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Anna G. Nazina,1 and Claude Desplan1
1Department of Biology, New York University, New York, New York, 10003-6688, USA; 2State Scientific Center Genetika,
Moscow 113545, Russia; 3Institute of Chemical Physics, Moscow 117421, Russia; 4 Institut National de Recherche en
Informatique et en Automatique Rocquencourt, 78153, Le Chesnay Cedex, France

The early developmental enhancers of Drosophila melanogaster comprise one of the most sophisticated regulatory
systems in higher eukaryotes. An elaborate code in their DNA sequence translates both maternal and early
embryonic regulatory signals into spatial distribution of transcription factors. One of the most striking features
of this code is the redundancy of binding sites for these transcription factors (BSTF). Using this redundancy, we
explored the possibility of predicting functional binding sites in a single enhancer region without any prior
consensus/matrix description or evolutionary sequence comparisons. We developed a conceptually simple
algorithm, Scanseq , that employs an original statistical evaluation for identifying the most redundant motifs
and locates the position of potential BSTF in a given regulatory region. To estimate the biological relevance of
our predictions, we built thorough literature-based annotations for the best-known Drosophila developmental
enhancers and we generated detailed distribution maps for the most robust binding sites. The high statistical
correlation between the location of BSTF in these experiment-based maps and the location predicted in silico by
Scanseq confirmed the relevance of our approach. We also discuss the definition of true binding sites and the
possible biological principles that govern patterning of regulatory regions and the distribution of transcriptional
signals.

In contrast to coding sequences, where each base pair can be
placed in the informational context of protein structure, regu-
latory DNA of promoters and enhancers has no obvious uni-
form language, no universal code. However, it is clear that a
significant fraction of this regulatory DNA code represents
sequences recognized by transcription factors.

Most of the current strategies for identifying binding
sites for transcription factors (BSTF) rely on the extraction of
binding sites by comparing a set of functionally related regu-
latory sequences. Algorithms such as MEME(Bailey and Elkan
1995), YEBIS (Yada et al. 1998), CONSENSUS(Hertz et al.
1990), and ANN-Spec (Workman and Stormo 2000) employ
various methods based on expectation maximization (EM;
Bailey and Elkan 1994) and Gibbs sampling (Lawrence et al.
1993). In addition, several word-counting algorithms have
been developed to approach the problem. For instance, the
recent Moby Dick program (Bussemaker et al. 2000b) employs
a suffix-tree strategy (Apostolico et al. 2000; Marsan and Sagot
2000) to build word dictionaries and then deduce the most
significant motifs. Strategies based on extraction from a set
often use as an important criterion that a majority of se-
quences contain the same motif (MEME). For instance, in a
typical case in which an unaligned set was represented by a
large number (521) of relatively short proximal promoter se-
quences (�100 to +5; Pesole et al. 1992), this extraction
method allowed reliable prediction, mainly of proximal pro-

moter elements (TATA-box) and of ubiquitous binding sites
(Bussemaker et al. 2000a). Specific binding motifs that are
present in only one or a few members of the set, however, are
likely to be lost using this approach.

Until now very few attempts have been made to ap-
proach BSTF prediction from another angle, relying for in-
stance on the observation that functional binding sites are
often found in clusters within regulatory regions and thus
cause a biased word distribution within a given sequence. This
bias makes it feasible to extract BSTFs from just a single re-
gion. This could be an important achievement as it could
identify the transcriptional information specific only to this
particular regulatory sequence. The significance of such an
extraction from a single sequence is especially important for
the analysis of extended and complex regulatory regions
found in higher eukaryotes. A promising attempt to predict
binding sites in a single wide region was based on measuring
hexamer frequencies within the Drosophila Ubx-C region
(Lewis et al. 1995).

The fact that many experimentally found BSTF of higher
eukaryotes are repeated within a narrow regulatory region al-
lows one to use the same basic principle for the extraction
from a single sequence as for the extraction from a set of
unaligned sequences, (i.e., by exploring motif redundancy).
This redundancy is also affected by the presence of accessory
(weak, or shadow) sites, which are often found in a regulatory
region nearby the experimentally confirmed strong sites (Kas-
sis et al. 1989; Stanojevic et al. 1991; Small et al. 1992). Al-
though the meaning of these sites is unclear, they have been
observed in a wide array of regulatory sequences. Thus, fami-
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lies of related words (motifs) would reliably describe specific
BSTF patterns found in a single regulatory region.

One of the differences between extraction from a single
sequence and extraction from a set is the higher statistical
ambiguity caused by an insufficient length of sequence, by
small numbers of repeats, and by the presence of related and
overlapping motifs in the same sequence. Moreover, along
with multiple BSTF, regulatory regions often contain other
statistically significant patterns such as long simple repeats
(. . .CACACA. . .) or poly(N) tracts (. . .TTTTT. . .). The exact
function of these sequences is generally not known, but they
often interfere with attempts to reveal binding sites. There-
fore, special statistics accounting for word overlaps is impor-
tant when using extraction from a single sequence.

Another known problem related to BSTF extraction with-
out a consensus/matrix description is the lack of biological
confirmation for the prediction relevance. Because, in most
cases, a typical algorithm requires an estimated BSTF length
and number of expected motifs (MEME; Bailey and Elkan
1995), at least some training procedures which are based on a
reliable training set appear to be necessary for a given biologi-
cal system. During the last few years, such training sets have
become available for unicellular organisms like Escherichia coli
and yeast in the form of annotated promoter databases (van
Helden et al. 1998, 2000; Zhu and Zhang 1999). However, the
situation evolves much more slowly for higher eukaryotes
(Cavin Perier et al. 1998).

To overcome biological ambiguity of such predictions,
we focused on a particularly well-known system: the early
developmental enhancers from Drosophila. For this system,
we developed experimentally based definitions for the most
robust binding sites and we built precise maps of their distri-
bution in these enhancer regions. The enhancers of the
Drosophila developmental genes have several advantages for
our study—(1) Functional similarity: Typically a stripe of ex-
pression at the blastoderm stage of embryonic develop-
ment; (2) Similar regulation: Most enhancers respond to a
relatively small number of known maternal or gap genes
(Bicoid, Hunchback, Krüppel, etc.) or pair-rule genes (Eve, Ftz,
Hairy, etc.); (3) Structural homogeneity: The enhancers
typically have a defined length (∼ 1000 bp) and are not lo-
cated near unique proximal promoter elements such as TATA,
DPE, and INR (Weis and Reinberg 1992; Burke et al. 1998;
Pedersen et al. 1998); and (4) Level of characterization: The
large amount of biochemical, genetic, and evolutionary (com-
parisons between species) data accumulated in the literature
for these enhancers makes them an extremely valuable re-
source.

Based on the principles described above for the extrac-
tion from a single region, we developed a new algorithm,
Scanseq , that requires no consensus/matrix description and
locates the position of potential binding sites in one given
sequence. We then investigated the correlation between the
Scanseq predictions and the experimentally verified distri-
bution of binding sites in a set of Drosophila developmental
enhancers. We found a high correlation for all enhancers used
in our set, using a wide range of algorithm parameters. With
the help of a special training procedure, we defined the most
effective parameter ranges that can be used in a search for
unknown BSTF in this type of complex regulatory regions in
Drosophila and likely in other multicellular organisms. We
also analyzed the distribution of weak shadow sites and re-
vealed their specific arrangements in several developmental
enhancers from our collection.

RESULTS

Developmental Enhancers: Maps
of Binding-Site Distribution
We thoroughly annotated a number of Drosophila develop-
mental enhancers and generated maps of BSTF distribution to
measure the efficiency/accuracy of the Scanseq predictions.
Building such maps required accurate processing of a thor-
ough literature compilation, as well as establishing defini-
tions for BSTF. We designed two strategies for the treatment of
the compiled literature data (Fig. 1). The first strategy solved
the frequent disagreements in the length and the exact loca-
tion of BSTF reported by different sources. The second strategy
implemented a uniform criterion for the minimal strength of
a true binding site. As an indirect measure of this strength, we
used the positional weight matrix (PWM) score for this site
(Berg and von Hippel 1987).

Our compilation contained footprints and other data for
20 of the best-known early Drosophila developmental enhanc-
ers (see appendix 1.3 on the New York University Web site:
http://homepages.nyu.edu/∼ dap5/PSS/appendix1.html). To
minimize interference of possible experimental errors, we
only included sites for a given transcription factor found in at
least two different enhancers (reported by two different re-
search groups) from our collection. We also required that a
site be verified by at least two independent methods, includ-
ing biochemical (footprints), genetic (mutant), or evolution-
ary (highly conserved blocks) analyses and not simply by a
search for a consensus. After such filtering, our set contained
binding sites for seven transcription factors: Bicoid (34 sites

Figure 1 Strategies for BSTF map construction. Two strategies for
constructing maps of binding sites rely on a matrix search for experi-
mentally defined binding sites for transcription factors (BSTF). The
first strategy (refined map path) is used to verify the exact location
and size of the experimental sites. A second strategy (consistent map
path) takes into account both the presence of the experimentally
verified sites and the matrix score of found matches. The initial map
is the raw footprint data from a literature source.
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total), Caudal (15), Ftz (25), Hunchback (43), Knirps (47),
Krüppel (21), and Tramtrak (7). We also narrowed down the
number of regulatory regions to 10, each containing at least
two of the seven types of sites: engrailed intron (enint; Kassis et
al. 1989; Florence et al. 1997), even-skipped stripe 2 (eve2;
Stanojevic et al. 1991; Small et al. 1992; Arnosti et al. 1996),
even-skipped stripe 3+7 (eve3+7; Small et al. 1996), fushi-tarazu
proximal enhancer (ftzprox; Han et al. 1993, 1998; Yu et al.
1999), hairy stripe 6 enhancer (hairy6; Langeland et al. 1994),
hairy stripe 7 enhancer (hairy7; La Rosee et al. 1997, 1999),
abdominal-A enhancer (iab2; Shimell et al. 2000), Krüppel re-
gion 730 (kr730; Hoch et al. 1991), spalt early enhancer (sal;
Kuhnlein et al. 1997; Barrio et al. 1999; de Celis et al. 1999),
and tailless enhancer (tll; Hoch et al. 1992; Liaw et al. 1995).

In the next stage, we built alignments (CLUSTALW,
LaserGene ) for each type of selected BSTF and outlined a
well-defined core made of positions with a high informa-
tion content (see appendix 1.1 on the Web site). For each
type of site, a PWM was built from the core alignment. We
used PWMs that were not normalized for the average nucleo-
tide composition (set p� = 0.25 into formula 6 below) to avoid
any possible bias for base composition in a particular se-
quence.

Searches with these PWMs revealed not only the pres-
ence of the experimentally verified BSTF, but also multiple
high-scoring matches. Therefore, we generated two alterna-
tive types of BSTF maps for each regulatory region. The first
map, refined, contained only high-scoring PWM hits that co-
incided with the experimentally identified sites (footprints).
This map served to fix the length and the location of the
already-known binding sites. However, it is known that in
vitro analyses often reveal only the strongest binding sites
(Tronche et al. 1997). Therefore, we also developed a second
map, consistent, that was based on the relative PWM scores of
the found matches.

To determine the relevant PWM score cutoff, we calcu-
lated at each cutoff value the number of hits (H, number of
experimentally confirmed sites), the number of false-positive
sites (FP), and the number of false-negatives (FN, missing but
experimentally confirmed sites) between the refined and the
resulting consistent map. This procedure was performed in-
dependently for each type of BSTF considered. To give more
weight to the experimentally verified BSTFs in the consistent
map, we added more penalties to FN than to FP. We built our
penalty function by modifying the likelihood ratio criterion
(see appendix 1.2 on the Web site)

P�cutoff� = Ln��H�*�H���H + FN���Ln�FN + FP� (1)

We considered the PWM cutoff to be optimal at the
maximum of the given function (see appendix 1.2, Krüppel).

Possible experimental errors, as well as the specificity of
our descriptions (alignments, PWM), probably cause the dis-
agreements found between the refined and the consistent
maps built. An example of comparison between these maps is
shown in Table 1. We consider our consistent maps (see ap-
pendix 1.3 on the Web site) as the closest approximation to
the distribution of true BSTF. However, it is unlikely that one
should expect a better agreement between the Scanseq pre-
diction and one of the two maps than between the two maps
themselves.

Formulation of the Scanseq Algorithm
We based our Scanseq algorithm on the assumption that
each word recognized by a given transcription factor (BSTF)
belongs to its own family of similar words (binding-site motif)
found in the same enhancer sequence. Scanseq (Fig. 2) ex-
tracts statistically significant motifs from a single sequence
and generates a map of potential binding sites for this se-
quence. The algorithm features special statistics for account-

ing for word overlaps in the same
DNA strand and for correlating
word overlaps in the complemen-
tary strands of DNA (see Methods
and appendix 2.2 on the Web site).

The Scanseq algorithm in-
cludes the following basic stages. In
the first step, a search is performed
with each m-letter word in the se-
quence (the seed word) for all simi-
lar words with no more than k mis-
matches. The resulting word family
forms the initial motif for each
seeded word. In the second step,
the search is performed with the
PWM constructed for each of the
initial motifs. This matrix is nor-
malized for the average sequence
composition and uses pseudo-
counts to cope with small-sampling
problem. In the third step, the algo-
rithm calculates the expectation
and the variance for the number of
occurrences in the random se-
quence for the double-stranded
DNA. The Z score of the refined mo-
tif is assigned to each correspond-
ing initial seed word. In most cases,
the characteristic length of the po-

Table 1. Comparison between the Refined and Consistent Maps

Distribution of sites shown for the even-skipped strip 2 region. Most of the experimentally verified
binding sites shown are shared between the two maps (hits, shown in red). Two known Bicoid sites
false-negatives in blue) are missing in the consistent map due to their low positional weight matrix
score. In vitro binding assays support the suggestion of low affinity for these two Bicoid sites (Wilson et
al. 1996). High-scoring matches (false-positives) to Bicoid, Krüppel, and Giant are shown in green.
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tential recognition motif and its divergence level is not
known. Therefore, the algorithm performs several calculation
rounds with different m and k and finds motif with the high-

est Z score for a given initial seed
word. Selected optional range for
the parameters m, k (mmax, mmin,
and kmax), and Z-score cutoff value
defines the predicted map.

Parameters and Predictions
Depending on the amount of avail-
able information, regulatory re-
gions in general can be divided into
three categories: unidentified, iden-
tified in the genome but with no
further annotation, and well-
known regions with at least some
maps for BSTF distribution. Typi-
cally, the first category requires an
independent preliminary analysis
(recognition in the genome) before
predicting BSTF. The second cat-
egory requires some a priori (de-
fault) parameter settings deduced
from an appropriate training set.
Individual training of parameters
on one sequence might be applied
to the third category of sequences
to reveal yet unknown BSTF. Most
currently available motif-extracting
programs usually require custom
settings for the number of expected
motifs and their approximate
length. We introduced a relatively
simple parameter, coverage (c), in-
stead of the widely used number of
expected motifs.

The distribution of known
BSTFs within the developmental
enhancers (consistent maps)
showed that on average they repre-
sent about a quarter of the se-

quence length (0.24; see Table 2). Therefore, we took this
value as the default coverage expectation. Generally, this im-
portant parameter must be approached with care as we ob-

Figure 2 Scanseq algorithm. Initial search is performed with words of length m with 0-k mis-
matches. For each word found in the sequence, the corresponding motif (word set), is refined by
positional weight matrix (PWM), and is statistically evaluated through Z score. In the final stage, Z
scores for motifs within a range of m and k are compared and a predicted map is generated. Note that
the PWM in the Scanseq algorithm is not the same as in the strategy of BSTF map construction, and
it does not include any a priori information about binding motifs.

Table 2. Results of Individual Trainings

Sequence Statistics Best Parameters

Name L c-MAP CC OQ PQ mmin mmax kmax Z c

eve2 728 0.15 0.62 0.51 0.80 9 9 2 9.7 0.15
hairy6 547 0.65 0.55 0.59 0.05 7 9 2 6.3 0.73
hairy7 932 0.16 0.53 0.41 0.77 8 9 1 11 0.11
eve37 508 0.29 0.52 0.46 0.43 8 9 1 4.9 0.29
tll 480 0.15 0.46 0.37 0.65 11 12 2 3.7 0.16
iab2 1745 0.07 0.46 0.33 0.89 9 11 4 22.3 0.10
kr730 718 0.32 0.43 0.40 0.31 8 9 1 3.8 0.33
sal 516 0.22 0.42 0.32 0.24 12 14 4 8.4 0.54
ftzprox 396 0.23 0.41 0.34 0.24 9 10 4 7.6 0.55
enint 900 0.20 0.34 0.29 0.39 7 7 1 4 0.23
Average 784 0.24 0.47 0.39 0.32 8.8 0.33

All 10 regions from the training set show positive statistical correlation (sorted by CC). The best selectivity (PQ) is observed for the eve2 and
iab2 regions. Note that the hairy strip 6 region shows poor selectivity, which is mainly due to the very high optimal coverage cutoff c (0.73).
The average of the observed coverage values (c-MAP), 0.24, was used as the default cutoff in the consequent trainings on the group of 10. L
is sequence length in bps; Z is the corresponding Z-score cutoff value; OQ is overlap quality; PQ is prediction quality.
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served that in several cases significant deviations from this
default coverage occur. The extreme examples were the ab-
dominal A enhancer (iab2) and the hairy stripe 6 region, whose
coverage of the consistent maps were 7% and 65%, respec-
tively (see Table 2). For the length of the BSTFs, we used a
range from 7 bp to 15 bp, which is the size observed for the
most robust binding motifs found in the developmental en-
hancers (see appendix 1.2 on the Web site). We also allowed
the maximal divergence of the initial search (which repre-
sents the number of mismatches, kmax) to vary in the range of
0%–40% (see also Z-score profiles in Fig. 3).

To estimate the accuracy of the prediction with no prior
consensus/matrix description, we measured the correlation
between the experiment-based consistent maps and the maps
of predicted sites generated by the Scanseq algorithm. Three
statistical values were monitored: (1) The Matthews correla-
tion coefficient (CC; Matthews 1975),

CC =
TP * TN − FP * FN

��TP + FP��TP + FN��TN + FP��TN + FN�
(2)

where TP is the number of positions covered by both the
predicted and the experimental maps, TN is the number of
positions covered by neither of the maps, FP is the number of
positions covered only by the predicted map, and FN is the
number of positions covered only by the experimental map;
(2) The overlap quality (OQ; Gelfand et al. 1996)

OQ =
TP

TP + FP + FN
(3)

and (3) the logarithmic gain in the prediction quality:

PQ = log�OQ�OQexp� (4)

Where OQexp is the expectation of OQ for random prediction
with a given coverage:

OQexp =
�TP + FP��TP + FN�

��2TP + FP + FN� * n − �TP + FP��TP + FN��
(5)

The values for OQ and PQ vary in the range of 0 (no correla-
tion) to 1 (complete coincidence); the correlation coefficient

CC varies from �1 to 1.

Training Parameters on an Individual
Region
To assess the sequence-to sequence
variations of the best parameters,
we first trained Scanseq on each
individual enhancer sequence. For
each considered combination of pa-
rameters, defining minimal and
maximal length of the binding mo-
tif and its divergence (mmin, mmax,
and kmax), we found the optimal
coverage c (the fraction of the total
sequence length covered with the
predicted sites) that produced the
highest CC and OQ values (see ap-
pendix 3 on the Web site). The op-
timal individual parameters found
for the 10 developmental enhanc-
ers are shown in Table 2.

Despite the fact that the opti-
mal length/divergence parameter
combination differed in most cases,
the correlation between the pre-
dicted and the consistent maps was
positive for virtually all combina-
tions tested (see appendix 3 on the
Web site and Fig. 3). In the worst
case (hairy stripe 6 enhancer), 65%
of which was covered with BSTF,
the PQ was still positive. In many
cases the optimized coverage c was
very close to the observed coverage
(c-MAP) for the consistent experi-
ment-based map.

The practical advantage of in-
dividual training is clear from the
example of eve stripe 2 region (Fig.
4). At the best parameter values
found for the consistent map (only
Bicoid, Hunchback, and Krüppel
sites were included), we also man-
aged to predict another distinct

Figure 3 Sensitivity of Scanseq to the parameters of the initial search. Z-score profile plot (X-axis is
the position in the sequence) is shown for the even-skipped stripe 2 enhancer using a range of length
(m) and divergence (k). Each horizontal line corresponds to a combination of m (7 bp–10 bp) and k
(1–3 mismatches) that are shown on the left side. Z-score values are represented by the color scale
(bottom left). The bottom bar shows the distribution of binding sites for transcription factors (BSTF;
consistent map) in the even-skipped stripe 2 enhancer. The best statistical correlation with the consis-
tent map for eve stripe 2 was observed at the following parameters: {m = 7; k = 1}, {m = 8; k = 1}, and
{m = 9; k = 2}.
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motif at position 510: CATAATAAT. This sequence exactly
coincides with the most conserved half of the first Giant site
in the eve stripe 2 region: TAAAAACACATAATAAT. The best
individual parameter combination, which is often specific for
a particular sequence, typically produces minimal statistical
noise there (see the difference in Z scores in Table 2).

Training Parameters on the Group-of-10 Regions
To assess the best default parameters for sequence-
independent predictions, we trained Scanseq on the entire
group-of-10 consistent maps from our enhancer collection.
To find the optimal ranges for length and divergence (mmax,
mmin, and kmax), we calculated the average CC and PQ values
for our 10 enhancers for each tested parameter combination
(at the optimal coverage c; see above). Then we sorted the
parameter combinations in a descending order of average CC
or PQ values (see appendix 3 on the Web site). The combina-
tion of 7 bp–9 bp with 0–1 mismatches provided the best
scores for both selected measures of statistical correlation. We
set the coverage expectation according to the average value
we observed in the 10 consistent maps (cav = 0.24). The results
summarized in Table 3 indicate that these default parameters
still worked well for most examples from the training set.

The greatest decrease in the prediction quality for se-
quence-independent training (as compared to individual
training) was mainly caused by the difference between the
selected default coverage (0.24) and the observed coverage. A
striking example of the negative effect of the default coverage
on prediction quality was with the iab2 region, where the
consistent map covered only 7% of the long (1.7 Kb) se-
quence. At the default coverage of 24%, individually trained
predictions (which are rather selective, PQ = 0.89, c = 10%; see
Table 2) decreased (PQ = 0.47), mainly due to the unavoidable
appearance of false-positives (compare 7% to 24%). In con-
trast, the Scanseq predictions were much less sensitive to the
motif length and its divergence. The observed sensitivity of
the algorithm to the coverage expectation value apparently
reflects the natural variation of BSTF density in a defined regu-
latory region. In some enhancers (hairy6), true binding sites
seem to cover most of the region; whereas, in others (eve2,
iab2), they show relatively sparse distribution. Clearly, ob-
served densities of BSTF will also depend on selection of regu-
latory region borders, definition of true binding site, etc. This
important problem of coverage expectation has its own bio-
logical importance and will require independent analysis. A
detailed comparison between the individually trained predic-
tions and the predictions at the found default parameters is
given for eve stripe 2 region in Figure 5.

Testing the Default Parameters on the eve stripe 4+6 and
runt stripe 5
For two enhancers from our initial collection, even-skipped
stripe 4+6 (Fujioka et al. 1999) and runt stripe 5 (Klingler and
Gergen 1993), the distribution of BSTF was unknown. We
used these two poorly characterized regions to test the agree-
ment between two independent methods of BSTF predictions:

Scanning with PWM, which uses available description of con-
sensus/matrix for known sites, and Scanseq , which is based
on motif redundancy.

The pair-rule genes eve and runt are expected to be regu-
lated by at least some of the same upstream maternal and gap
genes that regulate the other enhancers used in our training
set: bcd, hb, kr, kni, and gt. In fact, mutants for most of these
genes alter the expression of the eve4+6 and runt stripe 5 en-
hancers significantly. We scanned each of the two regions
with our PWM matrices built for Bicoid, Hunchback, Krüppel,
Knirps, and Giant at the cutoff values defined above. The
resulting maps for eve4+6 and runt5 were called virtual maps
because they reflect the distribution of expected but not ex-
perimentally verified BSTF. We then extracted potential bind-
ing sites from these regions with Scanseq at the default pa-
rameter values, described in the previous section (mmin = 7,
mmax = 9, kmax = 1, and c = 0.24).

Comparison between the virtual maps and the predic-
tions by Scanseq showed striking statistical correlation. The
statistical significance values for eve stripe 4+6 were among
the highest (CC = 0.61, PQ = 0.64; see Table 3) and the pre-
dicted map (Fig. 4) showed an astonishing correlation with its
virtual map. The virtual map for the eve stripe 4+6 region
contained only Hunchback and Knirps sites but not Bicoid,
Krüppel, and Giant sites (see appendix 1.3 on the Web site).
Scanseq also efficiently recognized the same two types of
binding motifs. This exclusively in silico analysis strongly
supports the involvement of Hunchback and Knirps in the
regulation of the eve4+6 region, as suggested from genetic

Table 3. Statistics for Prediction with the Default
Parameters

Statistics

CC OQ PQ Z

Training set
eve2 0.50 0.38 0.59 4.7
hairy7 0.39 0.31 0.48 8.6
hairy6 0.38 0.32 0.20 9.5
tll 0.35 0.28 0.46 4.5
enint 0.33 0.28 0.37 4.5
eve37 0.32 0.29 0.30 7.7
kr730 0.30 0.29 0.27 6.5
iab2 0.24 0.16 0.47 8.5
ftzprox 0.23 0.23 0.24 3.2
sal 0.18 0.19 0.19 4.1
Experimental set
eve4+6 0.61 0.52 0.64 9.3
runt5 0.15 0.15 0.20 9

The default parameters for the group of 10 sequences were 7–9
bp for word length, 0–1 mismatches allowed, and 0.24 for default
coverage (see Table 2). The same parameters were applied to the
simulated experimental set: eve4+6 and runt5 regions. In com-
parison to individually trained parameters (Table 2), overall cor-
relation was lower in all cases.

Figure 4 (see figure on preceding page) Scanseq predictions. Z-score profile plots and maps of predictions are shown for even-skipped stripe 2
(panels A, B), hairy stripe 7 (panels C, D), even-skipped stripe 4+6 (panels E, F), and runt stripe 5 (panels G, H). The plots show the maximum observed
Z scores (Y-axis) for each position in the sequence (X-axis) using a selected parameter range (mmin, mmax, kmax, and c). Panels A, C, E, and G (see
parameters and statistics in Table 3) show the results after training on the group-of-10 enhancers. The results of individual trainings (see Table 4) are
shown in panels B, D, F, and H. The predicted map is shown below each Z-score profile plot. The blue bars represent the most redundant segments
(predicted by Scanseq ); the red bars represent the established distribution for binding sites for transcription factors (BSTF): Consistent maps for
even-skipped stripe 2 (Giant sites were not used in the training), hairy stripe 6, and the virtual maps for even-skipped stripe 4+6 and runt stripe 5 are shown.
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experiments (Fujioka et al. 1999). The predicted map for runt5
also showed positive, though significantly lower (CC = 0.15;
PQ = 0.20), correlation with its virtual map at the default pa-
rameters. Comparison between the results of prediction at the
default versus individually trained parameter values for
eve4+6 and runt5 confirmed once again the importance of the
correct coverage expectation for the Scanseq algorithm.
Thus, in the case of individual training, all putative sites in
runt5 with one exception fell into the predicted regions that
covered 55% of the sequence length.

DISCUSSION

Definition of True Binding Site
The efficiency of the Scanseq program indirectly confirms
that the multiple binding motifs in Drosophila developmental
enhancers are statistically significant. In these regions, weak
and strong sites together form powerful word families. To
independently confirm the abundance of weak shadow sites
in these enhancers, we searched the even-skipped stripe 2 re-
gion (728 bp) with our PWMs for Bicoid, Krüppel, Hunch-
back, and Giant and built a distribution of PWM scores for all
positive matches. Table 4 shows the comparison of such dis-

tribution with the expectation in ran-
dom sequences having the same
length and base content.

Most of the experimentally veri-
fied true sites generated the highest
scores (>6) and their presence in such
numbers was statistically unexpected
in eve stripe 2. The second score zone
(4–6) contained the weak sites with
mismatches in the core. Surprisingly,
for this score zone, the observed
number of sites still exceeded the ex-
pected number for all four types of
binding motifs. The strong agree-
ment of data for all four binding mo-
tifs suggest that the eve stripe 2 en-
hancer has at least twice as many se-
quences related to known BSTF than
reported experimentally.

This simple test not only con-
firms the specific presence of acces-
sory shadow sites (not revealed by
footprint) around the strong sites, but
also provides new grounds for the
definition of BSTF. In fact, some of

the poorly scoring shadow sites might be considered as true
sites, thus changing the initial alignments, as well as the criti-
cal cutoff values. Apparently the procedure for the definition
of BSTF must be iterative and include likelihood criteria (see
equation 1) at the first stage, followed by statistical refine-
ment of the motif at the second stage (Table 4).

BSTF Arrangements and Role of Tandem Clusters
It is still unclear whether the detected weak shadow sites have
functional significance and how much they contribute to
transcriptional regulation of the enhancers. To shed some
light on this problem, we analyzed the distribution of weak
sites from the score zone 4–6 (Table 4) and found striking
features in their arrangement: The weak sites often formed
tandem clusters in the enhancers from our training set (Table 5).

Equally spaced sets of 5–10 repeats of an imperfect site
form a highly unusual periodic sequence, with a small period
of repeat, often causing overlap of neighboring matches
(compare RATCCC to CTAATCCC—Bicoid). The fine struc-
ture of the most impressive examples and the evolutionary
conservation of one of the sequences are presented in Figure
6. The arrangement of the shadow sites in tandem clusters

and the striking conservation of
these tandems in evolut ion
strongly support their biological
significance.

We see two possible roles for
the tandem repeats in enhancers.
One, they might be directly in-
volved in the tight binding of tran-
scription factors; in this case the
multiplication of weak sites into
tandem clusters could make such
binding highly cooperative and
strong (Burz et al. 1998). Two, the
tandem clusters may participate in
a variety of recruitment mecha-
nisms. In the simplest case, long re-

Figure 5 Detailed map of predictions for even-skipped stripe 2. The comparison between the
Scanseq predictions (in red) and the consistent map (in green) shows the efficiency of individual
training (panel B) versus training on a group of 10 (panel A). In both cases, periodic sequences
(ATCCC)n generated very high statistical scores.

Table 4. Distribution of Binding-Site Matches in the eve2 Region by PWM Score

PWM
Score

Bicoid Krüppel Hunchback Giant

Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs.

>6 0 3 0 3 0–1 3 0 5
4–6 2–4 10 1–3 6 4–6 10 2–4 6
2–4 10–14 14 13–19 29 8–13 12 13–20 15
0–2 35–53 36 48–73 62 23–35 32 40–59 53

The expected number of sites after random shuffling of base pairs in the eve2 sequence was
evaluated for each score zone. Most of the high scoring matches (>6) found in eve stripe 2
represent experimentally verified sites. The number of shadow binding sites in the second posi-
tional weight matrix (PWM) score zone (4–6) exceeds the expected number for random sequence
by at least a factor of 2.
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petitive sequences may effectively serve to trap a protein from
solution and recruit the transcription factor to its strong bind-
ing site within the enhancer. This hypothesis assumes that
the initial binding to a repeat of shadow sites is weak and that
the transcription factor quickly slides or jumps to stronger
neighboring sites. The possibility of such lateral diffusion for
transcription factors on DNA has been widely discussed in the
literature (Berg et al. 1981; Berg and von Hippel 1985; Khory
et al. 1990).

Although the exact role of the tandem repeats of shadow
sites in enhancers, as well as their precise structure, remain to
be explored, they represent a unique opportunity for unveil-
ing the regulatory code of promoters. The unusual structures
of periodic sequences might not only assist in identifying true
binding sites in promoter and enhancer regions, but they may
also serve for the efficient recognition of regulatory se-
quences. This, however, will require further analysis and clas-
sification to distinguish true regulatory tandems from satel-
lite, telomeric, and other repeated sequences.

Strategies for BSTF Prediction
The prediction of Knirps and Hunchback sites in the eve4+6
region shows that several methods can be successfully com-
bined for the mapping of BSTF in defined regulatory regions.
Each method, however, has its limitations. For instance, the
analysis of the evolutionary conservation of regulatory re-
gions usually does not reveal the binding sites themselves, but
only conserved blocks within a regulatory sequence. Due to
the possible presence of conserved transcriptional signals
other than BSTFs and to the extreme flexibility of the regula-
tory code, the interpretation of such conserved blocks as can-
didate binding sites might be incorrect. Another widely used
approach requires a prior description of BSTF in the form of a
matrix (PWM, hidden Markov model) or consensus. This
method is much more reliable, but the description is not al-

ways available. The currently exist-
ing databases, such as TRANSFAC
and TRDD (Heinemeyer et al.
1998), contain only a limited frac-
tion of all transcriptional factors,
many of which represent fairly
pleiotropic regulators, found in a
vast number of regulatory regions.
Moreover, as was shown in the cur-
rent work, the definition of BSTFs
must also include a relevant cutoff
for the search to distinguish be-
tween true sites and false-positives.
However even such consistent cut-
off values do not prevent the detec-
tion of chance matches at irrelevant
places of genome (Berg and von
Hippel 1987).

Methods of the third class use
no a priori information and extract
sites from the set of unaligned se-
quences, each of which is believed
to contain somewhere the same
BSTF, for instance, from regulation
experiments. The most powerful
techniques in this case are expecta-
tion maximization (Bailey and El-
kan 1994) and Gibbs sampling

(Lawrence et al. 1993). This approach became popular for
analysis of microarray experimental data. These methods ex-
tract common motifs from a set of sequence data, which
might not be sufficient, especially in the case of unique tissue-
specific signals, often presented only in one sequence of the
set. In this context, the extraction of BSTF from a single region
with no assumption of matrix/consensus/conservation takes
an important place in the unveiling of the regulatory DNA
code. Although this method is currently less precise than the
more conventional extraction with the PWM, we have shown
that it can be adopted for virtually any regulatory sequence
and deliver biologically relevant predictions.

The possibility of BSTF extraction from a single sequence
makes application of the technique especially important for
genome computational studies and genome annotation
projects. However, the meaningful predictions can be gener-
ated only if clustered BSTFs are presented in a promoter region
and correct parameter settings are found for a particular bio-
logical system. Currently, available information about the or-
ganization of eukaryotic promoter cannot provide us with the
answer of how common binding-site clustering is. However,
in many known cases (B.P. Berman et al., in prep.), this clustering
is frequent enough to make our prediction strategy successful.

To investigate the possible application range of our algo-
rithm, we performed similar calculations for rhodopsin pro-
moters of Drosophilla, the system, which has been studied
experimentally by the authors of this paper (see appendix,
rhodopsin promoters, on the Web site). The minimal rhodop-
sin promoters are much shorter than the developmental en-
hancers are (∼ 300 bp versus ∼ 1000 bp); they contain nonre-
dundant elements such as the TATA box, and, in opposite to
the developmental enhancers, they activated at the very end
of the developmental cascade. Extraction of known recogni-
tion motifs from the Drosophila rhodopsin promoters at the
default parameter settings, established for the developmental
enhancers, have shown similar performance (maximum ob-

Table 5. Periodic Sequences in Drosophila Developmental Enhancers

Sequence of the eight most striking periodic clusters is shown for seven enhancers. Six of them
matched to known transcription factor sites found in corresponding enhancers (see also Fig. 6).
Two periodic sequences are shared between two regions: (TTTGTTTG)2 is common to eve2 and
eve3+7 (Andrioli et al. 2001) and (AGGTTTC)m is common to eve4+6 and hairy7. The two periodic
regions shown for eve stripe 2 (TTTGTTTG)2 and (ATCCC)n, are highly conserved in evolution (see
Fig. 6; Lugwig et al. 1998).
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served CC = 0.59). The training of Scanseq on the group of
six most known Drosophila rhodopsin promoters delivered ex-
actly the same optimal parameter settings (7 bp–9 bp, 1 mis-
match). Identical behavior of the Scanseq program in two
biologically distinct systems supports its wide application
range.

We believe that our algorithm can still be improved by a
better definition of the borders of regulatory regions (see ap-
pendix, imperfect sequence data, on the Web site), indepen-
dent estimation of the coverage expectation, and a better
comparison of the extracted motifs.

METHODS

Scanseq Algorithm

Search for Redundant Motifs
For eachm-letter seed word located in position l of S, all words
in S were found that differ from the seed word by no more
than k substitutions. This set of ql words found comprised the
initial motif Hl for position l. Because the initial motif, Hl, is
an alignment, one can build a PWM, Wl, from this alignment
using equation 6 (Berg and von Hippel 1987; Tatusov et al.
1994) with pseudocounts

Wl��,i� = log�q��i��p� + 4
ql + 4 � (6)

where q�(i) is the number of occurrences of letters of type � in
the ith column of the alignment. For the null statistical hy-
pothesis, we considered the Bernoulli sequence R, with letter
probabilities estimated from S: p� = N�/N for each letter type
�. We scanned the sequence with matrix Wl and selected the
PWM threshold in a way such that for each seed word, the
total number of high-scoring words is equal to the previously
found number ql.

Statistical Evaluation
This ql was our observation for the number of similar words
found in the sequenceO = ql. To test whether this number was
significantly greater than the number of similar words
counted in a random sequence of the same length and com-
position, we constructed Z score: Z = (O � E)/V1/2. In this for-

mula, E is the expected number of words found in a random
sequence, and V is its variation. In our case, E was the expec-
tation of the motif H̃1, which includes all possible m-words
scoring with Wl higher then the selected threshold. We built
this motif explicitly by generating all m words and testing
their Wl scores. Counting in two strands, we reformulated as
weighted counting on one strand. In this case, the motif must
also contain all mutually complementary words, which we
added when necessary (see appendix 2.2 on the Web site;
Régnier 2000). During this addition, any word � that already
had its own inverse complement, notably any palindrome,
obtained the weight � = 2; whereas, all other words obtained
the weight � = 1. Then for double-stranded counting

E = �n + m − 1� �
� ∈ H

w��� P��� (7)

With the sum taken over all words � belonging to the motif
H̃1, each of which has probability P(�), the variance V takes
the form

Vdouble = �
�∈ H̃ �l�

�s�

w2��� P��� + �1 − 2m���
�∈ H

w��� P���2�
+ 2�

�∈ H
w��� P�����

f∈ H
w�f�A�,f − w���� + c1 (8)

where the sum over f is taken over all words belonging to
motif H, the matrix A�,f reflects possible overlaps with differ-
ent shifts between words � and f, c1 is the linearity constant,
the value of which is small as compared to Vdouble for our
length range of hundreds of base pairs (Régnier 2000; Régnier
et al. 2000). This constant also can be calculated analytically,
but it makes sense only whenm ∼ n, which is not our case. For
O < E, we put Z = 0 by definition. Our previous calculations
(Régnier et al. 2000) showed that correlations between words
overlapping in the same or at complementary strands for
O ∼ 10, result in changes of Z with factors of the order of 2, as
compared to the Poisson’s approximation.

Evaluation of Motif Length and Divergence
A regulatory region usually contains binding motifs with dif-
ferent characteristics involving site length and divergence. In
this case, fixing of any particular m and k could result in
extraction of only particular types of signals. To bring more

Figure 6 Structure and conservation of tandem repeats. Periodic structures of ∼ 100-bp region from even-skipped stripe 2 (A, D), even-skipped
stripe 4+6 (B), and fushi-tarazu proximal enhancer (C) are revealed by matrix search for Bicoid, Knirps, and Tramtrack, respectively (see also Table
5). The red arrows indicate sites that produce a positional weight matrix score in the 4–6 range (shadow sites). Evolutionary conservation in four
species of Drosophila is shown for eve stripe 2 (ATCCC)n (D).
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flexibility into the procedure, we first ran Scanseq with dif-
ferent m and k values and then compared the Z scores as-
signed to words seeded with these different parameters (Fig.
3). We considered that word w1 (m1, k1, Z1) dominates word
w2 (m2, k2, Z2) if m1 � m2, Z1 > Z2 and w1 covers no less than
m2 � 1 letters of w2. Then for each position l there will be a
dominant word wl seeded at this position. The Z score of this
dominant word was assigned to position l. We scanned over
all realistic ranges of signal lengths and maximal mismatch
numbers. However, since the irrelevant m and k introduce
undesirable noise, it is more practical to train the algorithm
for the best minimal mmin and maximal mmax length of the
word, as well as for the maximal number of mismatches kmax.

Construction of Predicted Maps
To generate the predicted maps of BSTF distribution, we se-
lected positions with Z scores higher than a custom cutoff
value Zmin. Depending on the chosen Zmin, the dominant se-
lected words cover a certain fraction of the DNA sequence.
Due to the dramatic difference in Z-score values generated in
different sequences for the same mmax, mmin, and kmax, we
found it practical to consider the overall length of sequence
covered with the predicted map, or coverage c, as a custom
parameter, instead of Z score. Note that for each c, there is a
corresponding Zmin. The specification of four parameters—
mmax, mmin, kmax, and c—is sufficient to generate a predicted
map. To find the best values for these parameters, we applied
explicit training on our set of enhancer sequences.
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