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EDITORIAL REVIEW

The role of cAMP regulation in controlling inflammation
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In 1958, Sutherland and Rall identified adenosine 3’, 5'-mono-
phosphate (cAMP) as an intracellular second messenger of
hepatic glycogenolysis [1]. Subsequently, cAMP was shown to
act as second messenger for a variety of hormones, inflamma-
tory mediators and cytokines, and has been shown to modulate
models of immune and non-immune inflammation in vivo and a
variety of cellular processes in vitro. Indeed, the current paper
by Ottonello et al. is typical of research in this area. The authors
show that in a population of adherent neutrophils, the oxida-
tive burst induced by exposure to granulocyte-monocyte
colony-stimulating factor is reduced by agents that elevate
cAMP [2]. They speculate that therapeutic elevation of cAMP
will result in reduced oxidative damage to tissues in neutrophil-
dominated inflammatory reactions.

Production of cAMP in leucocytes is stimulated by (-
adrenergic catecholamines, histamine and the E series prosta-
glandins by a receptor-coupled activation of adenylate cyclase,
an enzyme which catalyses the conversion of adenosine tripho-
sphate to cAMP [3]. Rises in intracellular cAMP are usually
transient, CAMP being rapidly broken down by phosphodies-
terases (PDEs) to 5AMP. A role for cAAMP in a particular cell
function can be inferred from the use of agents that activate
adenylate cyclase (receptor-coupled activation or direct activa-
tion with agents such as cholera toxin [4] or forskolin [5]),
duplication of the cell response with a” hydrophobic (i.e.
membrane-permeable) analogue of cAMP (e.g. dibutyryl
cAMP), inhibition of PDEs with methylxanthines (e.g. theo-
phylline [6]) or isoenzyme-specific agents (see below) and by
assessing the effects of these various treatments on intracellular
cAMP levels.

At an inflammatory site, mast cells are stimulated to
degranulate, causing release of vasoactive and other inflamma-
tory mediators. Circulating leucocytes adhere to vascular
endothelium and accumulate at the inflamed site under the
direction of chemotactic factors. Phagocytic stimuli cause
release of lysosomal enzymes and reactive oxygen species
(ROS) from neutrophils, eosinophils and macrophages. Anti-
gen recognition causes proliferation and differentiation of
lymphocyte subsets. In vitro work has suggested that following
cell stimulation, agents that elevate cAMP reduce: immunolo-
gical release of histamine and leukotrienes from mast cells 7],
monocyte [8] and neutrophil [9,10] locomotion, release of
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lysosomal enzymes [11], ROS [12], platelet-activating factor
[13] and leukotriene B4 [14] from neutrophils, release of ROS
from eosinophils [15], release of cytokines [16,17] and nitric
oxide [18] from macrophages, proliferation of lymphocytes [19]
and effector functions of cytotoxic T lymphocytes [20]. How-
ever, it is important to realize that the ability of CAMP elevating
agents to suppress cell functions is not uniform but depends on
the initial stimulus. In in vivo models of inflammation it has
been shown that in different types of experimental pleurisy
(carrageenan [21], pyrophosphate [22], Arthus [23] and delayed
hypersensitivity [24]) cAMP levels vary during the reactions,
low levels being observed as the reactions proceed and normal
or higher levels being observed as the reactions subside [25].
The experimental data therefore suggest that cAMP is part of
an endogenous mechanism for down-regulating the inflamma-
tory response and preventing the beneficial effects of acute
inflammation from progressing to chronic inflammation and its
associated tissue destruction. This view is supported by the
clinical finding that leucocytes from atopic individuals appear
to have higher than normal PDE activity [26].

The targeting of a single mediator or group of mediators for
treatment of inflammation has the drawback that other med-
iators could partially compensate for the loss, thereby limiting
the efficacy of the treatment. Therapeutic elevation of cAMP to
treat inflammatory disorders is attractive because a whole host
of inflammatory cell functions can in theory be inhibited. In
addition, in vitro work suggests that a synergy exists between
activators of adenylate cyclase and PDE inhibitors in elevating
cAMP. If this is true also in vivo then the production of agents
such as prostaglandin E, (PGE;) at a site of inflammation
should ensure that the inflamed tissue is more responsive to
PDE inhibitors than non-inflamed tissues.

Interestingly, and somewhat paradoxically, many non-ster-
oidal anti-inflammatory drugs (NSAIDs) appear to elevate
c¢AMP [27] despite blocking the synthesis of PGE, which
stimulates adenylate cyclase. The reasons for this are unclear,
but blockade of cyclooxygenase by these drugs could lead to an
accumulation of its substrate, arachidonic acid, which has been
shown to have second messenger properties [28]. It is clear that
signal transduction pathways do not work in isolation, instead
they interact to modulate cell responses [29]. Arachidonic acid
appears to be able to elevate CAMP [28], which may explain the
effects of NSAIDs on cAMP levels.

Theophylline has been used in the treatment of asthma for
many years, and appears to be effective due to a combination of
anti-inflammatory and bronchodilatory activities. However,
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theophylline is associated with side-effects in the gut, cardio-
vascular system and the central nervous system, and these side-
effects seem to be mainly due to inappropriate inhibition of
PDE:s in these tissues and additional actions such as antagon-
ism of adenosine receptors and stimulation of catecholamine
release [30]. The future of PDE inhibitors as therapeutics
therefore looked bleak until the realization that hydrolysis of
cAMP (and cGMP) is not dependent on a single enzyme but on
a range of isoenzymes which differ in their tissue distributions.

Seven families of PDEs (types I-VII) are currently recog-
nized based on protein sequence and cDNA analysis. These
enzymes differ in substrate selectivity, sensitivity to calcium/
calmodulin, allosteric regulation by cGMP, sensitivity to phos-
phorylation and distribution both in tissues and subcellular
compartments [30-33]. Each family can contain subfamilies,
and further diversification may arise from genes that can give
rise to two or more alternatively spliced RNAs. Tissues may
express more than one family of PDEs, but in inflammatory
cells (with the exception of lymphocytes) it seems to be mem-
bers of the PDE IV family that are dominant. Lymphocytes
appear to have both PDE III and PDE IV enzymes; whether
particular isoenzymes are confined to particular subsets of
lymphocytes is not known. PDE IV enzymes are cAMP-
specific, are calcium/calmodulin-independent, and are not
regulated by cGMP. In addition to inflammatory cells, PDE
IV enzymes are found in smooth muscle, brain, liver, heart and
kidney. PDE IV inhibitors should lack activities other than
PDE inhibition and be more tissue selective than theophylline.
However, the distribution of PDE IV enzymes suggests that
major side-effects could still be a problem. Indeed, PDE IV
inhibitors are being developed as anti-depressants; what effect
these drugs would have on unaffected individuals is not known.
As subfamilies of PDE IV are investigated, isoenzymes that are
truly specific to inflammatory cells may become apparent which
will prove more effective targets.

Interest in PDE inhibitors has increased enormously since
the discovery of isoenzymes with differing tissue distributions.
The potential therapeutic advantages of PDE IV inhibitors in
the treatment of inflammatory diseases are clear. However, it is
only as data become available from clinical trials that we will
see whether these compounds live up to their potential.
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