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Abstract
Electrical impedance tomography (EIT) is a non-invasive technique used to image the electrical
conductivity and permittivity within a body from measurements taken on the body’s surface. High-
quality static images are required for many medical imaging applications. Forming such images
usually requires an accurate way to calculate the expected voltages on the surface resulting from the
application of known currents to that surface. This is described as the forward problem. This paper
introduces a new method to improve static images by using an improved forward solution which
estimates a different conductivity value for each applied current pattern. This method, creating an
automatically adjusting forward solution, can improve the sensitivity of static images under many
EIT imaging applications. It does so by reducing the boundary effects caused by electrodes and any
layered structures near them such as skin. The drawback of this method is that circularly symmetric
structures of interest may be suppressed or eliminated from the images. The performance of this
method is illustrated in a 2D circular phantom with simulation data from both a FEM model and
experimental data.
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1. Introduction
Electrical impedance tomography (EIT) is a non-invasive technique used to image the electrical
conductivity and permittivity within a body from measurements taken on the body’s surface.
Accurate static imaging requires an accurate forward model as a reference in order to show the
absolute conductivity distribution. The quality of static imaging is limited by the effects of
many unknowns in the forward model. Difference imaging is often preferred to static imaging,
because it can eliminate the effects of many of these unknowns. However, difference imaging
is not suitable for many medical applications such as tumor detection, or imaging hemorrhagic
or ischemic stroke, when a normal or control image is not available (McEwan et al 2005).

One challenge in achieving an accurate forward solution is to account properly for the contact
impedance of the electrodes. Many investigators have addressed this problem, including the
finite element method (FEM) reported by Polydorides and Lionheart (2002) and Kaipio et al
(2000), and the complete electrode model reported by Cheng et al (1989) and Somersalo et
al (1992). Although these and other improvements in the performance of static imaging have
occurred, the boundary layer effects caused by the electrodes and the underlying tissues still
exist in the reconstructed images.
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A related difficulty in forming static images is to account for the boundary layer effects at the
electrodes. To address this problem, a data calibration scheme was proposed by Soni et al
(2003). The ratio of the homogeneous forward solution to the corresponding homogeneous
experimental data was calculated and called ‘scaling factors’. These scaling factors are
averaged over each excitation pattern. This scheme works less well at high spatial frequency
because of many zeros or terms close to zero in the excitation patterns and in the corresponding
responses. These small values cause large errors in the scaling factors needed for the forward
solution. Therefore, the boundary effect problem remains present, although reduced.

Because of the scalp, skull and CSF, layer effects are more severe in brain imaging (Bayford
et al 2001,Tidswell et al 2001a). In a study of a realistic, head-shaped tank reported by Tidswell
et al (2001b), localization errors in the reconstructed images were between 3.1% and 13.3%
without a skull and between 10.3% and 18.7% with a human skull. Recently, Bagshaw et al
(2003) reported difference imaging of human brain function and concluded that “The
improvements in image quality found when using a more accurate forward model were more
significant than the effects of the electrode localization accuracy or the resolution.”

In this paper, we introduce a new method to improve the forward solution by automatically
finding a best conductivity value for each current pattern. The method offers a better reference
voltage to improve the sensitivity of a static image so that the quality of a static image can
approach that of a difference image. This method, which automatically adjusts the forward
solver, may also reduce the effect of the electrodes and the effects of underlying layered
structures. The penalty of this method is that a circularly symmetric structure of interest may
be suppressed or eliminated from the images. The performance of this method is illustrated in
a 2D circular geometry using an analytical forward solution for the homogenous case and
experimental measurement data from a saline-filled circular tank and ACT 3 (Cook et al
1994). The reconstruction algorithm used was NOSER (Simske 1987, Cheney et al 1990).

2. Methods
2.1. NOSER: Newton’s one-step error reconstructor—The Newton’s one-step error
reconstruction (NOSER) algorithm was developed for circular electrode geometries. It begins
with a guess of an initial distribution of conductivities σ→  or resistivity ρ→ , where ρn is the
reciprocal of σn, and n is the total number of mesh elements. Current patterns are applied to
the 32 electrodes, and potentials are measured on each electrode V→k . Also, the potential on the
electrodes U→k (ρ→) with the guess ρ→  can be computed. Our goal here is to minimize the sum of
the squares of the differences between two potentials:

E(ρ→) = ∑
k=1

L −1
∣ ∣ V→k − U→k(ρ→) ∣ ∣

2
= ∑
k=1

L −1
∑
l=1

L
(Vl

k − Ul
k(ρ→))2. (1)

The minimization of E(ρ→) is equivalent to finding the zero point of the derivative of E(ρ→) as

Fn(ρ
→) = ∂E(ρ→)

ρn
= − 2 ∑

k=1

L −1
∑
l=1

L
(Vl

k − Ul
k(ρ→)) ∂Ul

k(ρ→)

∂ρn
. (2)

We then solve Fn(ρ
→) = 0. Using Newton’s method, the solution can be obtained iteratively.

The equation is
ρ→new = ρ→old − JF

−1(ρ→old)F (ρ→old). (3)

The procedure can be summarized as follows.

1. Choose the best constant resistivity ρ→old = c(1, 1, …, 1).
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2.

Compute 
∂Ul

k(ρ→old)
∂ρn

, as 
∂Ul

k

∂ρn
= ∑s=1

L −1
T→s, ∂U k

∂ρn

T→ s, T→ s T→ s, where ∗,∗  denotes the

vector inner product and T→ s is a set of orthogonal current patterns.

3.
Approximate T→ s, ∂U k

∂ρn
≈ 1

ρn
2 ∫Mn

∇uk ⋅ ∇u s, where Mn is the nth mesh element.

4.
Approximate JF (ρ

→) = An,m + γAn,mδn,m, where An,m = 2∑k=1
L −1∑l=1

L ∂Ul
k

∂ρn

∂Ul
k

∂ρm
,

and δn,m is a delta function, which equals 1 if n = m and zero otherwise. Gamma, γ,
is the regularization parameter, which should be chosen to be as small as possible
consistent with a stable solution. Practically, values between 0.5 and 0.1 are
satisfactory; we used 0.5 for the results in this paper.

5. Compute ρ→new by Newton’s method and display the result on the chosen mesh.

The NOSER algorithm was first presented (Simske 1987, Cheney et al 1990) using resistivity
ρ to explain the concept. We have continued that practice for the above section of this paper,
to facilitate comparison with the original. More recently, we have found it to be more useful
and more consistent with the work of others in the field, to study conductivity, the reciprocal
of resistivity. The following discussion and results are therefore expressed as conductivity.

2.2. Classic forward solution—The forward problem is described as follows: given a
homogeneous conductivity σ0 (sigma_zero = 1) inside the body and the current density j on
its boundary, determine the voltage on the boundary. Inside the body, ∇ ⋅ σ0∇u(r, θ) = 0 in
0 ≤ r ≤ r0 and 0 ≤ θ ≤ 2π, where r0 is the radius of a circular tank and θ is the angle subtended
by one electrode. On the boundary, we apply a spatially trigonometric current pattern, resulting

in the current density σ0
∂u(r0, θ)

∂r = j(θ), and measure the voltage u(r0,θ). By using the ‘Ave-
Gap model’ (Cheng et al 1989), the current density on the electrode can be expressed as

j k(p) = { Il
Areal

, for p ∈ el

0, for p ∉ ⋃l=1
L el.

(4)

Here L denotes the number of electrodes; el is the portion of the surface in contact with the
lth electrode; Il is the current sent to the lth electrode and Areal is the area of the lth electrode.

Therefore, the current density on the boundary is j k (θ) = ∑l=1
L Il

k

Areal
χe(θ), where

χe(θ) = {1, for θ ∈ el

0, for θ ∉ el.

Then, the resulting voltage using the Ave-Gap model can be written as

Ul = U (θl) = 1
Areal

∫elu(r0, θl)ds.

We can obtain Ul by solving Laplace’s equation

∇ ⋅ σ∇u(r, θ) = 0 in 0 ≤ r ≤ r0, 0 ≤ θ ≤ 2π σ
∂u(r0, θ)

∂ν = j(θ). (5)
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For a unique solution, we need two constraints

∫02π j(θ)dθ = ∫Sσ
∂u(r0, θ)

∂ν ds = ∫B∇ ⋅ σ∇u (r0, θ)dp = 0(Divergence theorem). (6)

(Divergence theorem).

We choose the ground as follows, which leads to voltages in the same class of function as the
currents, which is useful in the subsequent analysis:

∫02πu(r0, θ)dθ = 0. (7)

Using separation of variables, we can obtain the solution

u(r, θ) =
r0
σ0

∑
n=1

∞ ( rr0 )n 1
n (ancosnθ + bnsinnθ). (8)

In the Ave-Gap model, the voltages on the boundary can be written as

Ul
k =

2r0
2h

σ0Area
2π

∑
n=1

∞ 1 − cos(nfΔθ)

n3 ∑
l∗=1

L
Il
kcosn(θl − θ

l ∗) , (9)

where

an
k = 2

nπ sin(n fΔθ
2 ) ∑

l∗=1

L Il
k

Area
l ∗

cos(nθl ∗),

bn
k = 2

nπ sin(n fΔθ
2 ) ∑

l∗=1

L Il
k

Area
l ∗

sin(nθl ∗).

The classical forward solution will be Ul
k (σ0) ≈ Ul

k (σ0best) where

σ0
best = ∑

k=1

K
∑
l=1

L
Ul
k(1)Ul

k(1)/ ∑
k=1

K
∑
l=1

L
Ul
k(1)Vl

k. (10)

We call this the ‘sigma best’, σ0
best, the best guess for the conductivity of the homogeneous

body in the algorithm. Ul
k (1) is the predicted voltage from the forward solver with an initial

starting guess that the conductivity is equal to 1, and V l
k  is the voltage measurement for the

lth electrode and the kth current pattern.

2.3. Auto-adjusting forward solution—In NOSER algorithm, we apply a trigonometric
current pattern and measure the corresponding voltage. The trigonometric current patterns are
of the form

Il,k = {cos(kθl), l = 1, 2, …, L , k = 1, 2, …, L ∕ 2

sin(k − L ∕ 2)θl l = 1, 2, …, L , k = L ∕ 2 + 1, …, L − 1,
(11)

where θl = 2πl/L and Il
k  is the applied current for the lth electrode and the kth current pattern.

L is the number of electrodes on the boundary. We then compute a best constant conductivity
σ0
best to scale the forward solution as a reference value for reconstructions. In an ideal

homogeneous case, this is correct. But in a real case, the differences in the current pathways
for different applied current patterns may result in different observed conductivities. For
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example, figure 1 suggests the pathway of two current patterns, cos θ and cos 3θ, in a 2D
circular phantom. Because of the conductive electrodes and the layers of skin on the boundary
of the body, the pathways of these two different patterns did not pass through regions with the
same conductivity. The cos 3θ pattern spends a greater portion of its travel in the boundary
material than cos θ pattern does. In other words, the best constant conductivity for high spatial
frequency pattern will represent the material close to the boundary and the best constant
conductivity for low spatial frequency patterns will more closely represent the material in the
center.

We can address these differences by calculating a best constant conductivity vector,
σ0
best(k), for each current pattern, instead of using a single best value for all patterns

σ0
best(k) = ∑

l=1

L
Ul
k(1)Ul

k(1)/ ∑
l=1

L
Ul
k(1)Vl

k. (12)

Figure 2 shows a best constant conductivity value, σ0
best, and a best conductivity vector,

σ0
best(k), obtained from experimental data with a saline-filled 2D homogeneous test tank.

We compared the forward solution with the voltages measured on the homogeneous tank and
computed the absolute error of the trigonometric current patterns (figure 3). The absolute error
is expressed as

Errk = ∑
l=1

L
∣ Ul

k(σb) − Vl
k(σ0) ∣/ ∑

l=1

L
∣ Vl

k(σ0) ∣ , (13)

where U (σb) is the predicted voltage from the forward solver and V (σ0) is the resulting voltage
of the homogeneous tank.

The differences between the classic forward solution and the voltages from the homogeneous
tank may be as large as 40% (diamonds in figure 3) and result from choosing a single best
constant conductivity value, σ0

best, for all current patterns. When we rescaled the forward

solution by using the best conductivity value, σ0
best(k), for each of the k current patterns, the

absolute error was reduced below 5% (squares in figure 3).

3. Reconstructions
3.1. Experimental data from ACT 3—Experiments were conducted on a saline bath of
radius r0 = 15 cm containing L = 32 stainless steel electrodes around its inner circumference.
The width of each electrode was 2.54 cm and the gap between electrodes of 3.5 mm was filled
with a rubber sealant. The circular phantom (figure 4), contains ‘lungs’ and a ‘heart’ made of
agar with varying amounts of added salt. It was filled with salt water, and connected to the EIT
system, ACT 3. The conductivity of these objects is shown in the middle illustration.

The output of the NOSER reconstruction algorithm is a vector of 496 numbers representing
all the degrees of freedom in the data. The number of degrees of freedom or modes of the
reconstruction mesh is limited to number of independent voltage measurements from the
object. We used a 496-Joshua tree mesh to display the reconstructed images. NOSER
reconstructions for the heart and lung phantom made using a forward solution with σ0

best and

using the auto-adjusting forward solution with σ0
best(k) are compared in figure 5.
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When using σ0
best(k) for the forward solution, the static image of homogeneous tank is much

smoother (410 <σ < 450) than it is when using σ0
best(300 <σ < 550). With σ0

best(k) the static

image of the heart and lung phantom is similar to the difference image with σ0
best. The shape

of right lung using σ0
best(k) is not as accurate as in the top row using σ0

best but the shape of
the heart is much closer to that of the phantom (figure 4). In this relatively uniform tank, it is
hard to conclude which forward solution works better than the other because of the different
scales. But the auto-adjusting forward solution can substantially reduce the electrode effect on
the reconstructed static image so that the quality and the sensitivity of static image are
improved.

3.2. Simulation data with layer tissues—In figure 5, the auto-adjusting forward solution
reduced the effect of the electrodes on the boundary of the test tank. A more complicated case
occurs with a layer of skin on the boundary. To evaluate the performance of two methods with
skin present, we used the FEM to obtain a numerical solution. In the FEM, the object area is
discretized into many small elements having a node at each corner, and it is assumed that the
resistivity distribution is constant within each element. Details on the FEM approach are found
in Vauhkonen (1997) and EIDORS (Vauhkonen et al 2001). Figure 6 shows the FEM mesh
used, with 32 electrodes on the boundary (left figure) and the three-layer structure (right figure)
which presents skin (black), fat (yellow) and muscle (red). To avoid an inverse crime, we used
the 496-Joshua mesh shown on the right of figure 4 for the image reconstruction.

Figure 7 shows the simulation of the thorax chamber with the three-layer structure and the
chest phantom on the FEM mesh. The conductivities of the tissues are 0.01 mS m-1 for the
skin, 125 mS m-1 for the fat, 250 mS m-1 for the muscle, 625 mS m-1 for the thorax chamber,
400 mS m-1 for the lungs and 1666 mS m-1 for the heart. There are also electrodes present in
the left image of figure 7 but they are obscured in the image by the tissue layer.

The trigonometric current patterns were applied to the FEM phantoms, the resulting voltages
were calculated and the NOSER algorithm was used to reconstruct the images shown in figure
8. The static image of the empty thorax had a wide dynamic range, due to the electrodes, skin
and muscle at the periphery (first column). When σ0

best(k) was used to scale the forward
solution, this dynamic range was greatly reduced (first column, second row). The static image
of the heart and lungs does not show these organs when σ0

best is used, but they are clearly seen

when σ0
best(k) is applied. Difference images do show the heart and lungs when either set of

σ0
best is applied.

The reconstructions using σ0
best show the circularly symmetric layered structure around the

periphery while those using σ0
best(k) do not. The presence of these low conductivity layers

(skin, fat or bone) in the reconstruction using σ0
best expands the dynamic range of the image

and makes the more subtle features invisible. Note that the color scale includes negative values,
a result of the small value of the reference constant conductivity. In contrast, the auto-adjusting
forward solution using σ0

best(k) removes the circularly symmetric layers and displays the result
on a narrower scale, which improves the sensitivity of the static image.

4. Discussion and conclusions
The auto-adjusting forward solution reduces the absolute error between the predicted voltages
and the voltages measured on the homogeneous tank (figure 2), which reduces the electrode
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effect in the reconstructed static images (figure 5) improving the quality and the sensitivity of
the static images. This method increases sensitivity to targets which break the symmetric
structure. Because a developing tumor in unlikely to be at the center of a field, we may be able
to find the tumor more easily using the auto-adjusting forward solution.

Using the classic forward solution, a constant value is used to rescale the forward solutions of
all spatial frequency patterns, and the static reconstructed image shows everything, including
the electrodes, within the boundary. This result is in a wide intensity scale, making low-contrast
targets invisible. Using the auto-adjusting forward solutions, the static reconstructed image
shows only those objects which break the circular symmetry. Hence, the object is more clearly
shown in the static image.

There is an important limitation of this method: it cannot show a target located at a symmetric
position to all the electrodes, such as in the center of the circle. This limitation is most severe
with circular electrode arrays. It might not be important in a 3D case since it is difficult to get
a symmetric point except the center of a sphere. The layer structures are basically symmetric
to the electrodes and are eliminated in static images by this method.

Kolehmainen et al (1997) have published a detailed report about the errors caused by electrode
position and contact impedance. For degradations in the image caused by errors in the electrode
position, the best remedy is to match the electrode positions in the forward model with the
actual electrode positions. Using the complete electrode model can reduce the errors caused
by the electrode contact impedance but not the effects caused by the layer tissues at the
periphery. Using simulation and experimental results, we have demonstrated a simple way to
eliminate these effects and to improve the sensitivity and the quality of static imaging.

The auto-adjusting forward solution works for both 2D and 3D reconstructions, though only
2D results are reported here. Future studies will investigate how this technique works with
human data in circular and planar electrode geometries.
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Figure 1.
The pathway of the current patterns cos θ and cos 3θ in a 2D circular phantom having an
electrode ring and connective tissue layers around the boundary.
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Figure 2.
The sigma_best vector and a best constant sigma for all current patterns.
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Figure 3.
The absolute error using classic (diamonds) and auto-adjusting (squares) forward solutions.
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Figure 4.
Left: the experimental circular chest phantom. Center: the conductivity of the agar heart, lungs
and saline. Right: the 496-Joshua tree mesh used by the reconstruction algorithm.
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Figure 5.
The reconstructed conductivity images by using σ0

best (top row) and σ0
best(k) (bottom row)

for the forward solution. The numerical scales on the color bars give the conductivity in mS
m-1
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Figure 6.
The FEM mesh and the three-layer structure modeled.
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Figure 7.
The empty thorax chamber and the chest phantom represented on the FEM mesh. The color
bar gives conductivity in S m-1 × 10-2.
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Figure 8.
The reconstructed conductivity images of the FEM phantom by using σ0

best and σ0
best(k) for

the forward solution.
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