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Large scale gene perturbation experiments generate information about the number of genes whose activity is
directly or indirectly affected by a gene perturbation. From this information, one can numerically estimate
coarse structural network features such as the total number of direct regulatory interactions and the number of
isolated subnetworks in a transcriptional regulation network. Applied to the results of a large-scale gene
knockout experiment in the yeast Saccharomyces cerevisiae, the results suggest that the yeast transcriptional
regulatory network is very sparse, containing no more direct regulatory interactions than genes. The network
comprises >100 independent subnetworks.

Estimating the coarse structure of genetic networks is neces-
sary to solve a wide variety of problems in genome biology.
These range from network reconstruction—reconstruction
would be straightforward for some network architectures, but
excruciating for others (Weaver et al. 1999; Ideker et al. 2000;
Wagner 2001a)—to a plethora of open biological questions
that eluded pregenomic biology. They regard the degree to
which genes have pleiotropic effects, the modularity of ge-
netic networks, and the amount of cross-talk in biochemical
pathways. But estimating coarse genetic network structure
has a catch: How does one characterize a network’s structure
before having reconstructed the network? I propose a statis-
tical solution to this problem. Like most statistical approaches
it has a caveat: It requires assumptions about network fea-
tures, assumptions that cannot be rigorously validated until a
network is completely reconstructed.

Before introducing this approach, I need to introduce
some terminology. For the purpose of this paper, I define a
genetic network as a group of genes in which individual genes
can change the activity of other genes. What, then, is a
change in gene activity? It might include changes in gene
expression (on the mRNA or protein level), methylation state,
phosphorylation state, or alternative splicing. I will restrict
myself here to mRNA expression as measured by microarrays
(Lockhart and Winzeler 2000) as the notion of gene activity
and its change in response to a genetic perturbation. How-
ever, the principal idea applies to any notion of gene activity.
When manipulating a gene that affects the activity of other
genes, whether by mutation, overexpression, or any other
means, one can ask whether this effect is due to a direct or an
indirect interaction. For example, when overexpressing a
transcription factor X, I might find that the expression level
of genes A and B change. On further investigation, I may find
that X binds the upstream regulatory region of A and up-
regulates its expression. This is what I call a direct effect of X
on A. However, in the case of B, I might find that X induces
the expression of a protein phosphatase that dephosphory-
lates and thus inactivates a transcriptional repressor of B. This
is what I call an indirect effect of X on B.

What is the most useful mathematical representation to
estimate the coarse structure of a genetic network? Candidate
representations include differential equation models (Reinitz
1995, 1999; von Dassow et al. 2000), Boolean switching net-
works (Kauffman 1967; Somogyi et al. 1997; Dhaeseleer et al.
2000; Ideker et al. 2000), and graph models. The first class of
models requires a detailed network wiring diagram and infor-
mation on many biochemical parameters. It is aimed at de-
scribing gene activity dynamics and, therefore, has too high a
level of resolution for my purpose. Switching networks as-
sume either that genes can only be in one of two states, on or
off. Although cooperative gene interactions are pervasive in
gene regulation, the limiting case of discrete switch-like regu-
lation may be the exception rather than the rule. This is evi-
dent from numerous microarray studies of genetic networks
(Chu et al. 1998; Spellman et al. 1998; Iyer et al. 1999), where
thousands of genes show continuous—not discrete—mRNA
expression changes in response to environmental and genetic
changes.

Lastly, a graph model requires only information on
which genes affect each other directly in their activity. Its low
level of resolution is ideal for my purpose, especially given the
inherent noise of the gene expression data I will be using.
More specifically, I will use a directed graph or digraphmodel,
which is a mathematical object consisting of nodes and di-
rected edges. In a graph representation of a genetic network,
the nodes of the graph correspond to genes, and two genes,
say gene 1 and gene 2, are connected by a directed edge (an
arrow, 1→2) if gene 1 influences the activity of gene 2 directly.
Figure 1A shows a graph representation of a hypothetical ge-
netic network of 21 genes. Figure 1B shows an alternative
representation of the network shown in 1A. For each gene i,
Figure 1B contains a list of genes whose activity is directly
influenced by gene i. One might also call this the list of direct
regulatory interactions. It completely defines the structure of
the graph.

Genetic perturbation experiments cannot distinguish di-
rect from indirect interactions. That is, when perturbing a
gene in the network shown in Figure 1A, one would identify
all genes that this perturbation affects directly or indirectly as
its effects ripple through the network. For the hypothetical
network of Figure 1, the genes affected by perturbing a gene
are shown in the list of Figure 1C. This list can be obtained
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from Figure 1A by following all paths of arrows starting at a
perturbed gene.

In the context of this representation, I am asking the
following question. When given information on the number
of genes whose activity changes—directly or indirectly—
through a genetic perturbation, can one say anything about
the structure of the underlying graph, the underlying genetic
network? That is, given information like that in Figure 1C,
can one say anything about the structure of the network as
defined in Figure 1A and B? The answer is yes, if one is willing
to make assumptions about coarse statistical features of a ge-
netic network. (Any large genetic network has such features,
the question is just what they are.)

RESULTS
In the absence of other information, the most parsimonious

assumption about the distribution of direct interactions in
the graph is that of a random graph with a given number of
edges, where any two nodes are equally likely to be connected
by an edge. Such graphs are known as Erdős-Rényi (ER) ran-
dom graphs (Bollobás 1985). Recent analyses on cellular cir-
cuits as diverse as metabolic networks (Fell and Wagner 2000;
Jeong 2000; Wagner and Fell 2001) and a microbial protein
interaction network (Wagner 2001b) show that these cellular
networks share commonalities with ER random graphs, such
as their short path lengths. However, a conspicuous deviation
regards the distribution of the number of direct interactions
per node in these networks. In the ER model, this number
follows a Poisson distribution. However, in the studied cellu-
lar networks this number follows a broad-tailed power law
distribution, where the likelihood that a randomly chosen
node from the network has d direct interactions is P(d) � d��

(1.5 < � < 2.5) (Fell and Wagner 2000; Jeong 2000; Wagner
and Fell 2001; Wagner 2001b). Such networks have not only
a wider range of direct interactions per node, they also have a
greater number of nodes with many direct interactions than
ER networks. For transcriptional regulation networks (where
gene perturbations influence mRNA gene expression patterns)
such broad-tailed distributions meet an important biological
objection to the ER model. It is that regulatory networks
should consist of regulatory genes, genes that directly influ-
ence the activity of many genes, and other genes that influ-
ence the activity of few or no genes.

Here, I use both the ER assumption and that of a broad-
tailed distribution of direct regulatory interactions to coarsely
estimate the connectivity, that is, the number of direct inter-
actions in a transcriptional regulation network. I include the
ER model because the number of direct interactions estimated
from it is larger than for any of the broad-tailed models con-
sidered. In this sense, it provides a maximal estimate of the
number of direct interactions. The data for the estimate come
from a recent large-scale gene perturbation experiment in the
yeast Saccharomyces cerevisiae, in which 271 yeast genes were
deleted (Hughes et al. 2000). The authors assessed the effect of
each deletion on the mRNA expression level of 6312 yeast
genes on synthetic complete medium (SC) using cDNA mi-
croarrays (Hughes et al. 2000). More specifically, for each ge-
netic perturbation and for each of 6312 genes, they deter-
mined a ratio r = w/d of the relative expression level of a gene
in the wild-type, w, and after a gene deletion, d. As microarray
gene expression measurements are notoriously noisy, it is not
clear what ratio r assures that a gene’s expression has changed
significantly relative to the wild type. It is thus necessary to
choose a threshold R beyond which an expression ratio is
deemed significant. In the absence of rigorous statistical
methods to determine an appropriate R, I will allow R to range
between 2 (least conservative) and 5 (most conservative) and
report only results unaffected by changing R. Figure 2A shows
the distribution of the number of genes affected by a gene
deletion for varying values of R, the cutoff-ratio, in this data
set. Figure 2B summarizes this distribution by showing means
and standard errors of the number of genes affected by a per-
turbation, as R is varied from 2 to 5. On average, a genetic
perturbation affects the mRNA expression level of between
9.9 (R = 5; S.E. = 1.84) and 51.6 (R = 2; S.E. = 1.89) genes. This
range of values is the key ingredient to the following analysis.

Figure 3A shows the relation between the mean number
of direct interactions per gene (y-axis) and the number of
genes affected by a genetic perturbation (x-axis) for Erdős-
Rényi networks of n = 6300 genes. The inset also shows the

Figure 1 Direct and indirect perturbation effects in a genetic net-
work. (A) Genetic network represented as a graph whose nodes cor-
respond to genes numbered from 0 through 20. Two genes are con-
nected by an arrow if they influence each other’s activity directly. (B)
List of direct regulatory interactions in the network. For each gene i
(to the left of the colon), it is the list of all genes directly influenced by
i. (C) List of direct and indirect perturbation effects for the network in
A. When perturbing the activity of a gene i in the network, all genes
whose activities are directly or indirectly influenced by this gene will
change their activity. For each perturbed gene, one gets this list by
following all paths leaving a gene along the arrows shown.
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experimentally observed range (from Fig. 2B) of the mean
number of genes whose mRNA expression is affected by a
gene deletion. This range maps onto a narrow interval of di-
rect regulatory interactions d per gene (0.9 < d < 1.05, approxi-
mately). Thus, the yeast transcriptional regulatory network
appears very sparse, showing no more direct regulatory inter-
actions than genes. (The maximally possible number of inter
actions would be 1.9 � 107, three orders of magnitudes higher.)

In comparison with ER networks with the same number
of direct interactions, networks with a broad-tailed degree dis-

tribution generally show greater
mean and variance in the number of
genes affected by a perturbation. The
reason lies in their disproportionately
large number of genes with many di-
rect interactions. This is exemplified
by Figure 4A, which shows numerical
estimates from a network with
n = 6300 genes whose degree distribu-
tion follows a power law with � = 2,
an exponent within the range found
for other biological networks (Bar-
abasi and Albert 1999; Fell and Wag-
ner 2000; Jeong 2000; Wagner 2001b;
Wagner and Fell 2001). Networks
with lower � have even lower connec-
tivity, but even networks with higher
� would have lower connectivity than
ER networks. For � = 2 the estimated
number of direct interactions per
gene fa l l s w i th in a range o f
0.15 < d < 0.5 (Fig. 4A).

Gene perturbation data can also
be used to derive a coarse picture of
other network features. One such fea-
ture is the number of modules or sub-
nets of a network, groups of genes
that influence only each others ex-
pression, but not that of other genes.

More precisely, I define a subnet
as a weak component of a graph, a
group of genes where any two genes
are connected through a path regard-
less of edge orientation (for a for-
mally rigorous definition, see Harary
1969). Figure 3B shows the number of
subnets as a function of the number
of genes affected by a genetic pertur-
bation for ER networks. For a network
with 9.9 < a < 51.6 genes affected by
a genetic perturbation, this relation
implies between 1282 (� = 16.8;
a = 9.9) and 956 (� = 31; a = 51.6)
subnets, respectively. Many of these
subnets are isolated genes, genes nei-
ther transcriptionally regulated nor
regulating the mRNA expression of
any other gene. More specifically, the
expected number of isolated nodes in
a sparse ER network with n nodes
and k = nd edges is approximated
by n0 ≈ n[1�2k/(n(n�1))]n�1. For an
ER network, this leads to an esti-
mated mean number of 185–241 sub-

nets containing more than one gene (1282 � 1041 = 241 for
a = 9.9 and d = 0.9; 956 � 771 = 185 for a = 51.6 and
d = 1.05). Figure 4B shows analogous numerical results for
networks whose interactions follow a power-law (� = 2), and
leads to a predicted number of 144–349 subnets containing
more than one gene.

DISCUSSION
Crude estimates of gene network structure as obtained here

Figure 2 Number of genes affected by a genetic perturbation. (A) Distribution of the number of
genes whose mRNA expression levels changes as a result of a gene deletion for three different
significance thresholds R of expression ratios. (Inset) Same distribution on a log–log scale. (B) Mean
and standard error of the mean (S.E.M.) of the number of genes whose expression ratio is affected
by a genetic perturbation as a function of the significance threshold R. Averages are taken over the
196 genetic perturbations reported in (Hughes et al. 2000). The mean number of affected genes
varies between 9.9 (R = 5; S.E.M. = 1.84) and 51.6 (R = 2; S.E.M. = 1.89) genes.
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begin to approach biological questions, for example, whether
genetic networks have a modular organization, or whether
they are globally connected. Put differently, to what degree do
genes have pleiotropic effects when mutated? While the esti-
mated number of modules in this network has formidable
error margins and depends on statistical assumptions about
network architecture, the network may well comprise hun-
dreds of modules. This and the fact that there are many iso-

lated genes makes global connectedness and pervasive pleiot-
ropy unlikely.

Complementary if anecdotal evidence is available from a
variety of sources. First, a study of 225 genotypes of
Escherichia coli carrying one, two, or three mutations showed
that a sizable fraction of mutations affect fitness indepen-
dently from each other (Elena and Lenski 1997). This ar-
gues against the concept of pervasive pleiotropy. It is consis-

Figure 3 Connectivity and module number in ER networks. (A) Mean number of direct interactions per gene (y-axis, the connectivity of the
network) as a function of the mean number of genes affected by a genetic perturbation (x-axis). (Inset) Same relation for a part of the connectivity
range, together with the experimentally observed range of the mean number of genes whose expression is affected by a gene deletion (Fig. 2B).
This range maps onto a narrow interval of direct regulatory interactions, d, per gene (0.9<d<1.05, approximately). (B) Number of subnets in a
random network as a function of the number of genes affected by a genetic perturbation. (Inset) Same relation for a part of the range, together
with the experimentally observed range of genes affected by a perturbation.
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tent with the idea of sparse genetic networks with multiple
subnets that affect fitness independently. Suggestive are
also the results of numerous microarray experiments show-
ing that genes fall into clearly distinguishable coexpressed
clusters (Chu et al. 1998; Eisen et al. 1998; Spellman et al.
1998; Iyer et al. 1999; Lockhart and Winzeler 2000). The third
class of evidence comes from the large scale analysis of physi-
cal interactions among gene products in yeast (Ito et al. 2000;

Uetz et al. 2000). Despite significant caveats to the available
data (it collapses spatial and temporal dimensions onto a
static network image, and may contain substantial amounts
of error), the data suggest that the yeast protein interac-
tion network consists of a disproportionately large subnet-
work and >100 smaller subnetworks (Wagner 2001b). A
different story is told by the connected network of core inter-
mediate metabolism (Fell and Wagner 2000; Wagner and

Figure 4 Connectivity and subnet number in networks with power law degree distribution. (A) Mean number of direct interactions per gene
(y-axis, the connectivity of the network) as a function of the mean number of genes affected by a genetic perturbation (x-axis). (B) Number of
subnets in a random network as a function of the number of genes affected by a genetic perturbation. (Boxed regions) Upper and lower boundaries
of the mean number of genes affected by a perturbation, according to experimental data (Hughes et al. 2000, Fig. 2B). The corresponding range
of subnets is 4584–5638 (� = 153 and � = 92, respectively), most of which are isolated genes. Notice that the scale of both x-axes corresponds
approximately to that of the insets in Fig. 3.
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Fell 2001). The reasons for its connectedness, however, may
be specific to metabolism: Metabolism provides energy and
biochemical building blocks that are necessary at all times
and in all environments, albeit in different amounts. It thus
may need to be able to react as a whole to environmental
perturbations.

There are a number of caveats to the estimates made
here. First, the graph model used here certainly provides only
the crudest of network caricatures. It is adequate given the
limitations of the data used, but neglects many important
factors that would influence the dynamics of gene activity,
such as quantitative differences in strengths of interactions,
and various control structures such as feedback loops that
may be of great importance in influencing gene activity dy-
namics (Omholt et al. 2000). In addition, one might argue
that the restriction to transcriptional regulation networks
(imposed by experimental technology) compromises biologi-
cal interpretation of network structure estimates. In this re-
gard, it is worth keeping in mind that transcriptional regula-
tion is ubiquitous and that the endpoint of most regulatory
pathways are transcriptionally regulated genes. Thus, while
imperfect, a transcriptional regulation network provides a
backbone around which more inclusive analyses can be orga-
nized.

Second, the number of modules and the number of iso-
lated genes are likely underestimates, because gene perturba-
tion studies (Hughes et al. 2000) preferentially perturb a
sample of interesting regulatory genes with many interactions
and not an unbiased random sample.

Third, limits of experimental resolution make a flaw-
less detection of all indirect interactions impossible. For in-
stance, competing effects of the same knockout mutation
on different pathways in the network might compensate
for each other at a gene’s promoter, resulting in a small over-
all change of the gene’s expression level. The fraction of
such genes is difficult to estimate. However, the enor-
mous success of perturbative approaches in dissecting
biochemical pathways suggests that this fraction is not very
large. The liberally chosen lower threshold of R=2 may also
alleviate the problem. By using it, even genes whose expres-
sion level does not change drastically are included in the
analyzed data.

The number of direct regulatory interactions in this
network is of the order of the total number of genes. It may
be much smaller if few genes are responsible for most inter-
actions. The global yeast transcriptional regulatory network
is thus very sparse. The cardinal weakness of the approach
used to obtain this estimate is the need to make an assump-
tion—currently ad hoc, although supported anecdotally—
about global network structure. However, the main result
of sparse network connectivity is robust to changes in as-
sumptions about this network structure. That genetic net-
works are very sparse is good news for methods to reconstruct
them—without statistical assumptions—from perturbation
experiments (Weaver et al. 1999; Ideker et al. 2000; Wagner
2001a).

METHODS
Data summarizing the effects of 271 gene deletions (and other
treatments) on gene expression was made available as supple-
mental material to Hughes et al. (2000; file data-expts-1-300-
ratios.txt). From this data set, which contains log2-
transformed expression ratios of 6312 strains for each muta-
tion, I eliminated all data on haploid and aneuploid deletion

strains, as well as data on nongenetic treatments. I analyzed
the remaining data set of the effects of 196 gene deletions on
the expression 6312 yeast genes. In analyzing this data, I have
not distinguished between perturbations of transcriptional
activators and that of other genes, as there does not seem to
be a clear distinction with respect to their perturbation effects.
For instance, one might expect that perturbation of transcrip-
tion factors affects more genes than other perturbations.
However, among the 10 functionally characterized genes
whose null mutation affects the mRNA levels of the most
other genes, there is only 1 bona fide transcriptional activator
(SWI4). Two others may have indirect roles in transcriptional
regulation, that is, in mRNA turnover (MRT4) and histone
acetylation (HDA1).

The random networks considered in Figure 3 are Erdős-
Rényi (ER) random graphs, where any pair of n nodes (genes)
is equally likely to be connected by one of k directed edges
(Bollobás 1985). Random graph generators used are based
on Mehlhorn and Naher (1999; section 3.2.2). A subnet cor-
responds to a weak component (Harary 1969) of a graph.
The number of subnets for an ER random graph with
given n and k was calculated following (Mehlhorn and Na-
her 1999). The number of isolated nodes in a sparse ran-
dom graph with n nodes and k edges can be estimated as
n0 ≈ n[1�2k/(n(n�1))]n�1.

The networks analyzed in Figure 4 are random graphs
whose probability distribution P(d) of the number of direct
interactions is proportional to d��, for � = 2. Such graphs,
with a prespecified number of n = 6300 nodes and varying
numbers of k edges were generated following a prescription by
M. Newman (unpubl.). Briefly, a graph with n = 6300 isolated
nodes was generated. A node was then chosen at random
from this graph. A random integer d > 0 with the desired
power law distribution was then assigned to this node in the
following way. First, a random number d = ���*log(1 � r)�
was generated, where r is a random real number uniformly
distributed in the interval (0,1), and � > 0 is a constant (see
below). The symbol �x� refers to the smallest integer greater
than x. Second, this number d was accepted with probability
d��. If d was not accepted, it was discarded, and a new d was
generated according to the same prescription, repeating this
process until a d was accepted. Strictly speaking, the resulting
distribution of d is a power law with an exponential cutoff,
P(d) � d��exp(�d/�). (Such a cutoff is necessary for graphs
with � < 2. They are otherwise ill-defined, because their dis-
tribution P(d) diverges.) A large value of � = 1000 was used
here, such that the distortion caused by the cutoff is negli-
gible. Once a d was accepted, it was assigned to the randomly
chosen node. Another node was chosen at random (without
replacement), an integer d was assigned to it in the same way,
and this process was repeated until the sum S of all the inte-
gers assigned to the chosen nodes first exceeded 2k. The in-
tegers assigned to each node correspond to the node’s degree.
They may also be thought of as the stubs of edges emerging
from a node. Two such stubs were then chosen at random,
and the respective nodes were connected via an edge, until
the reservoir of stubs was exhausted, that is, until S/2 edges
had been placed on the graph.

For both ER random graphs and random graphs with
power-law degree distributions, each data point shown in Fig-
ures 3 and 4, respectively, is a numerical estimate based on the
mean number of affected genes (horizontal bars correspond to
standard deviations) over 10 numerically generated networks
with n=6300 genes. For each of the 10 networks, the mean
number of genes affected by a perturbation (i.e., reachable
from a gene) was determined exhaustively via a breadth-first
search algorithm (Mehlhorn and Naher 1999).
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