be
good reversals. If this is correct, then we don’t need the an-
cestral genome to find good reversals. We then carry on good
reversals in the genomes G1, G2, and G3 in the hope that they
will bring us closer to the ancestor, and iterate until the ge-
nomes G1, G2, and G3 are transformed into an identical ge-
nome (converge to the ancestor A). Ideally, at this point, we
have reached the most likely ancestral median. Of course, this
approach works well only for “almost additive” trees with
small deficit, and we argue that it is the case for many bio-
logically interesting samples.

A good reversal � in genome G1 is a reversal that reduces
the reversal distance between G1 and G2 and the reversal dis-
tance between G1 and G3. Define 	(�) as the overall reduction
in the reversal distances:

	��� = �d�G1, G2� + d�G1, G3�� − �d�G1 � �, G2� + d�G1 � �, G3��

The reversal � is good if 	(�) = 2. Good reversals in genomes G2

and G3 are defined similarly.
The idea of our algorithm is embarrassingly simple: look

for good reversals in G1, G2, and G3 and perform them (if there
are any) until each of the genomes is turned into the same

ancestral genome. In many cases (in particular for additive
trees), good reversals are sufficient to bring all three genomes
to the ancestor. We call an instance of the median problem
that can be resolved using only good reversals a perfect triple.
If we run out of good reversals before the three genomes con-
verge to the ancestor, we relax our definition of good rever-
sals.

This approach leaves room for some flexibility. Often
there is a variety of good reversals and it is not clear which one
to choose. For example, the list of good reversals often con-
tain nonoverlapping reversals �(i1,j1) and �(i2,j2) with i1 � j1 <
i2 � j2, and the order in which these reversals are performed is
often irrelevant. Our objective is to choose good reversals in
such a way that we don’t run out of good reversals until all
three genomes converge to the ancestor. One way to address
this problem is to test all pairs/triples/ . . . of reversals in order
to avoid reversals that would cause us to run out of good
reversals in a few steps. We also use a heuristic to choose the
best reversal from the list of good reversals. The heuristic is
based on an observation that good reversals, if carried out in
the correct order, should not affect most of the other good
reversals that are available. Hence, for each good reversal �, we
compute n�, the number of good reversals that will be avail-
able if � is carried out. The heuristic picks the good reversal �

with the maximal np as the best reversal, the reversal to be
carried out. We implemented these procedures in a program
called MGR-MEDIAN, and it turned out to work well in prac-
tice.

In some cases, no good reversal will be available; that is,
	(�) < 2 for all reversals � in each of the three genomes. In
those situations, the best reversal will be the result of a depth
k search minimizing the total pairwise reversal distances. Sup-
pose we have a sequence of k reversals �1, �2 . . . �k to be ap-
plied to G1. Define

	��1, �2, . . . , �k� = d�G1, G2� + d�G1, G3�
− �d�G1 � �1 � � � �k, G2�
+ d�G1 � �1 � � � �k, G3��.

Let

	 = max 	��1, �2, � � � , �k�
�1, � � � ,�k

and �̂1, . . . ,�̂k be a sequence of reversals achieving this maxi-
mum. 	 then corresponds to the maximal reduction in the
reversal distance after the depth k search. The best reversal in
G1 will be the first reversal of the sequence, that is, �̂1 (the best
reversals in G2 and G3 are defined similarly). When no good
reversal is available, the reversal that will be carried out by
MGR-MEDIAN will be the result of this search.

The depth k search should be taken with caution when
one of the genomes is already within distance less than k from
the ancestor. In this case we consider k reversals �1, �2, . . . ,�k,
where the first x reversals are applied to G1, the next y rever-
sals are applied to G2, and the remaining k � x � y reversals
are applied to G3, and maximize the function

	��1�2, � � � , �k� = d�G1, G2� + d�G1, G3� + d�G2, G3�
− d�G1 � �1 � � � �x, G2 � �x+1 � � � �x+y�
− d�G1 � �1 � � � �x, G3 � �x+y+1 � � � �k�
− d�G2 � �x+1 � � � �x+y, G3 � �x+y+1 � � � �k�.

Now consider the case of m > 3 genomes G1, G2, . . . , Gm.
We generalize the previous definition of good reversal in Gi to
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be any reversal that reduces the reversal distance from Gi to all
other genomes. We define 	(�) once again as the reduction in
the reversal distances:

	��� = �
j
i

d�Gi, Gj� − �
j
i

d�Gi � �, Gj�

A good reversal � in genome Gi is now a reversal with 	(�) = m
� 1. We iteratively carry on good reversals until any two of m
genomes become identical. When we reach that point, we
remove one of the two genomes and start the procedure again
with m � 1 genomes. We keep removing genomes until we
are back to solving the median problem.

In many cases, especially when m is large, we will run out
of good reversals before converging to the ancestral genome.
In such cases, we have developed a heuristic to complete the
recovery of the phylogeny. The heuristic relies on the MGR-
MEDIAN program for three genomes described in the previ-
ous section. Starting from the three closest genomes (in terms
of the reversal distance), it iteratively adds one more genome
to reconstruct the full phylogeny. Whenever possible, we
choose the genome that is the “closest” to the partially recon-
structed tree and such that it also forms a perfect triple with the
two endpoints of one of the edges in the tree. We seek the
closest genomes first because, as we describe below, the closer
the genomes, the more accurate the ancestor produced by
MGR-MEDIAN.

Assume that genomes G1, G2, . . . , Gl are already in-
cluded in the tree T that corresponds to the partially recon-
structed phylogeny. The problem of adding genome Gl+1 to T
corresponds to identifying the edge of T that should be split
by the edge leading to Gl+1. We call that edge the split edge.
The heuristic once again uses a simple greedy ap-
proach to find the split edge. For each edge (u, v) in
T, compute M = M (u, v, Gl+1), the median of u, v,
and Gl+1. The cost of adding Gl+1 to this edge, C(u,
v), is the total reversal score of the median less the
reversal distance between u and v (the score of the
edge being removed). Formally,

C�u, v� = d�u, M� + d�v, M� + d�Gl+1, M� − d�u, v�

The split edge on which to add Gl+1 is then the one
with the smallest cost. Putting all these steps to-
gether, we get the algorithm MGR.

The described algorithms rely on our ability
to find good reversals. Instead of computing 	(�) for
all possible reversals while looking for good rever-
sals, we have implemented a speedup making the
algorithms more computationally efficient. The
speedup makes use of the concept of conserved ad-
jacency. We call an ordered pair of markers, (x, y),
a conserved adjacency if (x, y) or its inverse (�y, �x)
is present in all genomes as consecutive elements.
When looking for good reversals, we only consider
reversals that do not break any conserved adjacency.
The justification behind this shortcut comes from
a result of Hannenhalli and Pevzner (1996) and a
theorem recently proved by Glenn Tesler (pers.
comm.).

Tests

Simulated Data
We compared our MGR algorithm to the two
implementations of breakpoint analysis: BPAnaly-

sis (Blanchette et al. 1997) and GRAPPA (Moret et al. 2001).
Our initial tests showed that these two programs were pro-
ducing nearly identical results, and so we decided to include
only results from GRAPPA, because it was a more efficient
implementation. When testing the algorithm, we are inter-
ested not only in the phylogeny that we recover but also in
the correct labeling of the internal (ancestral) nodes.

We used the following simulated data for benchmarking.
Starting from the identity permutation A with n genes/
markers, we performed k reversals to get genome G1, k to get
G2, and k to get G3. We used the resulting three permutations
as the input to MGR-MEDIAN and GRAPPA and checked
whether they reconstructed the ancestral identity permuta-
tion.

Figure 2a,b shows the difference between the total rever-
sal distance D(T) of the tree recovered by the algorithm and
the actual number of reversals (equal to 3k). Figure 2c,d shows
the reversal distance between the ancestral permutation re-
covered by the algorithm and the actual ancestor, the identity
permutation. The tests are conducted for various ratios r =
#reversals/#markers.

Both GRAPPA and MGR-MEDIAN produce very similar
solutions for r < 0.20. But as the ratio r increases, GRAPPA
starts making errors. In contrast, MGR-MEDIAN persists in
finding correct solutions and in some cases find solutions that
even have fewer reversals than the actual ancestor. The issue
here is that as the ratio r increases, the assumption that the
ancestor corresponds to the most parsimonious scenario
sometimes fails. In Figure 2c,d we see that as the ratio r in-
creases, both algorithms start having difficulty recovering the
actual ancestor, with the solution produced by GRAPPA fur-

Figure 2. Comparison of MGR-MEDIAN and GRAPPA (three genomes equidistant
from the ancestor). The genomes G1, G2, G3 are obtained by k reversals each from the
ancestral identity permutation 1 2 . . . n (n = 30 and n = 100). The simulations were
repeated 10 times for every ratio #reversals/#markers = 3k/n. (a) and (b) show the
average difference between the number of reversals on the tree recovered by the
algorithm and the number of reversals on the actual tree (equal to 3k). (c) and (d)
show the average reversal distance between the solution recovered and the actual
ancestor.
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ther away on average than the ancestor pro-
duced by MGR-MEDIAN.

Figure 3 presents the results of similar ex-
periments with nonequidistant genomes start-
ing from the identity permutation A and per-
forming k, k, and 2k random reversals to obtain
G1, G2, and G3. Once again, GRAPPA starts fail-
ing to recover the optimal solution at r > 0.20,
while MGR-MEDIAN keeps finding the true an-
cestor.

We tested the performance of MGR for
four and more genomes using a similar setup.
First, we considered a small tree with four ge-
nomes as leaves and two internal (ancestral)
nodes. For simplicity, we picked one of the an-
cestral nodes to be the identity permutation.
We then randomly simulated k reversals on
each branch of the tree. We used the resulting
four leaves of the tree as the input for MGR and
GRAPPA and calculated the difference between
the total reversal distance of the tree recovered
with the actual number of performed reversals
equal to 5k (Fig. 4a,b). We also calculated how
close the solutions recovered would get of the
true ancestral permutation (the identity permu-
tation). Since in each solution there are two
internal nodes, we picked the one that is closer
to the identity and recorded the reversal dis-
tance between it and the identity permutation
(Fig. 4c,d).

Finally, to see the effect of adding more
genomes, we constructed larger complete un-
rooted binary trees and simulated k random re-
versals on each branch. To obtain a sample in-
put with m genomes that we would feed into
MGR and GRAPPA, we simulated the smallest
complete binary tree such that the number of
leaves was larger than m and randomly removed
the extra leaves. The results in Figure 5 show the
difference between the total reversal distance of
the tree recovered and the total reversal distance
of the simulated tree. Note that it is difficult to
use the ratio r = #reversals/#markers here as it
changes depending on the size of the tree. For
example, when k = 1, if m is 4 then r = 5/30 ≈
0.167, but if m is 8 then r = 13/30 ≈ 0.433, and
if m is 16 then r = 27/30 = 0.9. Unfortunately,
running GRAPPA on more than 10 genomes
turned out to be impossible on our worksta-
tions, as the tree space was too large. The only
way to get around this problem would have
been to suggest a tree topology to GRAPPA
(which is exactly what we are trying to recover
in the first place). However, even if we did sug-
gest the actual tree topology to GRAPPA, we
would still get an average score difference of 7.3
for n = 30 and of 19.1 for n = 100.

Herpesvirus Data
Hannenhalli et al. (1995) used herpesvirus gene
orders as a test case for one of the first studies on
the Multiple Genome Rearrangement Problem.
They developed a rather elaborate method to
solve a relatively simple instance of the median

Figure 3. Comparison of MGR-MEDIAN and GRAPPA (three genomes nonequidistant
from the ancestor). The genomes G1, G2, and G3 are obtained by k, k, and 2k reversals,
respectively, each from the ancestral identity permutation 1 2 . . . n (n = 30 and n = 100).
The simulations were repeated 10 times for every ratio #reversals/#markers = 4k/n. (a)
and (b) show the average difference between the number of reversals on the tree recovered
by the algorithm and the number of reversals on the actual tree (equal to 4k). (c) and (d)
show the average reversal distance between the solution recovered and the actual ancestor.

Figure 4. Comparison of MGR and GRAPPA (four genomes). We start from an un-
rooted tree with four leaves and select one of the two internal nodes to be the identity
permutation 1 2 . . . n (n = 30 and n = 100). We then perform k reversals on each branch
of the tree to obtain the genomes G1, G2, G3, and G4 as the four leaves of the tree. The
simulations were repeated 10 times for every ratio #reversals/#markers = 5k/n. (a) and (b)
show the average difference between the number of reversals on the tree recovered by
the algorithm and the number of reversals on the actual tree (equal to 5k). (c) and (d)
show the average reversal distance between the best (i.e., closest) internal node in the
solution recovered and the identity permutation.
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problem for Herpes simplex virus (HSV), Epstein-Barr virus
(EBV), and Cytomegalovirus (CMV) (Fig. 6a). As the authors
themselves pointed out, the method used would not be ap-
plicable to more complex problems and new algorithms
would be required. The optimal solutions recovered involved
seven reversals. The ratio of #reversals/#markers in this ex-
ample is: r = 7/25 = 0.28. Our simulations indicate that MGR-
MEDIAN typically reconstructs the correct scenario with such
ratios, whereas GRAPPA typically fails for r > 0.2.

We tested both MGR-MEDIAN
and GRAPPA on these three herpes-
viruses to see whether they would
recover the ancestral genome sug-
gested by Hannehalli et al. (1995).
MGR-MEDIAN found this genome
and reconstructed the rearrange-
ment scenario with seven reversals
(Fig. 6b) even though it did not cor-
respond to a perfect triple. In con-
trast, GRAPPA returned a subopti-
mal solution with eight reversals.
Actually, the ancestor suggested by
GRAPPA was the genome HSV it-
self, indicating the problem with
the breakpoint distance described
earlier.

Human, Fruit Fly, and Sea Urchin
mtDNA Data
Sankoff et al. (1996) analyzed hu-
man, sea urchin, and fruit fly
mtDNA to derive the ancestral gene
order. Using MGR-MEDIAN, we

found the ancestral gene order A with a total re-
versal distance of 39 (Fig. 7). The solution is dif-
ferent from the ones found by Sankoff et al., but
the total reversal distance is the same. The ratio of
#reversals/#markers for this data set is r = 39/33 ≈
1.18, an indication of a difficult problem. Running
GRAPPA on these genomes, we obtained a solu-
tion that has a total reversal distance of 43.

Metazoan mtDNA Data
Blanchette et al. (1999) used BPAnalysis in the re-
arrangement study of 11 metazoan mtDNAs. The
genomes come from six major metazoan group-
ings: nematodes (NEM), annelids (ANN), mollusks
(MOL), arthropods (ART), echinoderms (ECH),
and chordates (CHO). They were originally se-
lected by those authors to provide the analysis
with exemplar of the most diverse members of
each group. The two “optimal” phylogenies recov-
ered in their study had 199 breakpoints.

We studied the same dataset with MGR and
GRAPPA and used the curated gene order data of
the 11 genomes from the MGA Source Guide com-
piled by Jeffrey L. Boore http://www.jgi.doe.gov/
programs/comparative/MGA_Source_Guide.html.
After removing two genes that were not shared by
all mtDNA, we were left with a common set of 36
genes. MGR recovered a phylogeny with 150 re-
versals (Fig. 8). The tree space for 11 genomes is
very large, and searching it exhaustively with
GRAPPA is very time consuming. After 48 hours

on a workstation, GRAPPA had recovered three “optimal”
trees with 175 reversals and 200 breakpoints. Even suggesting
the topology found by MGR to GRAPPA would only produce
a fourth tree with 175 reversals.

The tree recovered by MGR is closely related to one of the
optimal trees described in the study by Blanchette et al.
(1999). The weak association of Katharina tunicata with the
mollusks was already discussed by those authors. Apart from
this and from the weak grouping of the two arthropods, the

Figure 6. Herpes simplex virus (HSV), Epstein-Barr virus (EBV), and Cytomegalovirus (CMV) gene
orders (Hannenhalli et al. 1995) as well as the ancestral gene order (A) and optimal evolutionary
scenario recovered by MGR-MEDIAN.

Figure 5. Comparison of MGR and GRAPPA (m genomes each with 30 markers).
The genomes G1,G2, . . . ,Gm correspond to a subset of leaves from a complete un-
rooted binary tree on which we have performed k reversals on each branch. The
simulations were repeated 10 times for every m. (a) and (b) show the average differ-
ence between the number of reversals on the tree recovered by the algorithm and the
number of reversals on the actual tree when k = 2 and k = 3, respectively.
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induced phylogeny also agrees with the metazoan phylogeny
proposed by Boore and Brown (2000); the nematodes and
echinoderms were not discussed in that paper. We note that
Blanchette et al. (1999) obtained their tree in a semiauto-
mated regime by making a selection between the potential
phylogenies and disregarding the ones breaking any one of
the six metazoan groupings. Although such assumptions
about the data were not included in MGR, it did not prevent
it from the discovery of a very similar tree in a fully automated
fashion (Fig. 8). Rooted differently, we see that the nematodes
are a late-branching sister taxon of the annelids which is the
same as in Blanchette et al. (1999). The deuterostomes (chor-
date and echinoderm) association was successfully identified
in both Blanchette’s 1999 study and in the tree from MGR but
not in any of the first three trees produced by GRAPPA (ex-
cluding the one we suggested as a constraint).

Campanulaceae cpDNA Data
We analyzed the Campanulaceae Chloroplast dataset with 13
cpDNAs and 105 markers. It is one of the most challenging
genome rearrangement datasets studied by Cosner et al.
(2000a,b) and Moret et al. (2001). The tree space for 13 ge-
nomes is too large and cannot be searched exhaustively by
GRAPPA. To analyze the tree space in this case, those two
groups of authors described various techniques to obtain con-
straint trees to suggest to the program. GRAPPA then searched
the space of refinements of these constraint trees trying to
minimize the total number of reversals. Moret et al. (2001)

recovered 216 trees with a total of 67 reversals. GRAPPA was
not able to decide which of those trees corresponds to the
most likely reconstruction of the rearrangement scenario.

Running MGR on the same data set did not require the
preprocessing of a constraint tree and recovered a tree with
only 65 reversals, shown in Figure 9. The topology of the tree
recovered actually corresponds to the topology of one of the
trees recovered by GRAPPA, but the labeling of the internal
nodes differs. Because our tree minimizes the number of re-
versals, we argue that MGR provided a better reconstruction
of the rearrangement scenario compared to GRAPPA.

Reconstructing Ancestral Gene Orders
for Multichromosomal Genomes

Algorithm
Consider three multichromosomal genomes G1, G2, and G3.
The median problem is to find the ancestral genome A which
minimizes the total genome distance d(A,G1) + d(A,G2) +
d(A,G3). The genomic distance in this case is defined in terms
of reversals, translocations, fusions, and fissions, the most most
common rearrangement events in multichromosomal ge-
nomes (Pevzner 2000).

Let � = �1 . . . �n be a chromosome in a multichromo-
somal genome and 1 � i � j � n. A reversal �(�,i,j) rearranges
the genes inside � and transforms it into �1 . . . �i�1 � �j �

�j�1 . . . � �i �j+1 . . . �n. Let � = �1 . . . �n and � = �1 . . . �m

be two different chromosomes and 1 � i � n
+ 1 and 1 � j � m + 1. A translocation
�(�,�,i,j) exchanges genes between chromo-
somes � and � and transforms them into
chromosomes �1 . . . �i�1�j . . . �m and
�1 . . . �j�1�i . . . �n. A fusion concatenates
the chromosomes � and �, resulting in a
chromosome �1 . . . �n�1 . . . �m. A fission
“breaks” a chromosome � into two chromo-
somes, �1 . . . �i�1 and �i . . . �n.

Given two genomes � and �, the ge-
nomic distance, d(�,�), is defined as the
minimum number of reversals, transloca-
tions, fusions, and fissions required to con-
vert one genome into the other. The ge-
nomic distance was first studied by Hannen-
halli and Pevzner (1995), who developed a
polynomial-time algorithm to compute a re-
arrangement scenario between human and
mouse involving 131 rearrangements.

The MGR-MC algorithm is a generali-
zation of the MGR-MEDIAN algorithm for
unichromosomal genomes. First, we evalu-
ate all possible rearrangements (reversals,
translocations, fusions, and fissions) for
each of the three genomes, identifying good
rearrangements. As in the section on Tests
above, a rearrangement is good if it brings a
genome closer to the ancestral genome. We

Figure 7. Human, sea urchin, and fruit fly mitochondrial gene order taken from Sankoff et al. (1996). A is the ancestral gene order suggested
by MGR-MEDIAN.

Figure 8. Phylogeny of 11 metazoan genomes reconstructed by MGR. The gene order data
is taken from the MGA Source Guide compiled by Jeffrey L. Boore. The genomes come from
6 major metazoan groupings: nematodes (NEM), annelids (ANN), mollusks (MOL), arthro-
pods (ART), echinoderms (ECH), and chordates (CHO). Numbers show the number of re-
versals.
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will argue once again that the rearrange-
ments which bring G1 closer to both G2

and G3 are likely to be good. We itera-
tively carry on these good rearrange-
ments until the genomes G1, G2, and G3

are transformed into an identical ge-
nome, hoping that we have reached the
most likely ancestral median.

Since we are dealing with multi-
chromosomal genomes and with four
different types of rearrangements, we
need to be aware of an ambiguous situ-
ation that can occur when solving the
median problem. Consider the follow-
ing simple example:

G1 = 1 2 3 4 5

G2 = 1 2 �5 �4 �3

G3 = 1 2

3 4 5

In this example, the parsimony principle
does not allow one to unambiguously re-
construct the evolutionary scenario. If
the ancestor coincides with G1, then a
reversal occurred on the way to G2 and a
fission occurred on the way to G3. But
we could also have a similar scenario
starting from G2 as the ancestor or even
starting from G3 if we assume that two
fusions occurred. In this example,
d(G1,G2) = d(G1,G3) = d(G2,G3) = 1. We
did not have this kind of ambiguity for
unichromosomal genomes because it
was impossible to find three genomes
that would all be within one reversal of

each other. These ambiguities motivate a more careful selec-
tion within the good rearrangements. We use the observation
that in most genomes of interest (e.g., mammalian genomes),
reversals and translocations are more common than fusions
and fissions. When looking for the best rearrangement to be
carried out within the good rearrangements, we always select
reversals/translocations before fusions/fissions. If we run out
of good reversals before reaching a solution, the best rear-
rangement will be the result of a depth k search minimizing
the total pairwise rearrangement distances. Putting all these
steps together we get the MGR-MC algorithm for multichro-
mosomal genomes that is easy to generalize for more than
three multichromosomal genomes.

Tests

Simulated Data
We used the following simulations to test the performance of
MGR-MC. Starting from the identity permutation A of size n,
we first randomly selected b chromosome breaks to simulate a
multichromosomal ancestor. Next, to transform A into Gi (1
� i � 3), we performed k rearrangements where each rear-
rangement was randomly assigned to be a reversal/
translocation with probability p and a fusion/fission with
probability 1 � p. We used the resulting three genomes as the
input for MGR-MC. We are interested in the difference be-
tween the score (total number of rearrangements) of the so-

Figure 9. Phylogeny of the Campanulaceae cpDNA dataset as re-
constructed by MGR. Numbers show the number of reversals.

Figure 10. Performance of MGR-MC (three multichromosomal genomes equidistant from the
ancestor). The ancestral genomes are obtained from the identity permutation 1 2 . . . n (n = 30
and n = 100) by inserting b chromosomes breaks (b = 2 when n = 30 and b = 9 when n = 100).
The genomes G1, G2, and G3 are obtained by k rearrangements each from the ancestral genomes.
Each rearrangement is a reversal/translocation with probability p and a fusion/fission with prob-
ability 1 � p. The simulations were repeated 10 times for every ratio #rearrangements/#markers
= 3k/n. We compute the average score difference, which is the difference between the number of
rearrangements on the tree recovered by the algorithm and the actual number of rearrangements
(equal to 3k). We also compute the average distance of solution between the solution recovered
and the actual ancestor.
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lution recovered by the algorithm and the actual score of the
simulated tree (equal to 3k). We are also interested in the
rearrangement distance between the ancestral genome recov-

ered by the algorithm and the actual ancestor. The tests are
conducted for various ratios of r = #rearrangements/#markers.

Figure 10 illustrates that MGR-MC has no difficulty re-

Figure 11. Ancestral median for human, mouse, and cat genomes found by MGR-MC. We used the gene order of 114 markers spread over the
chromosomes in all three species. The numbers above the chromosomes correspond to these 114 markers, and the numbering is such that the
human genome corresponds to the identity permutation broken into 20 pieces. The names below the chromosomes correspond to the name of
the markers. We attribute a color to each human chromosome. The color of any marker (in any genome) indicates the human chromosome on
which the homolog of this marker lies. Each marker segment is traversed by a diagonal line. These diagonal lines are such that the human
chromosomes are traversed from top left to bottom right and are designed to provide visual help to identify where rearrangements occurred. For
example, for chromosome X, the gene order of the ancestor coincides with the cat gene order and only differs by one segment consisting of genes
108 and 109 (break in the diagonal line) from the human gene order. The mouse X chromosome is broken into 7 segments compared to the
ancestor (shown by seven broken segments of the diagonal line).
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covering ancestral genomes with a score which is at least as
good as the one of the actual ancestor. Actually, in all the tests
conducted, not once was the solution produced by MGR-MC
worse than the true ancestor. The solutions produced for
small ratios r = #rearrangements/#markers tend to be very
close to the actual ancestor. But, as the ratio r increases, we see
the same effect as for unichromosomal genomes: MGR-MC
starts finding solutions with a genomic distance which is
smaller than the true number of rearrangement events. As a
result, the average distance between the solution recovered
and the true ancestor increases. The comparison of Figure
10a–d illustrates that the accuracy of reconstructions deterio-
rates with the increase in the rate of fusions/fissions.

Gene Order of the Human-Cat-Mouse Common Ancestor
The modern comparative mapping studies generated a wealth
of data on differences in genomic organization for many
mammalian species. However, most existing comparative
maps are pairwise maps representing genome organization of
two species rather than multiple maps representing the ge-
nomic organization for more than two species. Since the
number of established universal markers (O’Brien et al. 1999)
that work across many genomes is relatively small, it is often
not clear how to integrate pairwise comparative maps into
multiple maps. The first sufficiently detailed triple compara-
tive maps appeared recently as the results of rat (Watanabe et
al. 1999) and cat (Murphy et al. 2000) comparative mapping
projects. We collaborated with Bill Murphy to integrate the
pairwise human-mouse, human-cat, and mouse-cat compara-
tive maps into a triple human-mouse-cat map, and we use this
map for deriving the ancestral genome organization.

The previous attempts to derive rearrangement history of
multichromosomal genomes concentrated on human and
mouse genomes (Nadeau and Taylor 1984; Hannenhalli and
Pevzner 1995). The cat data used in this paper comes from
Murphy et al. (2000) and consists of 193 markers shared by all
three species. The number of markers is still too small to de-
rive a detailed rearrangement scenario, but it allows one to get
some insights into a large-scale organization of the ancestor.
Ultimately, this organization may be refined with MGR-MC as
soon as more markers shared by all three species become
available.

Comparative maps usually correspond to unsigned per-
mutations; that is, no information on the direction (signs) of
the genes/markers is available. Since mammalian comparative
maps contain many singletons (Pevzner 2000) the existing al-
gorithms for analyzing unsigned permutations become too
time-consuming in this case. As a result, we have to assign an
orientation to the markers, since the current implementation
of MGR-MC only supports signed permutations/genomes. Ul-
timately, this should not be a problem as more data become
available. We used strips in unsigned permutations (Hannen-
halli and Pevzner 1996) to infer the signed permutations from
the original unsigned permutations. Using the human ge-
nome as a reference, we first identified all the strips in both
the cat and mouse genomes. We then assigned an orientation
to the markers based on these strips. Any marker for which we
could not assign an orientation using this method in either
the cat or mouse genome was removed, and we were left with
a common set of 114 markers. This process obviously inserts
a bias towards blocks of preserved markers, while removing
information about more local disruptions, for example, single
marker reversals. The resulting ancestral gene order generated
by MGR-MC is shown in Figure 11. Although most of the

elements of the ancestral organization in Figure 11 are con-
sistent with the existing biological conjectures, the organiza-
tion of ancestral chromosomes 4 and 17 is surprising and even
counterintuitive. According to our scenario, the chromo-
somes 4 and 17 in the ancestor were combined into chromo-
some 5 in human and chromosome A1 in cat. We do not
argue that it is a correct reconstruction of the ancestral chro-
mosomes 4 and 17 (more markers are needed to support this
conjecture) but remark instead that MGR-MC provided us
with solid combinatorial reasons why such a scenario makes
sense. Such reasons are not straightforward and are hard to
explain without the multichromosomal genome rearrange-
ment software that was not available to evolutionary biolo-
gists in the past. Therefore, the non-trivial combinatorial ar-
guments used by MGR-MC in the construction of Figure 11
may have escaped the attention of biologists who studied this
problem in the past. The detailed biological analysis of our
human-mouse-cat ancestral reconstruction will be discussed
in another paper (joint project with Bill Murphy).
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