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SUMMARY

In the past 2-3 years, a number of cytokine receptors have been partly characterized and the cDNAs
for the ligand binding chains cloned. This has revealed that cytokine receptors are complex. Many are
known to be multichain receptors (e.g. IL-2) and since their mechanism of signal transduction is not
obvious, it is likely that other proteins yet to be defined take part in the signalling process. The cloning
of the receptor ligand binding chain has revealed that (unlike cytokines), there are major families of
receptors. Some are members of the Ig supergene family (e.g. IL- I receptor), others are members of
the nerve growth factor receptor family (e.g. TNF), but the majority are members of the
haematopoietic growth factor family (e.g. IL-3, GM-CSF). Yet other cytokine receptors do not
belong to a family, e.g. IFN-I.
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INTRODUCTION

Cytokines are a group of usually short-range protein mediators
which have important roles in the development, function and
control of cells of the immune and many other systems. There is
also now considerable evidence that they have a major role in
the interactions between the immune system and other organs.

A common feature of all cytokines is their activity at low
concentrations and the diverse range of activities that each of
them can display. Cytokines transmit their biological signals to
responsive cells by interaction with specific high affinity cell
surface receptors. These receptors are expressed in very low
numbers, usually a few hundred to a few thousand per cell,
which have hindered their study. However, the last 5 years has
seen very rapid progress in the biological characterization of
these receptors due to the availability of recombinant cytokines,
which have been radiolabelled to high specific activities, thus
allowing extensive binding studies to be performed. One of the
first cytokine receptors to be characterized was the IL-2R x-
chain (p55 or 'TAC') using standard immunoaffinity protein
purification technology, followed by protein sequencing, the
generation of oligonucleotide probes and the screening of
cDNA libraries. Similar techniques have been used for the
cloning of human tumour necrosis factor (TNF) R and human
interferon-y (IFN-y) R. Most of the cytokine receptors were
cloned using expression cloning techniques where a mammalian
cell line, transfected with a cDNA library, is screened either by
antibodies to the receptor or by labelled cytokines. The cloning
of either the human or murine receptor has usually led to the
isolation of its counterpart.

The cloning of many receptors has indicated that there are
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three major receptor families: the haematopoietic growth factor
receptor (HGFR) family, which includes the majority of
cytokine receptors, the TNFR group, and members of the Ig-
supergene family. Each family also contains receptors for
molecules not usually considered to be cytokines. Thus the
HGFR family includes prolactin and erythropoietin (EPO)
receptors while the TNFR family includes nerve growth factor
(NGF) R and the Ig superfamily includes a number of tyrosine
kinase receptors. Some receptors, e.g. IL-2Ra chain and IFN-y
receptor, do not belong to any grouping. Within each family,
most cytokine receptors show common functional and struc-
tural traits. The HGFR family are proteins responsible for the
binding ofa single cytokine, although many receptors require an
additional protein to confer high affinity (e.g. IL-2R, IL-3R, IL-
SR, GM-CSFR and IL-6R). The two most well-characterized
receptors of the TNFR group show multiple binding chains and
multiple ligands (TNFRs and NGFR, associated with tropo-
myosin receptor kinases). As for the IL-I R (Ig super family),
this comprises two receptors, each recognising three ligands (IL-
lI, IL-1j# and IL-l receptor antagonist).

There is still relatively little knowledge of the mechanisms by
which cytokines transmit signals via their receptors. There is
usually no obvious enzymatic mechanism within the receptor
structure, and thus auxiliary molecules are thought to play a
role, for example gpl3O which is associated with the IL-6R,
oncostatin MR and LIFR. However, gpl30 also does not have
any known intrinsic enzyme activity. There is no obvious
common signal transduction mechanism within a given family.
This leads to another basic question, which is how these
cytokines express their great 'pleiotropicity'. In some cases, for
example TNF, the existence of multiple receptors may explain
this effect. However, for the majority of cytokines, the situation
is still unclear.
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For the purposes of this review, we have dealt with the
receptor groups by highlighting some individual members in
each case. The review is confined to receptor structure and
signalling.

THE HAEMATOPOIETIC GROWTH FACTOR
RECEPTOR FAMILY

The haematopoietic growth factor receptor (HGFR) family
comprises the majority of cytokine receptors: IL-2, IL-3, IL-4,
IL-5, IL-7, GM-CSF and LIF receptors. The IL-6R and G-
CSFR also have characteristics of the HGFR family and the Ig
gene superfamily and thus will also be considered in this section.
The HGFR family also includes proteins that do not bind ligand
directly but modify receptor function, i.e. the gpl30 (IL-6R
fl-chain) and the common fl-chain of the IL-3, IL-5 and GM-
CSF receptors.

The characteristics of this family are conserved cysteine
residues in the extracellular domain, and a pentameric trypto-
phan-serine-X-tryptophan-serine motif where X is any amino
acid just proximal to the transmembrane domain (Fig. 1). The
receptors show some homology in their extracellular domains,
but very little in the cytosolic domains. The latter lack known
kinase or other enzymatic function. It is possible that other
receptor-associated proteins perform this task (see below).
Functionally, these receptors each only bind one ligand, and the
majority display both high and low affinity receptors, although
the basis for the dual affinities varies between receptors.

IL-2 receptor
IL-2, the major T cell growth factor, was one of the first
characterized cytokines and its receptor has been the most
studied (reviewed [1]). The receptors for IL-2 display many
HGFR family characteristics, having both high (Kd- 10-" M)
and low affinity (Kd- 10-8 M), brought about by the hetero-
dimeric structure of the receptor. The high affinity receptor
comprises the IL-2R fl-chain (p70) in conjunction with the
previously characterized p55 a-chain (CD25), originally known
as the TAC protein. The a-chain is not part of the HGFR family
and has a short six amino acid cytoplasmic tail. On activated T
cells, it is normally expressed at a 10-fold excess over the f-chain
and on its own comprises the low affinity receptor. Proteolytic
cleavage of the IL-2R ac-chain gives rise to soluble receptors
(sIL-2R) [2]. The fl-chain binds IL-2, with an intermediate
affinity of Kd- 10-9 M. The high affinity of the heterodimer is
obtained by combination of the fast association kinetics of the a-
chain coupled with the low dissociation kinetics of the fl-chain.
Both the afl chain dimer and the f-chain alone are internalized
on binding ligand and can mediate IL-2 activity. However the
failure of the cloned fl-chain to bind IL-2 when expressed in
isolation in fibroblast, but not T cells has given rise to
speculation of a third, 'y-chain' of the IL-2R. Several reports
have claimed to have identified such a protein as well as showing
IL-2R association with class I HLA molecules, ICAM-1 and
LFA-1 [1].

The key role of the IL-2/IL-2R in T and B cell proliferation
has led to considerable study of its signalling mechanism. The
IL-2R does not utilize the dual second messenger pathway of
inositol triphosphate (IP3)/Ca2+ and diacylglycerol/protein
kinase C (PKC) [1], originating from the cleavage of phosphati-

dyl inositol bis-phosphate, as used by the T cell receptor. It has
been reported that IL-2 can induce the generation of a
myristilated diacylglycerol and inositol phosphate glycan from
the hydrolysis of inositol glycolipid [3]. The involvement of
tyrosine kinase activation has been reported by several groups
[1] and IL-2 induces tyrosine phosphorylation of the IL-2R fi-
chain [1] and the serine phosphorylation ofCD45 [4]. Moreover,
the tyrosine kinase proto-oncogene p561ck has been found in
association with the IL-2R f-chain [1]. IL-2 has also been shown
to be able to activate p2l ras [5] and also G-proteins [6], the c-raf
serine/threonine kinase [7] and P13 kinase [8]. In the nucleus,
IL-2 has been shown to induce c-myb [9] and c-fos and c-myc
[10]. However, the extent of the involvement of any of these
observed intracellular biochemical changes to the IL-2R signal
transduction pathway and their relationship to one another has
yet to be established.

The IL-4 and IL-7 receptors
These cytokines are growth factors for activated T cells and
mature (IL-4) and immature (IL-7) B cells [11]. The IL-4
receptor has been identified and cloned as a - 140 kD molecule
displaying a single high affinity binding (Kd~-10- 10 M) [12,13]. A
low affinity receptor (Kd 3 x 10 8 M) has been identified on
human peripheral blood mononuclear cells [14], where cross-
linking studies suggested that the low affinity binding was due to
the presence of a putative 65/75 kD protein associated with the
IL-4R. A low affinity IL-4 binding activity has also been isolated
from culture supernatants [15]. However, these lower molecular
weight IL-4R associated proteins may be, in part, proteolytic
products of the main receptor protein [16]. The existence of high
affinity sIL-4R has been identified in murine tissue fluids [17].
This is probably the product of an alternative splicing of IL-4R
mRNA to produce a soluble truncated receptor [13]. However,
the existence of such a sIL-4R mRNA has not been identified in
human cells [12].

The IL-7R expresses a dual affinity with a high
(Kd--5 x 10- IM) and a low (Kd- 10-9 M) binding [18,19]. Park
et al. [19] have suggested that the dual affinity is due to negative
cooperativity of IL-7 binding and thus is observed when the
cloned human or murine IL-7R is expressed in COS fibroblast
cells [18]. A low affinity (Kd> 10-8 M) IL-7R is also expressed on
COS fibroblast cells but this appears to be the function of some
other as yet uncharacterized receptor [18]. On human T cells, the
IL-7R undergoes changes following T cell activation, being
downregulated in number, and with a smaller 'second' form of
receptor appearing. The expression of the novel receptor is
found on all T cells that can respond to IL-7 as a growth factor
[20]. Whether this second IL-7R is due to an alternative receptor
or is the product of a different splicing ofmRNA from a single
gene is unclear. Alternatively spliced products of the cloned
human IL-7R have been identified [18], producing a smaller
membrane bound form and a putative sIL-7R.

IL-4 induced upregulation of CD23 in human tonsillar B
cells appears to require Ca2 , IP3 and cAMP signals [21, 22].
These signals are not used by IL-4 to induce sIgM [22] which,
with other evidence has led to speculation that the upregulation
of CD23 and sIgM in human B cells is operated by different IL-
4Rs and/or signal pathways. Unlike IL-2, IL-4 does not induce
p21 ras activity [5] and the utilization of tyrosine kinase by this
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Fig. 1. Schematic representation of the members of the immunoglobulin superfamily and the haematopoietic growth factor receptor
family. Members of the HGFRF are identified by the regions ofconserved cysteines and the trp ser x trp ser motifwhere x is any amino
acid in the extracellular domains.

receptor is unclear [23, 24]. However, the existence of multiple
signalling mechanisms may account for these discrepancies.

The utilization of tyrosine kinases by IL-7R has been
reported in mature T cells, lymphoblastic leukaemia T cells,
thymocytes and B cells [25, 26]. The generation of IP3 by IL-7
has been reported [25] in the latter three cell types, but this has
not been confirmed in thymocytes and mature T cells [26]. No

increases in intracellular Ca2+ associated with the function of
IP3 have been reported [26].

IL-3, IL-5 and GM-CSF receptors
IL-3 or GM-CSF are potent haematopoietic growth factors, IL-
5 effects on B cell function are so far confined to the murine
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system. These cytokines can all influence eosinophilopoeisis,
with IL-5 the most potent. Binding and crosslinking studies had

indicated that IL-3 and GM-CSF could partially cross-compete
each other's binding and suggested the presence of common
structural elements. All three receptors display dual affinity:
high Kd - 10- °0M and low Kd 10-8-10-1 M. Their recent cloning
has revealed the existence of heterodimeric receptor structures.

In the human system, the smaller a-chains (- 70 kD) of IL-3
[27], GM-CSF [28] and IL-5 [29] receptors, alone, express low
affinity binding and are specific for each cytokine. The high
affinity is the result of association of each a-chain with a

common f-chain (140 kD) shared by all three receptors, which
alone does not bind the cytokines [27,29]. As a refinement of this
system, a second f-chain, 'AIC 2A', has been identified as a

component of the murine IL-3R [30]; this protein shares 95%
sequence homology with the common f-chain, AIC 2B
[27,31,32], of the murine IL-3, IL-5 [33] and GM-CSF receptors.

Unlike AIC2B, the AIC2A molecule binds IL-3 with low
affinity [30].

Studies on the receptor signalling mechanism have shown
that IL-3, IL-5 and GM-CSF induce tyrosine phosphorylation
of a similar set ofcytoplasmic proteins [23, 34]. Studies have also
indicated that the fl-chain of the IL-3R can be phosphorylated
on tyrosine [35]. IL-3 and GM-CSF, like IL-2, are also capable
of inducing the activation of p2Iras [5].

The IL-6 receptor

The many functions of IL-6 include growth and differentiation
activities on B cells, myeloma-plasmacytomas, T cells, hepato-
cytes and haematopoietic stem cells. The IL-6R shows dual
affinity binding with high affinity receptors of Kd- 10- " M and
low affinity receptors of Kd 10-' M [36]. The cloning of an 80
kD receptor protein revealed structural elements of both the
HGFR family and the Ig supergene family [36]. Further studies
on the IL-6R structure revealed the existence of an auxiliary
signalling molecule, gpl30 (IL-6R # chain) [37]. This protein
associates with the IL-6R/IL-6 complex and converts the

receptor from low affinity to high affinity binding [38]. Cloning
of the gpl30 molecule has also identified this protein as a

member ofthe HGFR family [38]. The involvement of the gp 130
protein in IL-6R signalling was demonstrated using genetically
engineered sIL-6R which, complexed with IL-6, associated with

gpl30 and induced IL-6 activity [37]. Since sIL-6R is also

produced naturally [39], cells only expressing the gpl 30 but not

IL-6R could possibly respond to sIL-6R/IL-6 complexes.
Recently, gpl30 was reported to act as an auxiliary protein for

the oncostatin M and LIF receptors [40]. The gpl3O does not

encode any kinase or known signalling function although it does

possess a GTP binding motif but this can be deleted without

affecting function [41]. In fact, little is known of how the IL-6

transduces its signals. However, IL-6 does induce the tyrosine
phosphorylation of gpl 30 [41].

G-CSF receptor
Cloning of the human receptor for this cytokine identified two

integral membrane proteins of 759 and 812 amino acids

produced from a single gene by alternatively spliced mRNAs;
the two products differing in their cytoplasmic domains [42].

The mouse appears to produce only the larger receptor [43].
Like the IL-6R, the G-CSFR has structural relationship with
the HGFR family and the Ig superfamily, and in addition, with
fibronectin type III domains [42]. The cytoplasmic domains of
murine G-CSF and IL-4 receptor show a reasonable degree of
homology [43]. Both the cloned and native receptor show high
(Kd-2-5 x 10-1' M) and low (Kd'-2 x 10 -9 M) affinity binding
[44].

Other family members
As stated, the HGFRF includes receptors such as those for
prolactin and EPO that are not classically considered to be
cytokines and as such, will not be dealt with here in any detail.
The importance of many of these cytokines would suggest a
latent potential for the HGFR family to act as oncogenes. In this
respect, Longmore et al. [45] have recently shown that a mutant
EPOR which has a point mutation in codon 129, converting
arginine to cysteine, can transmit a growth signal in the absence
of ligand, and injection of a retrovirus encoding this receptor
variant into mice produces erythrocytosis and splenomegaly.

TUMOUR NECROSIS FACTOR RECEPTOR
FAMILY

This group of cytokine receptors comprises proteins with
structural similarities to the two TNF receptors. The family is at
present smaller than the HGFR family and some of these
proteins are only presumed to be cytokine receptors. Besides the
two TNFRs, the family includes the low affinity nerve growth
factor receptor (L-NGFR) [46], the B cell antigen CD40 [47] and
several proteins likely to be receptors, but which have no defined
ligands; the T cell antigens OX40 [48] and CD27 [49], the Fas
antigen, expressed on myeloid, T lymphoblastoid and fibroblast
cells [50] and CD30, a marker for tumour cell lines derived from
patients with Hodgkin's lymphoma [51]. Two other members,
an open reading frame from Shope fibroma virus (SFV-T2) [52]
and 4-1 BB, a cDNA clone isolated from human T cells [53], have
not been identified as proteins in vivo.

The structural definition of this family lies with an arrange-
ment of three or four conserved cysteine rich sequences of
approximately 40 amino acids (Fig. 2) in the extracellular
domains. One or more of the repeats may be truncated, as in the
p55 TNFR and the Fas antigen. In the main, there is no
homology in the cytoplasmic domains of these proteins except
for a region of44 amino acids with sequence similarity present in
the intracellular domains of Fas antigen, p55 TNFR and CD40
[50]. This region spans sequences that appear to be essential for
receptor signalling in CD40 [54] and the p55 TNFR [55]. No
identifiable regions for signalling functions, e.g. kinases, have
been described. From the studies made on the two family
members for which well-characterized ligands exist, TNFRs and
NGFR, it appears that their receptors are complex, binding
more than one ligand and exhibiting multiple receptors for a

given ligand.

TNF receptors
Both TNF (TNF-cc), and a second cytokine, lymphotoxin (LT/
TNF-,B) exhibit very similar activities, i.e. proinflammatory and
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Fig. 2. Schematic representation of the members of the family of cell surface receptors related to the low affinity nerve growth factor
receptor (LNGFR). TNFR, tumour necrosis factor receptor: SFV-T2, open reading frame from shope fibroma virus. The members are
identified by the spatial arrangement of cysteine residues in the extracellular domains. Each of these repeated sequences consists of
approximately 40 amino acids, some of which are also conserved between repeats and members. Repeat 4 of the p55TNFR, 1 of FAS
antigen and 3 of4-1BB are shorter than the other motifs and represented by small ovals. A region ofhomology has also been identified
in the cytoplasmic domains of FAS antigen, p55TNFR and CD40, represented by stippled areas, which may be involved in binding
accessory molecules.

cytotoxicity [56]. The main difference between the two cytokines
is their source, TNF being mainly myeloid in origin whereas LT
is mainly T cell derived. Receptor binding studies demonstrated
that they cross-competed each other [57], and affinity crosslink-
ing identified binding moieties of 55 and 75 kD expressed on the
cell surface [58,59]. Binding studies on both receptors showed
they had similar high affinity with Kd of 10-10-10 M [59].
Cloning of the receptors led to the isolation of two proteins
normally termed p55 (or p60) TNFR [60,61] and p75 (or p80)
TNFR [62]. Both receptors are able to bind TNF and LT and
cellular expression of the transfected receptor cDNA displays
dual affinity binding. The observation that TNF has two distinct
receptors has led to speculation that they may be responsible for
the pleiotropy (multiple effects) of TNF and LT. Preliminary
studies on murine cell lines where only one or other of the
receptors is expressed [63,64], or transfection studies using the
human p55 R [55,65] has suggested that this might be the case,
with the p55 TNFR mediating cytotoxic function and the p75
receptor mediating growth promoting activity. However,
studies on the expression of both receptors in various tissues
have indicated that the two forms are normally co-expressed
[59]. Both TNFRs also exist in soluble forms which have been
identified in vivo [66]. The formation ofsTNFR appears to be by
proteolytic cleavage of the mature cell surface receptor [67] in a
manner akin to the generation of sIL-2Ra-chain [2].

The nature of the TNFR signalling is quite different from
what has so far been observed with the HGFR family. Firstly,
both TNF and LT exist as trimers and would appear to bind
receptors as such [68-70]. Secondly, unlike the HGFR family,

anti-receptor antibodies can be agonistic as well as antagonistic.
This has led to speculation that TNFR aggregatior, is a
requirement for signalling, a hypothesis supported by the
observation that agonist antibodies lose their stimulatory
properties when used as Fab monomers [71]. The involvement
of G proteins has been suggested from the induction of GTP
binding activity and the inhibition by pertussis toxin of TNF
effects [72]. This is followed by the elevation ofcAMP [73] and
indeed, pharmacological agents which increase intracellular
cAMP concentrations have rendered cells more sensitive to
TNF toxicity [74]. TNF also activates a serine kinase, causing
the phosphorylation of serine residues of the p28 heat shock
protein [75]. The involvement of tyrosine kinases in TNFR
signalling however is unclear, with conflicting evidence being
reported [76,77]. Several mechanisms by which TNF induces
cytotoxicity have been proposed (reviewed in [78]) including
reports that direct microinjection ofTNF can elicit a response,
suggesting that receptors are not always required for cytotoxic
activity. However, this could not be reproduced in all TNF
responsive cell types and is at odds with the existence of
agonistic anti-receptor antibodies.

Other TNFR family members
Agonistic antibodies stimulate other TNFR family members,
which suggests that receptor self association is required for
signalling. CD40 appears to be linked to tyrosine kinase activity
during B cell ontogeny [79]. The CD40 ligand has recently been
defined as a T cell surface antigen, capable of inducing the
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proliferation of splenic or tonsillar B cells and secretion of IgE
by IL-4 stimulated B cells [80] while antibodies to CD40 also
function with IL-4 in driving the release of soluble CD23 [81]
and reversing the inhibitory effects of anti-CD19 antibodies,
TGFJJ and IFN-y on IL-4 activity [82]. The full characterization
of the other family members must await the identification of
their active ligands. It is interesting to note that the recombi-
nantly expressed SFV-T2 protein can bind TNF [83].

THE IMMUNOGLOBULIN SUPERGENE FAMILY

This group of receptors is characterized by Ig-like domains in
the extracellular portion and includes many tyrosine kinase
receptors: e.g. receptors for PDGF, EGF, insulin and insulin-
like growth factors, the receptor for colony stimulating factor- I
(c-fms) and the Steel factor receptor, c-kit (Fig. 1). Several of
these receptors have also been identified as proto-oncogenes,
where mutated forms of the receptor have permanently acti-
vated tyrosine kinase activity. Some of these receptors, c-fms,
PDGF, EGF and the insulin/insulin-like growth factors (IGF)
are heterogeneous, with more than one form of receptor
existing, for example, PDGFRa and /1, which can combine in
different forms, xca, a,4 or fIJI. In the case of the insulin receptor
system, insulin, IGF-1 and IGF-2 can crossbind each others'
receptors to a certain degree. The function and structure ofthese
receptors will not be reviewed here. However, the second
subclass of this family includes what is best described as the
IL-1/IL-lR system, including three separate ligands and poss-
ibly up to three separate receptors. The IL- I Rs have no tyrosine
kinase function in the cytoplasmic domain.

The IL-I receptor system
IL- l consists of two separate ligands, IL-l a and fB. They have a
low amino acid identity (26%) but bind to the same cell surface
receptors to induce a wide range of activities [84]. Recently, a
third ligand IL-1 RA (IL-1 receptor antagonist) has been
identified which acts as a receptor antagonist, binding with
similar affinity to IL-1, but being unable on binding to transmit
any signal [85]. Characterization of the IL- IR has identified two
separate moieties [86]. The molecular cloning first identified an
80 kD form of the receptor which is expressed on T cells and
fibroblasts and displays a single class of high affinity receptors
(Kd 2x 10-10 M) [87]. However, a very high affinity form
(Kd - 5 x 10- 12 M) has also been reported on murine T cells and
human keratinocytes [88]. A second smaller receptor (p60) has
been identified on B cells and macrophages; this receptor
appears to display dual affinity binding with high (Kd- 5 x 10-"
M) and low (Kd& -0-I M) affinity receptors [89]. Both forms of
IL-1, a and f, bind both forms of the receptor with dual
affinities. The third ligand, IL- I RA, also binds IL- I p80 and p60
with the same affinity as the agonistic ligands, but does not
induce IL- IR internalization or IL- I induced EGFR phosphor-
ylation [90].

Signalling by IL-I has been extensively studied, but there is
no consensus on the mechanism(s) used by IL- I to signal [91,92].
Studies have reported that IL-1 signalling is linked to the
activation of aG protein, the elevation ofcAMP, thus triggering
protein kinase A (PKA) and culminating in activation of the
NFKB transcription factor [91]. However, others have been
unable to reproduce the utilization ofcAMP and PKA by IL- IR

although the activation of uncharacterized kinases has been
reported with the induction of the serine phosphorylation of
EGFR, IL-I R and hsp27 [92]. An interesting observation on the
IL-IR is the ability to produce profound biological effects at
very low ( - 1%) receptor occupancy [92].

Other cytokine receptors
While the majority of cytokine receptors fall into one of the
three families described, there are two notable exceptions, the
IL-2R a-chain and IFN-yR. The IL-2R a-chain was the first
cytokine receptor to be identified and cloned and its role and
involvement in IL-2R structure and function have already been
discussed above. The receptor for IFN-y also shows no
homology to other receptors or any other known protein. IFN-y
has antiviral activity as well as effects on T cell differentiation,
macrophage activity and upregulation of class II MHC ex-
pression and is also inhibitory to the function of IL-4. The IFN-
yR has been characterized and cloned from murine and human
cells as a 90 kD protein [93,94] and appears to bind IFN-y as a
dimer [95]. In common with other cytokine receptors it has no
obvious means oftransducing signals and thus it is assumed that
other proteins are associated with the ligand binding chain to
form the active receptor. Recent studies have indicated that a
species specific accessory factor(s) is required for receptor
signalling. In human, at least one of these factors appears to be
encoded by Chromosome 21q [96] and in mouse by a gene on
Chromosome 16 [97].

Signal transduction studies on the IFN-yR have implicated
several second messenger systems including G proteins and
adenylate cyclase, cAMP, calcium ion flux and protein kinase C,
protein phosphorylation and Na+/H+ exchange [98] in the
functioning of this receptor.

CONCLUDING COMMENTS

This review has highlighted the rapid progress in the important
field of cytokine receptor research. However, it leaves many
important questions open. For the majority ofcytokines there is
still no clear perception ofhow signals are transmitted across the
membrane and of the chain of events into the nucleus. New
families ofcytokine receptors have been defined since this review
was written, those for IL-8 and TGF#. The field of soluble
cytokine receptors, which represent the bulk of cytokine
inhibitors, is becoming increasingly important, and cannot be
described here.
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