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c-Myc (Myc) is highly expressed in developing embryos

where it regulates body size by controlling proliferation

but not cell size. However, Myc is also induced in many

postmitotic tissues, including adult myocardium, in res-

ponse to stress where the predominant form of growth is

an increase in cell size (hypertrophy) and not number. The

function of Myc induction in this setting is unproven.

Therefore, to explore Myc’s role in hypertrophic growth,

we created mice where Myc can be inducibly inactivated,

specifically in adult myocardium. Myc-deficient hearts

demonstrated attenuated stress-induced hypertrophic

growth, secondary to a reduction in cell growth of indivi-

dual myocytes. To explore the dependence of Myc-induced

cell growth on CycD2, we created bigenic mice where Myc

can be selectively activated in CycD2-null adult myocar-

dium. Myc-dependent hypertrophic growth and cell cycle

reentry is blocked in CycD2-deficient hearts. However,

in contrast to Myc-induced DNA synthesis, hypertrophic

growth is independent of CycD2-induced Cdk2 activity.

These data suggest that Myc is required for a normal

hypertrophic response and that its growth-promoting

effects are also mediated through a CycD2-dependent

pathway.
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Introduction

During development, cell cycle progression is normally

tightly coupled to the accumulation of cell mass (cell growth)

(Neufeld and Edgar, 1998); however, in some adult postmi-

totic tissues, cell growth can become uncoupled from pro-

liferation resulting in hypertrophic growth (Dorn and Force,

2005). The molecular mechanisms that regulate hypertrophy

and the means whereby proliferation and cell growth are

normally coupled are poorly understood, but the fact that

they are coupled during development suggests common

regulatory mechanisms. One molecule that has been impli-

cated in mediating both forms of growth in many tissues,

including the heart, is c-Myc (Myc).

Myc is highly expressed in fetal, proliferating cardiac

myocytes. However, soon after birth the myocytes cease to

divide corresponding with the downregulation of Myc.

Transgenic mice that overexpress Myc in the fetal myocar-

dium develop ventricular enlargement secondary to myocyte

hyperplasia, suggesting that Myc is sufficient to induce pro-

liferative growth in the heart as well (Jackson et al, 1990).

Although Myc is not expressed in the adult heart under

normal physiological conditions, it is upregulated rapidly in

response to virtually all hypertrophic stimuli (Izumo et al,

1988) but the growth response is limited to hypertrophy and

not hyperplasia (Soonpaa and Field, 1997). The importance

of Myc in mediating this hypertrophic growth in postmitotic

myocytes is controversial but several lines of evidence sup-

port the concept that Myc can mediate cellular growth in the

absence of cell division. In Drosophila, decreased expression

of dMyc, the ortholog of mammalian Myc, in wing imaginal

disc cells reduced cell proliferation and cell size (Johnston

et al, 1999). In contrast, dMyc overexpression resulted in

increased cell size without affecting cell division. In mamma-

lian cells, deleting Myc in B cells and hepatocytes reduced

cell size (Iritani and Eisenman, 1999; Baena et al, 2005).

Conversely, previous studies from our lab demonstrated that

activation of Myc specifically in adult myocardium was

sufficient to induce hypertrophic growth and this growth

was accompanied by cell cycle reentry (Xiao et al, 2001).

Similarly, overexpression of Myc in B lymphocytes both

in vitro (Schuhmacher et al, 1999) and in vivo (Iritani and

Eisenman, 1999) is also associated with an increase in cell

size, independent of cell cycle progression.

The mechanisms whereby Myc regulates hypertrophic

growth are less clear but it is interesting to note that genes

responsible for Myc’s ability to promote cell cycling have also

been implicated in regulating cell size in certain contexts.

Myc activation in the heart is accompanied by the upregula-

tion of Cyclin D2 (CycD2) and cyclin-dependent kinase (Cdk)

-2 and -4 activities (Xiao et al, 2001). The link between this

Myc-induced Cdk activity and Myc-induced proliferation has

been well established (Amati et al, 1998). Myc stimulated

Cdk2 kinase activity, which is critical for cell cycle progres-
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sion (Amati et al, 1998), occurs in large part by antagonizing

the association of CdkIs, p27 and p21, with Cdk2 (Bouchard

et al, 1999; Perez-Roger et al, 1999). Upregulation of Myc

target genes Cdk4 and CycD2 (Coller et al, 2000) leads to

the rapid sequestration of p21 and p27, liberating Cdk2.

Consistent with this model, cells from CycD2�/� mice, unlike

wild-type controls, do not reenter the cell cycle in response to

Myc (Bouchard et al, 1999). The role of CycD2 in mediating

Myc-induced hypertrophic growth was not addressed in these

studies.

Interestingly, CycD and Cdk4 have also been implicated

in regulating cell size in Drosophila but, similar to Myc, the

effect of CycD–Cdk4 overexpression varied according to cell

type (Datar et al, 2000). In undifferentiated proliferating cells,

CycD/Cdk4 overexpression caused accelerated cell division

(hyperplasia) without affecting cell size (Datar et al, 2000).

However, in differentiated cells, CycD/Cdk4 caused cell

enlargement (hypertrophy), potentially through Rb-indepen-

dent pathways. More recent studies have suggested that

CycD/Cdk4 stimulates cell growth through regulation of

mitochondrial activity (Frei et al, 2005). In mammals,

numerous studies have implicated CycD/Cdk4 in regulating

cardiac hypertrophy; however, this connection is, so far,

based primarily on cell culture experiments. Hypertrophic

signals upregulate CycD2 expression and CycD-dependent

kinase activity in the cardiac myocytes (Li et al, 1998; Busk

et al, 2002). Although forced expression of CycD2 in cardiac

myocytes provoked cell division and not hypertrophy (Busk

et al, 2005; Pasumarthi et al, 2005), CycD2 was overexpressed

at a developmental time point where the myocytes were still

capable of reentering the cell cycle. Overexpression of CycD2

in adult, postmitotic cardiac myocytes has not been reported.

However, inhibiting G1-Cyc/Cdk activity in adult myocytes

blocks hypertrophic growth (Nozato et al, 2001).

To determine the role of Myc in regulating hypertrophic

growth specifically in adult, postmitotic myocardium and

whether its growth effects are mediated through CycD2-

dependent pathways in the heart, we developed inducible,

cardiac-restricted Myc-deficient mice and a model of induci-

ble, myocardial-specific Myc expression in a CycD2-null

background. Deletion of Myc attenuated hypertrophic growth

in response to both hemodynamic and pharmacologic hyper-

trophic stimuli and resulted in an increase in cardiac apop-

tosis. Myc-induced hypertrophic growth was dependent

on the presence of CycD2 similar to what has been reported

for Myc-induced cell cycle reentry, but was independent of

Cdk2 activity.

Results

Creation of inducible, cardiac-specific Myc-deficient

mice

The role of Myc in cell cycle control and cellular proliferation

has been well studied and Myc has been shown to be critical

for the regulation of mammalian body size during develop-

ment by controlling cell number (Trumpp et al, 2001).

However, Myc is also expressed in many adult tissues in

pathological conditions, including cardiac hypertrophy,

where cell growth but not cell division occurs. Myc’s role

in regulating normal physiology in these adult tissues

remains unknown. To explore the role of Myc in cardiac

hypertrophy in vivo, we created inducible Myc-deficient mice

where Myc can be specifically deleted in adult myocardium

with a tamoxifen-regulated Cre, MerCreMer (MCM). When

Cre is activated in these mice (MCM;Mycfl/fl) with 4-hydro-

xytamoxifen (4-OHT), the resulting recombination excises

Myc coding exons 2 and 3 (Figure 1A). This deletion can

be identified with DMycfl primers, which give a B600 bp

product when recombination has occurred (de Alboran et al,

2001). PCR performed on total ventricular DNA from control

(MCM;Mycþ /þ ) or Myc-null (MCM;Mycfl/fl) mice with

DMycfl primers demonstrated no spontaneous recombination

in the absence of ligand. However, 4-OHT treatment resulted

in recombination in the ventricles of MCM;Mycfl/fl mice

(Figure 1B). This recombination only occurred in the hearts

of the 4-OHT-treated, MCM;Mycfl/fl mice and was not seen in

other tissues (Figure 1C). As Myc is expressed at very low

levels in adult myocardium at baseline, its expression was

induced by subjecting mice to hemodynamic or pharmacolo-

gical hypertrophic stimuli in vivo. MCM;Mycfl/fl mice with

or without 4-OHT treatment underwent Sham or transverse

aortic constriction (TAC) operation to induce cardiac hyper-

trophy. TAC induced a 9.7-fold increase in Myc protein

expression in vehicle-treated MCM;Mycfl/fl mice when com-

pared to Sham-operated mice. Pretreatment of MCM:Mycfl/fl

mice with 4-OHT reduced the expected increase in Myc

protein after hemodynamic load by 66.5% (9.6770.44-

versus 3.2472.11-fold, Po0.005; Figure 1D). This degree

of recombination is consistent with previous reports using

the MCM mice (Sohal et al, 2001) and likely reflects in part,

that the heart consists of a number of different cell types

although the majority of the protein arises from authentic

cardiac myocytes. To confirm this finding, we analyzed Myc

expression in total ventricular RNA prepared from treated
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Figure 1 Creation of inducible cardiac-specific Myc-deficient mice.
To create inducible, cardiac-restricted Myc-deficient mice, we bred
mice with a floxed Myc allele to mice expressing a tamoxifen-
inducible Cre only in the heart. (A) Schematic diagram depicting the
floxed Myc allele (,¼DMycfl primers; b¼LoxP sites). (B, C) PCR
utilizing DMycfl primers was performed on genomic DNA from the
indicated tissues and genotypes. (D) Myc protein expression in
ventricular lysates from vehicle- and 4-OHT-treated MCM;Mycfl/fl

mice after Sham or TAC surgery was determined by Western
blotting. (E) RPA analysis on total ventricular RNA from
MCM;Mycfl/fl mice after ISO stimulation.
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or untreated MCM;Mycfl/fl hearts after stimulation with a

pharmacologic hypertrophic agonist, isoproterenol (ISO).

Myc expression was dramatically attenuated in response to

ISO stimulation in 4-OHT treated MCM:Mycfl/fl hearts in vivo

(Figure 1E).

Cardiac hypertrophy is attenuated in Myc-deficient mice

after hemodynamic stress

MCM;Mycfl/fl mice were born with expected Mendelian

numbers and appeared phenotypically normal. Baseline left

ventricular (LV) size, function and histology were normal

in MCM;Mycfl/fl mice after 4-OHT treatment to delete Myc

(Figure 2A and Supplementary Table 1). To determine the role

of Myc in hypertrophic growth, we subjected adult mice to a

hemodynamic stress induced by TAC surgery and measured

the increase in heart weight normalized to body weight

(HW/BW) after 2 weeks. Vehicle-treated MCM;Mycfl/fl mice

demonstrated the expected enhanced LV wall thickness

(Figure 2A) and concentric hypertrophy after TAC, while

4-OHT-treated MCM;Mycfl/fl in the absence of Myc did not.

When compared to Sham-operated animals, MCM:Mycþ /þ

(4.7470.01 versus 7.6270.98 mg/g, Po0.001; Figure 2B)

or vehicle-treated MCM;Mycfl/fl (5.0570.16 versus 7.427
0.24 mg/g, Po0.001; Figure 2B) with intact Myc expression

demonstrated the expected increase in HW/BW ratio after

TAC. In contrast, the hypertrophic response in Myc-deficient

mice was attenuated. Although 4-OHT-treated MCM;Mycfl/fl

mice tolerated TAC hemodynamically over the period studied

and did not develop left ventricular dysfunction (Supple-

mentary Table 1), they developed less hypertrophy (4.857
0.17 versus 6.0170.29 mg/g, Po0.01). While TAC induced

a 46.9% increase in heart weight in vehicle-treated MCM;

Mycfl/fl mice compared to Sham-operated mice, heart weight

only increased 23.9% in 4-OHT-treated MCM:Mycfl/fl mice

after TAC (Po0.001).

To confirm that the reduced HW/BW ratio in Myc-deficient

hearts after pressure-overload represented a reduction in cell

growth, we measured cardiac myocyte fiber width on

wheat germ agglutinin-stained myocardial sections in these

animals (Figure 3A). Cardiac myocyte width was 45% greater

in control vehicle-treated MCM;Mycfl/fl subjected to TAC

compared with 4-OHT-treated MCM;Mycfl/fl mice (17.587
0.33 versus 12.0870.28 mm, Po0.01; Figure 3B). Consistent

with this reduction in cardiac hypertrophy, Myc-deficient

mice also showed attenuated upregulation of hypertrophic

marker genes such as atrial natriuretic factor (ANF) and

b-myosin heavy chain (bMHC) mRNA compared with

untreated MCM:Mycfl/fl mice after TAC (Figure 3C).

Interestingly, there was a significant increase in interstitial

fibrosis as measured by picrosirius red staining of ventricular

sections from 4-OHT treated MCM;Mycfl/fl mice subjected

to Sham versus TAC (1.0070.04 versus 1.4870.09-fold,

Po0.01; Figure 4A and B). To determine if this was in

response to cell loss, we assessed apoptosis by TdT-mediated

dUTP-biotin nick-end labeling (TUNEL) staining. Apoptotic

cardiomyocytes were rarely detected in MCM;Mycfl/fl mice

with or without 4-OHT treatment mice that underwent sham

operation. However, apoptosis increased 12-fold in 4-OHT-

treated MCM;Mycfl/fl mice subjected to TAC compared to

untreated Sham animals (Po0.001; Figure 4C), suggesting

Myc was also necessary for cardiac myocyte survival with

hypertrophic stimuli.

Myc-deficient mice display reduced cardiac growth and

increased apoptosis with chronic isoproterenol infusion

To determine if this attenuated hypertrophy and fibrosis was

a general response to hypertrophic stimuli, we treated MCM:

Mycþ /þ or MCM;Mycfl/fl mice with 4-OHT for 5 days and

then subjected the mice to an infusion of ISO or vehicle for

1 week. ISO stimulation resulted in a 30.4% increase in

HW/BW ratio in 4-OHT-treated MCM:Mycþ /þ mice com-

pared to only a 17.4% increase in ISO-treated, Myc-deficient

MCM;Mycfl/fl mice (Po0.05; Figure 5A). ISO stimulation

increased heart-to-body weight ratio in 4-OHT-treated control

MCM:Mycþ /þ mice (5.1770.12 versus 6.7470.40 mg/g,

Po0.01; Figure 5A). In contrast, MCM;Mycfl/fl mice demon-

strated no significant increase (4.8370.62 versus 5.677
0.33 mg/g, P¼NS). This difference in HW/BW ratio was

paralleled by a 19.4% increase in cardiac myocyte fiber

width in ISO-stimulated MCM:Mycþ /þ mice when compared

to fiber width in vehicle-treated MCM:Mycþ /þ or MCM;

Mycfl/fl hearts (13.7970.56 versus 11.5570.30 or

11.0470.14 mm, Po0.01; Figure 5B). There was no significant

increase in cardiac myocyte fiber width in ISO-treated MCM;

Mycfl/fl hearts compared to vehicle-treated MCM;Mycfl/fl

hearts, suggesting the reduced HW/BW was a result of

attenuated myocyte hypertrophy. Similar to the results in

the TAC model, ISO treatment in MCM;Mycfl/fl mice was

also accompanied by increased interstitial fibrosis as seen

on H&E-stained myocardial sections (Figure 5C-b). To further

explore the cause for this, we quantified TUNEL þ ve nuclei
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Figure 2 Myc-null mice decrease cardiac mass and cardiac myo-
cyte size. MCM;Mycþ /þ and MCM;Mycfl/fl mice were treated with
vehicle or 4-OHT for 5 days to induce recombination and then
subjected to Sham or TAC surgery and followed for 2 weeks.
(A) H&E-stained, perfusion-fixed MCM;Mycfl/fl hearts demonstrat-
ing development of concentric LV hypertrophy in vehicle-treated
MCM;Mycfl/fl mice. (B) To determine if myocardial hypertrophy had
occurred, heart weights (mg) normalized to body weight (g) were
analyzed. *Po0.05 for 4-OHT-treated MCM;Mycþ /þ mice after TAC
versus MCM;Mycþ /þ Sham animals. **Po0.05 for vehicle-treated
MCM;Mycfl/fl miceþTAC versus Sham animals or 4-OHT-treated
MCM;Mycfl/fl miceþTAC (n¼ 6 in each group).
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on sections of ventricular tissue. As shown, ISO-treated

MCM;Mycfl/fl ventricles displayed a 6.3-fold increase in

TUNEL þ ve nuclei (Po0.01; Figure 5D), suggesting that

Myc was also necessary for cardiac myocyte survival with

hypertrophic stimuli.

Inhibition of Myc in vitro blocks ET-1-stimulated

hypertrophic growth and CycD2 upregulation

To explore the mechanisms underlying the growth effects of

Myc in cardiac myocytes, we utilized an in vitro model of

hypertrophic growth by stimulating neonatal rat ventricular

myocytes (NRVMs) with endothelin-1 (ET-1). NRVMs were

serum starved for 48 h and then exposed to ET-1, which

upregulates Myc expression (Figure 6A) and induces hyper-

trophic growth (Figure 6Ba versus b) without increasing cell

number (data not shown). To confirm our in vivo results, we

blocked ET-1-induced Myc expression with an adenovirus

overexpressing an siRNA to Myc (Ad-siMyc). Overexpressing

a control protein (Ad-LacZ) or scrambled siRNA sequence

(data not shown) had no effect on Myc induction.

Myc is well known to regulate the expression of a number

of G1 cyclins and Cdk activities. As these proteins are also

regulated in cardiac myocytes after hypertrophic agonists, we

examined the expression of a panel of cell cycle activators

(Figure 6A). Although stimulation of NRVMs with ET-1

upregulated CycD2 leading to increased Cdk2 and 4 activity,

these changes were blocked by inhibiting Myc expression

(Figure 6A). Inhibiting ET-1-induced Myc expression also

prevented the expected increase in myocyte size (Figure

6Bb versus d) presumably though the inhibition of Myc-

dependent protein synthesis seen in control myocytes after

ET-1 stimulation (1.0070.05 versus 1.5470.18, Po0.01;

Figure 6C). Although ET-1 induced both ANF and b-MHC,

the expression of these hypertrophic markers was attenuated

by inhibiting Myc expression, similar to the in vivo results

(Figure 6D). It is well known that Cdk2 and 4 activity

cooperate for Myc-induced cell cycle progression but the

role of these proteins in mediating Myc-induced hypertrophic

growth is unknown.

CycD2 is necessary for Myc-induced cardiac

hypertrophy

Our previous studies had demonstrated that cardiac-specific
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Figure 3 Myc-null mice decrease cardiac mass and cardiac myocyte size. MCM;Mycfl/fl mice with 5 days of 4-OHT or vehicle treatment
underwent Sham or TAC surgery. Hearts were harvested after 2 weeks and histological analysis was performed. (A) H&E (a–d) and wheat germ
agglutinin (e–h)-stained myocardial sections from Sham-operated MCM;Mycfl/fl mice treated with vehicle (a and e) or 4-OHT (b, f) versus TAC-
operated MCM;Mycfl/fl treated with vehicle (c, g) or 4-OHT (d, h). Scale bar¼ 70mm. (B) Fiber width of wheat germ agglutinin-stained hearts
from Sham and TAC mice were quantified (n¼ 4 in each group). *Po0.01 for MCM;Mycfl/fl with vehicleþTAC versus MCM;Mycfl/fl with
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could stimulate both cardiac myocyte hypertrophy and cell

cycle reentry but not proliferation when compared to simi-

larly treated nontransgenic (NTg) littermates (Xiao et al,

2001). To determine if Myc-induced hypertrophic growth

was CycD2 dependent, as has been described for Myc-

induced cell cycle entry (Bouchard et al, 1999; Perez-Roger

et al, 1999), we created MycER mice deficient for CycD2.

Although Myc activation induced CycD2 expression and Cdk2

and 4 activity in MycER myocardium, no upregulation was

seen in similarly treated CycD2-null mice (Figure 7A). Treat-

ment of MycER;CycD2þ /þ mice with 4-OHT for 1 week

resulted in a 26.6% increase in HW/BW ratio (4.3670.17

versus 5.5270.19, Po0.01; Figure 7B). However, activation

of Myc in CycD2-null mice did not result in a significant

change in cardiac mass (4.5170.11 versus 4.5370.19,

P¼NS; Figure 7B). Likewise, the 85-fold increase in BrdU-

positive nuclei in MycER;CycD2þ /þ seen after 4-OHT activa-

tion of Myc (0.0370.03 versus 2.5470.8; Po0.01) was

abolished in MycER;CycD2�/� mice (0.0470.03 versus

0.3570.11, P¼n.s.; Figure 7C and D).

Myc-induced cell cycle reentry but not hypertrophic

growth is Cdk2 depend-

To clarify if the lack of hypertrophic growth in MycER;

CycD2�/� mice was due to a lack of CycD2 and potentially

Cdk4 activity versus the inability to upregulate Cdk2 activity

in these hearts, we examined the role of Cdk2 and Cdk4 in

Myc-induced hypertrophic growth and protein synthesis

in vitro. NRVMs infected with an adenovirus overexpressing

Myc (AdMyc) increased Cdk2 activity and to a lesser extent

Cdk4, similar to its effects in vivo (Figure 8A). To block Cdk

activity, we coinfected AdMyc cultures with a dominant-

negative Cdk2 (Ad-dnCdk2) or Cdk4 (Ad-dnCdk4) virus.

These vectors specifically blocked Myc-induced activation

Cdk2 or 4 activity (Figure 8A). The effect of these inter-

ventions on cardiac myocyte cell size was assessed with

forward scatter by flow cytometry. Forced expression of

Myc increased NRVM forward scatter from 420.57103.3 to

474.07119.8 indicating larger NRVMs. Although inhibition

of Cdk2 activity had no effect on Myc-induced hypertrophic

growth (470.27120.7), blocking Cdk4 activity attenuated

Myc-induced hypertrophy (439.5797.7). Similarly, overex-

pression of Myc induced protein synthesis by 47% as mea-

sured by [3H]phenylalanine incorporation, which was not

affected by inhibiting Cdk2 activity but was prevented

by blocking Cdk4 activity (Figure 8C). In contrast, both

Ad-dnCdk2 and Ad-dnCdk4 inhibited the Myc-induced 6.2-

fold increase in DNA synthesis (6.2371.23 versus 1.1870.4

or 3.6470.33-fold, Po0.01; Figure 8D), suggesting that while

Myc-dependent reactivation of DNA synthesis in cardiac

myocytes requires both Cdk2 and 4, Myc-stimulated cell

growth is Cdk2 independent.

Discussion

We have previously shown that overexpression of Myc is

sufficient to induce cardiac hypertrophy in adult myocardium

(Xiao et al, 2001). However, whether Myc is also necessary

for cell growth and the mechanisms whereby Myc might

induce cardiomyocyte hypertrophy remained unknown. In

the present study, we investigated Myc’s role in cardiac

hypertrophy by inactivating Myc both in vivo and in vitro.

The results demonstrate that an Myc–Cyclin D2-dependent
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Figure 4 Myc-null hearts demonstrate increased fibrosis and apoptosis after TAC. (A) Representative picrosirius-stained myocardial sections
from vehicle- or 4-OHT-treated MCM;Mycfl/fl mice subjected to Sham or TAC surgery. Scale bar¼ 70mm. (B) The amount of ventricular fibrosis
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pathway is required for hypertrophic growth in cardiac

myocytes. Deleting Myc in adult myocardium attenuated

but did not block cardiac hypertrophy completely. This

reduction in cardiac myocyte size was accompanied by a

reduction in fetal gene markers normally upregulated in

hypertrophic hearts, suggesting that the entire hypertrophic

phenotype, not just growth, was suppressed. In contrast,

inhibition of Myc in cultured cardiac myocytes completely

abolished the hypertrophic response induced by ET-1. One

explanation for this divergent response may simply be related

to simple technical differences between the two models. ET-1

predominantly stimulates G-protein-coupled, endothelin-A

receptors in cardiac myocytes, which activate a downstream

signaling cascade mediated by the G(q) heterotrimeric G

proteins (Sugden and Clerk, 2005). In contrast, TAC initiates

a host of direct and indirect autocrine and paracrine neuro-

humoral factors, which have been implicated in mediating

cardiac growth (Dorn and Force, 2005). It is also possible that

the relative role of Myc in the various forms of cardiac

hypertrophy explored here varies. Additionally, the time

course of the two models differed greatly. The in vitro

experiments determined the relative importance of Myc to

protein synthesis at an early time point when Myc is highly

expressed. In contrast, the in vivo studies compared hyper-

trophic responses after 1 and 2 weeks of hemodynamic stress.

It is possible that Myc is more important to the initial

hypertrophic response and that later redundant mechanisms

are able to at least partially compensate. This may explain

why the observed attenuation of hypertrophy was greater in

the shorter, ISO-stimulated model.

The finding that Myc was important for myocyte survival

in hypertrophy was unexpected. Hypertrophic agonists led

to a small, but significant increase in apoptosis in Myc-null

hearts that resulted in increased interstitial fibrosis. One of

the paradoxes facing investigators studying Myc function is

the observation that both Myc over- and underexpression

results in apoptosis. Of the two, Myc-induced apoptosis has

been studied in much more detail (Pelengaris et al, 2002).

Ectopic expression of Myc sensitizes cells to a wide range of

apoptotic stimuli including tumor necrosis factor-alpha

(TNFa) (Klefstrom et al, 1994) by inducing cytochrome c

(Morrish et al, 2003) release from the mitochondrial inter-
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membrane space into the cytosol where it can promote

apoptosis (Iaccarino et al, 2003). The link between Myc

deficiency and apoptosis is less clear, but may also be medi-

ated through a mitochondrial pathway. A large proportion of

the nuclear-regulated mitochondrial genes are direct Myc

targets (Morrish et al, 2003), and are induced in cells upon

growth stimulation. Ensuring that the cell maintains the

correct stoichiometry of respiratory complex subunits and

their correct assembly in the mitochondria is critical for

adapting to the increased metabolic demands associated

with cell growth (Poyton and McEwen, 1996). Disruption of

this balance can have detrimental effects, and examples exist

of mitochondrial dysfunction that result from both reduced

(Schapira and Cock, 1999) or increased expression of genes

involved in mitochondrial function, such as adenine nucleo-

tide translocase-1 (Bauer et al, 1999) and the mitochondrial

hinge protein (Okazaki et al, 1998). Therefore, Myc under-

expression could lead to mitochondrial dysfunction and

apoptosis by deregulating genes involved in mitochondrial

function.

A major finding of this study is that a CycD2-dependent

pathway mediates Myc-induced hypertrophic growth,

although the end effectors remain unclear. It is generally

accepted that Cdk2 kinase activation is an essential step in

Myc-induced G1-exit and that induction of CycD2 is a critical

preliminary step in this process, as the newly formed CycD/

Cdk4 complexes sequester Cdk inhibitors p27 and p21

(Bouchard et al, 1999; Perez-Roger et al, 1999). We found

that both Myc-induced cardiac cell cycle entry and cellular

growth was blocked in CycD2-null mice. However, in contrast

to its effects on cell cycle progression, Myc-induced hyper-

trophic growth was independent of Cdk2 activity. These

results are consistent with the preferential role of Cdk2

in cardiac hyperplasia not hypertrophy, shown by forced

expression in vivo (Liao et al, 2001). Given that Cdk2 is

critical for Myc’s proliferative effects, whether CycD2 leads to
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proliferation or hypertrophy might be dependent on whether

excess Cdk inhibitors are present. Thus, the differential

growth effect of CycD2 in proliferative versus postmitotic

cells may be attributable to a developmental increase in Cdk

inhibitors, as is seen in the postnatal heart (Poolman et al,

1998). This report represents the first evidence that Myc-

dependent hypertrophic growth is also CycD2 dependent

and that the pathways controlling cell cycle progression and

cellular growth diverge at CycD.

Several lines of evidence suggest that G1 cyclins and Cdks

might be critical for the control of cell growth. In Drosophila,

CycD/Cdk4 stimulates and controls cell growth in postmitotic

cells (Datar et al, 2000). This CycD/Cdk4-induced cell growth

was dependent on a gene encoding the mitochondrial ribo-

somal protein, mRpL12 (Frei et al, 2005). In the absence of

mRpL12, cells demonstrated reduced growth and mitochon-

drial activity suggesting that CycD/Cdk4 controls cell growth

via a mitochondrial-dependent pathway. A number of reports

have implicated CycD/Cdk4 in regulating cardiac hypertro-

phy in mammalian cells as well, although the downstream

effectors have not been identified (Busk et al, 2002;

Tamamori-Adachi et al, 2002). Likewise, several reports

have documented that inhibiting G1-Cyclin/Cdk activity in

adult, postmitotic cardiac myocytes can attenuate hyper-

trophic growth (Tamamori et al, 1998; Nozato et al, 2001).

We recently demonstrated that cardiac hypertrophy is accom-

panied by increased RNA polymerase (pol) III transcription,

which is related to changes in both the activity and level

of the RNA pol III-specific transcription factor TFIIIB

(Goodfellow et al, 2006). Myc can potentiate TFIIIB activity

directly by binding and activating transcription (Gomez-

Roman et al, 2003) or potentially indirectly, by removing

the inhibiting effects of the retinoblastoma gene product (Rb).

Hypophosphorylated, active Rb binds TFIIIB and prevents its

interactions with TFIIIC or RNA pol III (Larminie et al, 1997).

Myc-induced Cdk activity could potentially remove this inhi-

bitory effect. Given the fundamental role Myc plays in

regulating cell growth, it will be critical in future studies to

determine the role and mechanisms whereby CycD/Cdk4

might induce cardiac hypertrophy.
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Materials and methods

Transgenic mice and animal studies
The inducible a-myosin heavy chain (a-MHC)-MycER transgenic
mice have been described (Xiao et al, 2001). Myc-floxed mice
(Mycfl/fl) were provided by Dr F Alt and genotyped as described (de
Alboran et al, 2001). The tamoxifen-inducible MerCreMer (MCM)
mice were generated by Dr J Molkentin under the control of the
a-MHC promoter (Sohal et al, 2001). To activate Myc or Cre in
these transgenic mice, 1 mg of 4-OHT (Sigma) dispersed in peanut
oil by sonication was injected intraperitoneally daily. Control
littermates were injected with peanut oil alone. To induce excisional
recombination of Myc, mice were treated with 4-OHT for 5 days. To
identify recombination, PCR conditions were chosen for DMycfl
primers that do not amplify the 42.5 kb fragment in wild-type mice
and no product is obtained. CycD2-deficient mice were a kind gift
from Dr P Sicinski (Sicinski et al, 1996). All mice were maintained
on a C57 (MycER, CycD2) or FVB (MCM;Mycfl/fl) background.
Animals were handled in accordance with institutional guidelines.

For TAC, a fixed pressure overload was obtained by surgically
constricting the transverse aorta, as has been previously described
(Rockman et al, 1994). Age-matched Sham-operated animals
underwent the identical surgical procedure, except that the aortic
constriction was not placed. For the ISO infusion model, 7-day
osmotic minipumps (Alzet, model 2001) loaded with 0.2 ml of ISO
(28 mg/ml per 25 g body weight) were implanted into the sub-
cutaneous space of 10-week-old mice via a small intrascapular
incision.

Cell culture and adenovirus preparation
NRVM were prepared as previously described (MacLellan et al,
2000). For all cell culture experiments, NRVM were serum-starved
in serum-free DMEM for 36 h before use. Construction of AdMyc
(Mitchell and El-Deiry, 1999), dnCdk2 and dnCdk4 (Ferguson et al,
2000) has been previously described. Viruses were propagated and
titered according to established protocols (MacLellan et al, 2000).

To create an siRNA adenovirus to Myc, a shuttle plasmid was
constructed by inserting a 21-mer RNA oligonucleotide directed
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against the rat and mouse Myc sequence (50-aagaggcggacacac
aacgtc-30) into the unique ApaI and HindIII sites of pDC.silen-
cer(U6), which was kindly supplied by Dr Abdellatif (Yue et al,
2004). Adenoviruses were propagated and titered according to
published protocols (MacLellan et al, 2000). For cell culture
experiments, NRVM were infected with adenoviruses 36 h before
treatment.

Protein analysis
Western blots were performed on protein extracts from whole
ventricles, according to established protocols (MacLellan et al,
2000). Antibodies were obtained from Santa Cruz Biotechnology,
Inc. unless otherwise noted. Protein expression was visualized
using horseradish peroxidase-conjugated secondary antibodies and
enhanced chemiluminescence reagents (Amersham Biosciences).
Immune complex kinase assays for Cdk2 and Cdk4 activity were
performed on 500mg of ventricular lysates (Li et al, 1998). The
immunocomplexed pellet was incubated in 30ml kinase buffer with
1mg of Rb (Santa Cruz Biotech.) or histone H1 (Upstate Biotech,
Inc.) substrate, 5 mCi of [g-32P]ATP, 1 mM DTT and 5mM ATP and
then electrophoresed through 10% acrylamide gels.

Histology and morphometric analysis
Hearts were fixed overnight in 4% paraformaldehyde buffered with
PBS and routinely processed. BrdU labeling was achieved by
injecting 50 mg of BrdU per gram of body weight intraperitoneally.
To identify DNA synthesis, paraffin-embedded sections were probed
with antibodies against BrdU (Zymed). Antibody against sarcomeric
myosin heavy chains (MF20; Developmental Hybridoma Studies
Bank) and diamidinophenolindole (DAPI) were used according to
the manufacturer’s instructions. Apoptosis was determined using
ApopTag fluorescein in situ apoptosis detection kit (Chemicon) or
TACSTM 2 TdT blue label in situ apoptosis detection kit (Trevigen).
Apoptotic cells were detected with fluorescein conjugate or
visualized with an enzymatic reaction using the TUNEL method.
The apoptosis rates were determined by examining 42500 cardiac
nuclei per heart sections. Secondary antibodies were purchased
from Molecular Probes. Myocyte fiber widths were measured
on perfusion-fixed myocardial sections using a computerized
morphometric system (SigmaScan, Systat Inc.). All myocytes were
measured at the same magnification with the observer blinded to
the genotype of the animals.

Northern blot analysis
Total RNA was isolated from ventricles using RNA STAT 60 Kit (Tel-
Test, Inc.). Northerns blots were performed according to established
protocols using radioactive (MacLellan et al, 2000) or digoxigenin
(DIG)-labeled probes (MacLellan et al, 2000). The oligonucleotide
and cDNA probes used have been reported (Ross et al, 1998).

Measurement of myocyte cell number, cell size, DNA and
protein synthesis
To determine myocyte cell number, DNA and protein synthesis,
serum-starved myocytes were infected with the indicated adenovir-
al vectors (50 PFU/myocyte). To determine cell number, myocytes
were trypsinized and total cell counts determined using a Coulter
Counter (Becton-Dickinson). To estimate protein synthesis, myo-
cytes were labeled with 5mCi/ml of [3H]phenylalanine (Amersham
Corp.) for 4 h after which cell precipitates were solubilized and
counted. To determine the relative DNA synthesis, myocytes were
cultured in media containing 5mCi/ml of [3H]thymidine (ICN) for
6 h and thymidine incorporation quantified. Flow cytometry to
assess cell size was performed at the UCLA Flow Cytometry
Laboratory based on forward scatter as previously described (Gylys
et al, 2004). Aliquots of 105 cells in 500ml 1�PBS were dispensed
into small conical tubes (Falcon). At least 10 000 events were
collected before analysis. All samples were analyzed using a Becton
Dickinson FACScan analytic flow cytometer (Becton Dickinson)
with FCS Express software (DeNovo).

Statistical analysis
All data are presented as mean7s.e.m. except results of forward
scatter, which are presented as mean7s.d. Results were compared
by analysis of variance and Fisher’s PLSD tests, using significance
at a P-value o0.05.

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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