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ABSTRACT The equilibrium stress-strain relation and the pore radius of the isolated tectorial membrane (TM) of the mouse
were determined. Polyethylene glycol (PEG), with molecular mass (MM) in the range 20–511 kDa, added to the TM bathing
solution was used to exert an osmotic pressure. Strain on the TM induced by isosmotic PEG solutions of different molecular
masses was approximately the same for MM $ 200 kDa. However, for MM # 100 kDa, the TM strain was appreciably smaller.
We infer that for the smaller molecular mass, PEG entered the TM and exerted a smaller effective osmotic pressure. The pore
radius of the TM was estimated as 22 nm. The equilibrium stress-strain relation of the TM was measured using PEG with a
molecular mass of 511 kDa. This relation was nonlinear and was fit with a power function. In the radial cochlear direction, the
transverse stiffness of the TM was 20% stiffer in the inner than in the outer region. TM segments from the basal region had a
larger transverse stiffness on average compared to sections from the apical-middle region. These measurements provide a
quantitative basis for a poroelastic model of the TM.

INTRODUCTION

The tectorial membrane (TM) is a gelatinous structure that

overlies the mechanically sensitive hair bundles of sensory

cells in the cochlea. Mouse models with specific mutations of

TM components have been shown to exhibit hearing loss, sug-

gesting that the TM plays an important role in hearing (1–4).

However, these studies do not elucidate the mechanistic role

of the TM.

In the absence of detailed information on the mechanical

properties of the TM, theoreticians had to make assumptions

about its mechanical properties. In some cochlear models,

the TM has been thought to be mechanically stiff so as to act

as a lever (5). Other models have treated the TM primarily as

a mechanical load (6). Finally, some have treated the TM as

a spring and mass, which together act as a resonant system

(7,8). Unfortunately, recent measurements of mechanical

properties of the TM do not agree with any of these cochlear

models (9). Instead, dynamic point stiffness measurements

have shown that the TM impedance lies between that of a

pure viscous and a pure elastic element. However, no simple

cascade of lumped-parameter viscous and elastic elements

fits the measurements. New models of the TM are clearly

needed, and new measurements are required to define these

models.

The fact that the TM is 97% water and contains mac-

romolecular polyelectrolytes suggests that the TM is a gel

(10,11). In other biological gels composed of a fluid and

solid phase, such as cartilage and corneal stroma, the theory

of poroelasticity has been successfully applied to describe

deformational behavior (12,13). Poroelastic models explic-

itly account for the viscous flow of fluid through pores when

the specimen undergoes stress. One important constitutive

relation of a poroelastic material is the equilibrium stress-

strain relation. A constant stress applied to any material

results in a time-varying strain, which eventually comes to

equilibrium. The relation between the applied stress and the

equilibrium strain is called the equilibrium stress-strain rela-

tion. Another important bulk property of poroelastic mate-

rials is the effective pore radius. Knowing the pore radius

allows for the calculation of intermolecular interactions and

the hydraulic permeability of the TM. Both of these

properties can be measured in many larger specimens such

as cartilage by placing the tissue in a dynastat and applying

mechanical pressure and measuring the resulting strain.

However, due to the small size (one-fifth the thickness of

a human hair) and fragility of the TM, the dynastat method

is difficult to use. One approach to determining material

properties of the TM is to combine point indentation mea-

surements with a computational model (14). Here we intro-

duce a method that utilizes osmotic pressure to exert stress,

and we calculate the longitudinal modulus directly from the

measured strain. Previously, it has been shown on other

specimens that using osmotic pressure to apply stress is

similar to using mechanical pressure (15–17). In preliminary

studies, polyethylene glycol (PEG) solutions were used to

apply osmotic pressure to the TM (11,18,19). However, there

are two important caveats to using this method.

First, the osmotic pressure of PEG solutions must be

determined. Measurements of the osmotic pressure of high

molecular-mass PEG solutions are not routine. Furthermore,

the osmotic pressure of PEG solutions does not obey van’ t

Hoff’s law but is a nonlinear function of concentration and

depends upon molecular mass. Second, if PEG can penetrate
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the TM, then its osmotic pressure is not fully expressed. In

this article, we have addressed and resolved these two issues

and have used PEG-induced osmotic stress to measure strain

and to estimate both the equilibrium stress-strain relation and

the effective pore radius of the mouse TM.

METHODS

Methods common to experiments on TM and
PMAA specimens

Many of the methods used to measure the stress-strain relation of specimens,

both the TM and PMAA (polymethacrylic acid) gels, are similar to those

used in previous studies of the TM (20–22). Briefly, the specimen was

placed on a glass slide, decorated with transfluospheres (carboxylate-

modified fluorescent microspheres, i.e., beads), and immersed in a bathing

solution. Images of sections of the specimen were recorded after the speci-

men was immersed in a given solution for at least 1 h. One hour was found to

be sufficient time for the TM position to stabilize (11). Since bright-field

images show that beads end up resting on the surface of the specimen, bead

position was used as a marker for the specimen surface. Bead positions were

tracked to estimate changes in specimen height in solutions of different

composition.

Solutions

All the solutions were variations of an artificial endolymph (AE) solution,

which contained in mM: 2mMNaCl, 3 mM dextrose, 0.02 mMCaCl2, 5 mM

HEPES, and 174 mM KCl. This composition closely matches the measured

ionic composition of endolymph in the mammalian cochlea (23–26). The pH

of the solution was adjusted to 7.3. PEG solutions were made by adding

PEG to the same stock solution of AE to insure that the only difference in

solutions was due to PEG. PEGs of molecular masses of 20, 40, 108, 205,

438, and 511 kDa were used to vary the osmotic pressures over the range

0–10 kPa.

Measurement methods

The measurement system consisted of a compound microscope (Zeiss

Axioplan2, Thornwood, NY) with a 253 water immersion objective with

numerical aperture of 0.8; a fluorescence filter block (Nikon blue excitation

filter block B-2A, Tokyo, Japan) with an excitation filter wavelength of 450–

490 nm; a dichromatic mirror with cut-on wavelength of 500 nm and

emission filter with cut-on wavelength of 515 nm; a CCD camera (Pulnix

TM1010, Copenhagen, Denmark); a video digitizer (Imaging Technology

PC-DIG, Coreco Imaging, PC-DIG, Quebec, Canada); and a personal

computer (Dell Precision 410, Round Rock, Texas). Images were taken at

1 mm spacing, 1 h after each solution change. In addition to bright-field

images, fluorescent images were also collected to facilitate the measurement

of bead position. The images from the CCD camera were digitized and saved

for later analysis.

The z-locations of the beads as defined in Fig. 1 were determined with

subpixel accuracy. First, the user selected beads to be tracked on both the

specimen and the glass slide. The location of each bead was detected by first

isolating a 303 303 100 pixel volume (¼ 10.83 10.83 100 mm3 volume)

surrounding the initial location of the bead. Power, P, in the z-plane is

defined as

PðkÞ ¼ +
i

+
j

B
2ði; j; kÞ; (1)

where i, j, and k are the digitized positions in the x, y, and z planes,

respectively, and B is the digitized brightness. The k-plane for which the

power was maximum is kmax. Subpixel resolution was obtained by inter-

polating the power function as a function of k and determining the value of

z at peak power. This value of z has subpixel accuracy. The interpolation was

done by determining a least-squared fit of a quadratic function to the power

values at kmax and three planes on either side of kmax.

The x and y locations of beads could change from image to image for two

reasons. The beads could change locations with respect to the glass slide on

which the TM was mounted and the glass slide position could change. To

determine the latter motion, we tracked marker beads attached to the glass

slide. The transformation (both translation and rotation) from the first image

to all later images was determined from these marker beads. The same

transformation was applied to all beads in that image. This process corrected

the bead positions for changes in position of the slide between images. Once

every image was corrected for motion of the slide, corresponding beads were

found by finding the bead with the smallest squared distance from the orig-

inal position of the bead. Video images were reviewed to visually confirm

the matches between corresponding beads.

Solution exchange protocol

The viscosity of solutions that contain PEG increases with both the

molecular mass and concentration of PEG. When either PEG molecular

mass or concentration was large, the resulting fluid was too viscous to be

perfused by peristaltic pumps. Therefore, all solution changes were done

manually by transferring the old solution out and perfusing the new solution

into the chamber with a micropipette. For each solution change, this pro-

cedure was repeated at least four times to minimize contamination of the

current test solution with the previous one. Moreover, for all experiments

using PEG of different molecular masses, care was taken to perfuse the

specimen with higher molecular-mass PEG first to minimize the chance that

smaller molecular-mass PEGs diffused into the specimen. Finally, between

every change of solution osmotic pressure or PEG molecular mass, the

bathing solution was changed to AE to determine whether the specimen

returned to its isotonic volume.

Data analysis

To characterize TM thickness, we measured the z-positions of beads relative

to that of the underlying glass as follows. First, the positions (xn, yn, zn) of

each of the n beads attached to the glass surface were determined. A plane of

the form

zglassðx; yÞ ¼ ax1 by1 c (2)

was then fit to these positions by finding the values of a, b, and c that

minimize the sum of squared differences,

+
n

ðzn � zglassðxn; ynÞÞ2: (3)

The measured positions (xm, ym, zm) of each bead on the TM then provided

an estimate of TM thickness at the point (xm, ym):

FIGURE 1 Schematic diagram of an isolated TM decorated with fluores-

cent beads. The x, y, z coordinates of bead locations are defined as shown.
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Dzðxm; ymÞ ¼ zm � zglassðxm; ymÞ: (4)

To determine the relation between strain and stress for the TM, we measured

TM thicknesses in baths with different concentrations of PEG with different

indices of refraction. Therefore, we had to insure that measurements of bead

position in different solutions were not affected by differences in solution

index of refraction. Since our measurements were obtained with a water

immersion microscope objective, the primary effect of the change in index of

refraction is a change in the plane of best focus of the objective. Each of our

measurements of TM thickness is based on the difference in the z-positions

of pairs of beads that were both measured in the same solution of PEG.

Thus the difference should be insensitive to PEG concentration. To test this

idea, we measured the thickness of a microfabricated test structure whose

thickness was independently determined to be 14 mm. The measured

thickness of the structure differed by ,0.19 mm when measured with water

and when measured with the highest concentration of PEG (511 kDa) used

in this study.

The ratio of bead height in the presence of PEG to that in its absence is

the fractional bead height, vz, caused by the osmotic pressure of PEG. The

z-component of the strain, ez, is calculated from vz by the relation

ez ¼ 1� vz: (5)

Osmotic pressure of PEG solutions

The osmotic pressure of PEG solutions for high molecular-mass PEG cannot

be measured reliably with a conventional vapor-pressure osmometer; more

sophisticated methods are required (27). In addition, the osmotic pressure of

PEGsolutions does not obey van’ tHoff’s law so that it cannot be computed as

proportional to the PEG concentration. Fortunately, a model has been

developed for the dependence of the osmotic pressure of PEG solutions on

both the concentration of PEG and its molecular mass, which fits the

measurements well for 200 # MM # 40,000 Da. We have used PEGs with

molecular mass above this range and hence we have checked the validity of

the model for the higher molecular mass used in our experiments.

Model for osmotic pressure of PEG

The osmotic pressure of an ideal solution is defined by van’ t Hoff’s law,

ps ¼ RTCs; (6)

where R is the molar gas constant, T is the absolute temperature, andCs is the

total concentration of solute.

However, experimental measurements have shown that the relation

between PEG concentration and osmotic pressure deviates significantly from

van’ t Hoff’s law in two ways (27–29). The osmotic pressure is a nonlinear

function of concentration and depends upon molecular mass. Therefore,

osmotic pressure is not a colligative property for PEG solutions.

For a nonideal solution, the osmotic pressure, ps, can be expressed as

ps ¼ RTCsWs

1

Ws

1aCs 1bC
2

s 1 . . .

� �
; (7)

where Ws is the molecular mass of the solute, and a and b are the virial

coefficients. The first term in this expression describes van’ t Hoff’s law. The

virial coefficients of PEG in aqueous solution were determined using both

laser-light scattering data and isopiestic data (27) and are given by the

equations

a ¼ 2:49
1

T
� 1

Tu

� �
; (8)

b ¼ 29:3
1

T
� 1

Tu

� �
; (9)

where the reference temperature Tu ¼ 375.5 K. The value a has units of

mol/cm3/g2 and b has units of mol/cm6/g3. The virial coefficients, a and b,

are independent of molecular mass within the range 200–40,000 Da.

Fig. 2 shows the dependence of osmotic pressure on PEG concentration

and molecular mass predicted by this theory. The deviation of osmotic

pressure from van’ t Hoff’s law increases as both the PEG concentration and

the molecular-mass increase.

Tests with PMAA gels

To determine whether the theory described by Eqs. 7–9 could be ex-

trapolated to the range of PEG molecular masses we used in experiments on

the TM, we tested the theory by measuring the stress-strain relation of

PMAA gels whose stress-strain relations had been measured using hydraulic

pressure.

Method of making polymethacrylic acid (PMAA) gels. The composition

of the PMAA gel was as described previously (30). However, to mimic the

TM experiment as closely as possible, the PMAA gels were stuck on a glass

slide and had a maximum thickness of ;100 mm. The gel was polymerized

on a pretreated glass slide. The glass slide was treated by spin-coating a solu-

tion containing 3 mL of distilled water, 1.8 mL of acetic acid, and 1.2 mL of

3-(Trimethoxysilyl)propyl methacrylate 98% solution (31). Once the glass

slide was treated,,1 mL of gel solution was pipetted on the glass slide and a

coverslip was placed on top of the gel solution. Another glass slide was

placed on top of the coverslip so that the coverslip could be clamped into

position. The whole ensemble was placed in a 60� C water bath for 4 h to

allow the gel further time to polymerize. After polymerization, the glass slide

and coverslip that covered the PMAA gel were removed and the gel was

washed overnight in deionized water. The gel was then placed in an

unbuffered 50 mM KCl solution at pH 11 for two days.

Stress-strain relations of PMAA gels obtained with both osmotic pressure

using PEG solutions and with hydraulic pressure. Using methods identical

to those used to measure the stress-strain relation of the TM, we measured

the stress-strain relation of PMAA gels using PEG with a molecular mass of

511 kDa. The PEG concentrations were calculated according to Eqs. 7–9 to

FIGURE 2 Osmotic pressure for PEG of different molecular masses as a

function of concentration. The dotted line represents the relation between

osmotic pressure and concentration given by van’ t Hoff’s law, which is inde-

pendent of molecular mass. The solid curves show the relation between

pressure and concentration according to Eqs. 7–9 with T ¼ 298 K.
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achieve a desired osmotic pressure in the range 0–30 kPa. Higher osmotic

pressures could not be applied since the PEG solutions became too viscous.

However, the maximum osmotic pressure used (30 kPa) on the PMAA gels

exceeded the maximum used on the TM (10 kPa).

The stress-strain relation of the PMAA gel is shown in Fig. 3 both for our

measurements using PEG to generate osmotic stress and for measurements

on similar gels using hydraulic pressure applied in a dynastat (30). The fact

that the stress-strain relation obtained osmotically is similar to that obtained

hydraulically suggests that the osmotic pressure obtained using Eqs. 7–9 is

valid for a molecular mass as high as 511 kDa and osmotic pressure as high

as 30 kDa. Therefore, we have used these equations to compute the osmotic

pressure of PEG solutions in experiments on the TM.

Preparation of the TM

Adult male mice (strain ICR, 25–32 grams, Taconic, Hudson, NY) were

asphyxiated with CO2 and then decapitated. The pinnae and surrounding

tissues were removed and the temporal bone was isolated. Both the oval and

round windows were opened and AE solution was perfused into the round

window to flush out the perilymph. This was done to reduce TM exposure to

perilymph to which the TM is not normally exposed in situ. Under a

dissecting microscope, the temporal bone was chipped away to isolate the

cochlea. The cochlea was then placed in AE and the rest of the surgery was

done in a petri dish filled with AE. The microscope illumination was

adjusted between bright-field and dark-field illumination so that the TM

could be identified. The TM was isolated from the rest of the cochlea using

an eyelash. Tissue adhesive (Cell Tak, Collaborative Research, Bedford,

MA) was placed at the bottom of the experimental chamber and washed with

both ethanol and deionized water. Using a micropipette with a glass tip, the

TM was transferred from the petri dish to the experimental chamber filled

with AE. The TM was positioned on the Cell Tak with an eyelash to prevent

the TM from drifting around in the chamber once the experiment started. The

TM could land with the covernet up or down because we saw no significant

difference in the stress-strain relation for the two conditions. Therefore,

covernet orientation is not reported here. To improve visualization of the TM

surface, beads with diameters of ;1 mm and maximum excitation wave-

length of 488 nm and maximum emission wavelength of 560 nm were

pipetted onto both the TM and the glass slide.

The care and use of animals reported in this study were approved by the

Massachusetts Institute of Technology Committee on Animal Care.

RESULTS

Effect of PEG on TM structure

Effect on TM fibrillar structure

To determine the effect of PEG on TM fibrillar structure,

bright-field images of the TM were taken throughout the

experiment as shown in Fig. 4. Fig. 4 a shows an image taken

at the beginning of the experiment in AE. Radial and lon-

gitudinal fibers as well as Hensen’s stripe and the limbal

attachment are prominent. Fig. 4 b shows the TM when

immersed in AE solution containing PEG of MM 511 kDa

exerting an osmotic pressure of 10 kPa. In this focal plane,

both the radial and longitudinal fibers are still discernible

although less prominent than in Fig. 4 a, but Hensen’s stripe
and the limbal attachment are barely discernible. When re-

turned to AE solution (Fig. 4 c), the TM appearance is sim-

ilar to that seen at the beginning of the experiment (Fig. 4 a).
Thus, the fibrillar structure of the TM seen in light mi-

croscopy showed reversible changes in response to changes

in osmotic pressure. Furthermore, in measurements with

PEGs of different molecular masses and different osmotic

pressures, it was our impression that it was the osmotic pres-

sure, rather than either the PEG molecular mass or con-

centration, that resulted in these reversible changes in the

fibrillar structure.

Effect of PEG on TM thickness

The effect of PEG on TM thickness is illustrated in Fig. 5,

which shows fluorescent images of the beads on both the TM

and the glass slide taken at different focal planes and in

different bathing solutions. Initially, when the TM was im-

mersed in AE solution, the fluorescent beads were in focus

40 mm from the glass slide indicating that the TM at this

location was 40-mm thick. In the presence of an AE solution

containing PEG with a molecular mass of 511 kDa with an

osmotic pressure of 250 Pa, the beads were in focus 30 mm

from the glass slide, indicating that the TM shrank by 10 mm.

Finally, when the TM was returned to AE solution, the beads

on the top of the TM were in focus 40 mm from the glass

slide, indicating that the TM returned to approximately its

original thickness. These results indicate that the thickness of

the TM shows reversible shrinkage in response to increases

in osmotic pressure.

Dependence of TM strain on PEG molecular mass
for isosmotic solutions

A previous study showed that increasing the osmotic

pressure of the bathing solution produced quite different

changes in TM thickness when different solutes were used.

FIGURE 3 Equilibrium stress-strain relation of a PMAA gel. The solid

circles represent the median value of the strain for a given stress applied

using PEG solutions to exert osmotic pressure. The vertical lines shows the

interquartile ranges. The solutions contained 174 mM KCl. The open

symbols represent the stress-strain relation measured using hydraulic

pressure with a dynastat in different KCl concentrations; open circles and

open squares represent KCl concentration of 100 mM and 200 mM,

respectively (30).
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Addition of 10 mmol/L of glucose produced no discernible

change in thickness, whereas addition of 10 mmol/L of PEG

with a molecular mass of 20 kDa produced a sustained

shrinkage of the TM (see Fig. 17 in (11)). This was inter-

preted to indicate that glucose freely penetrated the TM and

hence did not produce an osmotic effect. In contrast, PEG

with a molecular mass of 20 kDa did not penetrate the TM as

freely as did glucose.

To determine the extent to which PEG penetrates the

TM, we measured the TM thickness for PEG of different

molecular masses at the same osmotic pressure of 250 Pa.

The concentration of PEG required to obtain an osmotic

pressure of 250 Pa was determined by Eqs. 7–9. Fig. 6

shows the change in TM thickness for three experiments

when the TM was exposed to solutions containing PEG

with different molecular masses. Almost all the points lie

below a line-of-unity slope indicating that, for all molecular

masses, the TM shrank in response to an increase in osmotic

pressure. To a first-order, changes in thickness at each osmotic

pressure are proportional to the original thickness over most of

the TM. These results are consistent with those seen in a

previous study (22). However, with closer analysis, depen-

dence on radial position was seen (see Dependence on the

Radial Direction section). Note also that the slope of the

regression line is appreciably higher for molecular mass of 20

and 40 kDa than for the other molecular masses, indicating

that the shrinkage of the TM is smaller at the lower molecular

masses. This point is made more clearly in Fig. 7, which

summarizes the data of Fig. 6 by plotting the strain as a

function of PEG molecular mass. The strain was computed

from the fractional change in TM thickness by Eq. 5. For PEG

MM $ 200 kDa, the average TM strain is independent of

molecular mass. However, for MM# 100 kDa, the TM strain

is appreciably smaller. To determine whether the difference in

strain between lower and higher molecular masses is statis-

tically significant, the mean and standard error of the mean are

plotted in Fig. 8 for both lower and higher molecular mass. A

t-test of these data showed that the difference in mean strains

between these two populations was highly significant (p-value
of 1.6 3 10�22).

Average stress-strain relation of the TM

The stress-strain relation was measured in 16 segments of the

TM; 11 from the apical-middle regions of the TM and five

from the basal region. Their larger size makes apical-middle

segments easier to manipulate than basal segments. The

stress-strain relation was measured in the two regions of the

TM to determine whether this relation varied with longitu-

dinal position in the cochlea.

Nonlinear stress-strain function

To determine the stress-strain relation of the TM, stress was

applied by subjecting the TM to osmotic pressure in the

range 0.025–10 kPa with solutions that contained PEG with

a molecular mass of 511 kDa. At this molecular mass, PEG

does not appear to permeate the TM appreciably. Thus, PEG

should exert its full osmotic pressure. We measured the

change in thickness of the TM relative to its thickness in AE

solutions that contained no PEG and used Eq. 5 to compute

the strain.

FIGURE 4 Bright-field images of the TM when exposed to (a) AE; (b)

AE1 PEG with a molecular mass of 511 kDa at a concentration required to

apply an osmotic pressure of 10 kPa at 1 h; and (c) AE at 2 h. Images were

normalized by dividing each pixel by the average value of its neighbors in a

513 51 pixel region. One longitudinal and radial fiber, Hensen’s stripe and

limbal attachment have been traced in panel a. The value Dt, shown in the

lower right of panels b and c, represents the time elapsed since the image in

panel a was obtained.
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Fig. 9 shows the change in TM thickness relative to its

original thickness for all the beads in 11 experiments from

the apical-middle region of the cochlea when the TM was

exposed to solutions of different osmotic pressures. The vast

preponderance of the data points fell below a line of equality,

showing that the TM shrank in response to an increase in

osmotic pressure. The slope of the solid line represents the

median fractional change in TM thickness for a given

osmotic pressure. As the osmotic pressure increased, the TM

shrank more, as indicated by the decrease in the slope of the

regression line. The correlation coefficient of the fit also

decreased from 0.99 at low osmotic pressures when there

was little shrinkage of the TM, to 0.68 at the highest osmotic

pressure when the shrinkage of the TM was appreciable.

Fig. 10 shows the measured strain as a function of applied

stress for one TM from the apical-middle region. Previous

researchers (30), who measured stress-strain relations of

polyelectrolyte gels, found it useful to fit their measurements

with power functions. Therefore, we tried to fit the stress-

strain relation of the TM with the power function

ez ¼ as
b
; (10)

where s is the stress and ez is the z-component of the strain.

We fit this power function to the measured stress-strain re-

lation of each TM so as to minimize the mean-squared error

between the measurements and the power function in log-log

coordinates. Each fit yielded estimates of the parameters of

the power function. The fit of a power function to the

measurements of one TM is shown in Fig. 10.

For the jth TMwe obtained the estimates of the power func-

tion parameters faj,bjg. The median and interquartile range

of these estimates were fã; b̃g and fIQRa,IQRbg, respectively.
Fig. 11 summarizes the fit of the power law to all our data

from apical-middle and basal segments of the TM plotted in

logarithmic coordinates, which plot a power function as a

straight line. The apical-middle data are from the same 11

experiments as in Fig. 9. The composite data are fit closely

by a power function over most of the range of stress. The pa-

rameters of the fit of power functions to the stress-strain func-

tions are shown in Table 1. Since the data from all apical-

middle sections of the TM were pooled, irrespective of radial

or longitudinal position within the segments, the results

reflect the strain averaged over location in the TM segment

for this region.

Modulus-stress function

Because the stress-strain function of the TM is nonlinear, the

bulk modulus is not uniquely defined. Moreover, the strains

in the radial and longitudinal directions were small (22),

hence the moduli that was measured is the longitudinal

modulus (30). The chord and slope longitudinal modulus,

Mc and Ms, respectively, can be defined in terms of the

z-component of the strain as

Mc ¼
s

ez
and Ms ¼

ds

dez
; (11)

where both moduli depend upon the stress. If the stress-strain

function is a power function as in Eq. 10, then the two

moduli become

Mc ¼
s

1�b

a
and Ms ¼

s
1�b

ab
; (12)

which shows that the two moduli differ only by a factor of b.
The modulus-stress function is also a power function but the

exponent differs from that of the stress-strain function.

Since calculation of the slope longitudinal modulus is

inherently more variable because first differences of strain

values are taken, and since the slope longitudinal modulus

gives no additional information over the chord longitudinal

modulus, we computed the chord longitudinal modulus

directly from the measured data and plotted this modulus

against the applied stress (Fig. 12). Once again the data are

plotted in logarithmic coordinates so that power functions

plot as straight lines. The results show that the chord

longitudinal modulus increases with stress approximately as

a power function for both the apical-middle and basal TM

segments. The largest deviations are at low stress, when the

modulus increases for apical-middle segments. We do not

expect the power function to fit the measurements at

asymptotically low stresses since the power function predicts

that the modulus goes to zero at low stress, which is not

FIGURE 5 The right side shows fluorescent im-

ages of two beads on the TM and two on the glass

slide. The columns correspond to different bathing

solutions. Each row shows images in a different focal

plane. The left side shows a schematic diagram of the

profile of the TM and glass slide. In AE, the beads are

in focus at a height of 40 mm. When PEG is added to

the AE solution, the TM shrinks and hence the two

beads on the surface of the TM are in focus at 30 mm.

The beads on the surface of the glass slide remain in

focus at the same height in both solutions.
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reasonable. However, the results show directly that the TM

becomes stiffer with increasing stress. To estimate the

parameters of the power function we fit the data with power

functions of the form

Mc ¼ cs
d
: (13)

The results are summarized in Table 1.

Spatial dependence of the stress-strain relation
of TM

Dependence on the radial direction

Fig. 13 shows the distribution of beads on the TM as a

function of radial position along the TM both in AE and in

AE with a concentration of PEG to increase the osmotic

pressure by 10 kPa. Radial position was measured from the

outer edge of the TM because this edge was better defined

than was the inner edge. These results are plotted irrespective

of longitudinal distance along the TM. In AE, the thickness

of the radial profile has a broad maximum in the region near

the limbal attachment of the TM; the TM is much thinner

at its edges. With an increase in osmotic pressure, the TM

thickness decreases at virtually all radial positions. This

general pattern in the radial dependence of TM thickness

and its dependence on osmotic pressure was seen in all our

results. The change in thickness was largest for the largest

osmotic pressures.

To determine whether there is a radial dependence to

strain, we examined strain as a function of radial position for

all the data. We selected data obtained at an osmotic pressure

FIGURE 7 TM strain as a function of PEG molecular mass for an applied

osmotic pressure of 250 Pa. This plot summarizes data from the same

experiments as in Fig. 6. The circles represents the median strain. The lengths

of the solid vertical lines indicate the interquartile ranges of the measure-

ments. The horizontal line is at a strain of 0.16, which is the average value

for MM $ 200 kDa.

FIGURE 8 Histogram of strain for two ranges of molecular mass; same

data as in Fig. 7. The lower molecular mass includes all the data for MM #

100 kDa and the higher molecular mass includes all the data for MM$ 200

kDa. The height of each bar equals the mean strain and the vertical line

segments have lengths that equal twice the standard error of the mean. N is

the number of data points.

FIGURE 6 Effect of isosmotic solutions with different PEG molecular

mass on TM thickness. Thickness (z) of TMs from the apical-middle regions

in PEG solutions versus that in the absence of PEG. Each solution contained

AE. Different concentrations of PEG were added to each solution so that the

osmotic pressure exerted by that particular molecular-weight PEG was equal

to 250 Pa according to Eqs. 7–9. Each dot represents one bead on one of

three TMs. The solid and dashed lines represent a regression line fit to the

data and a line of unity slope, respectively. The values of the slope

and correlation coefficient of the regression lines are given by m and r,

respectively.
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of 10 kPa for detailed comparison because the osmotically

induced displacements were largest at this high osmotic

pressure so that strain could be computed over a large radial

extent. The strain computed from the measurements shown

in Fig. 13 is plotted on the top panel of Fig. 14. This is an

example of a TM that showed a small but systematic de-

crease in strain in the radial direction. In particular, in six of

the seven TMs the strain was somewhat larger in the outer

region of the TM between the outer edge and the limbal zone

attachment than in the inner region between the limbal zone

attachment and the inner edge. These two regions have been

called the middle and marginal zone and the limbal zone,

respectively (32). Results from one TM (bottom panel in Fig.
14) showed a different pattern of radial dependence of strain.

To summarize our results, we pooled the data from all

seven TMs. For each TM, we combined all the data from the

outer portion of the TM and computed the mean of those

results. Because the strain at 10 kPa varied from one TM to

another, we normalized all the strains to the mean strain in

the outer region. The pooled results are shown in Fig. 15.

The histogram shows that there is a small difference in strain

between the outer and inner regions of the TM, which a t-test
shows is a highly significant difference (p-value of 2.0 3

10�11). The strain in the inner region is ;20% smaller than

FIGURE 9 Effect of osmotic pressure on TM thickness. Thickness (z) of

the TM in PEG solutions versus that in the absence of PEG. Only apical-

middle segments of the TM were used. The PEG solutions were made with

PEGwith amolecularmassof511kDa.Eachdot represents onebeadononeof

the 11TMs.The solid anddashed lines represent a regression linefit to the data

and a line of unity slope, respectively. The values of the slope and correlation

coefficient of the regression lines are given by m and r, respectively.

FIGURE 10 Strain as a function of applied stress for a TM segment from

the apical-middle region. The strain was computed from the fractional

change in TM thickness by Eq. 5. The plot symbols are the median strains

and the lengths of the vertical lines show the interquartile ranges of the

measurements. The solid line is a power function fit to the data according to

Eq. 10 with a ¼ 0.24 and b ¼ 0.36.

FIGURE 11 TM stress-strain functions for all of the basal and apical-

middle segments of the TM. Plot symbols represent the median strains and

the lengths of vertical lines show the interquartile ranges. The solid line

is a power law fit to the data according to Eq. 10 with a¼ 0.31 and b ¼ 0.31

for the apical-middle segments and a ¼ 0.10 and b ¼ 0.21 for the basal

segments. The basal data are shaded to help distinguish them from the apical-

middle data.

Poroelasticity of the TM 2363

Biophysical Journal 91(6) 2356–2370



in the outer region, suggesting that the inner region is;20%

stiffer than the outer region.

Dependence on the longitudinal direction

The most direct way to examine the longitudinal dependence

of strain is to compare the results from the apical-middle

region with those from the basal region. Fig. 11 compares

the stress-strain relation for the 11 apical-middle segments

with the five basal segments of the TM. The strain is sys-

tematically larger in apical-middle segments than in basal

segments. Comparison of the parameters of the fit of the

power law to stress-strain functions (Table 1) show that there

is only a small difference in exponent b but that the strain scale

factor a is appreciably larger in apical-middle segments than

in basal segments. Consistent with these results, the chord

longitudinal modulus computed from the stress-strain func-

tion (Fig. 12 and Table 1) also shows that the exponent of the

power function does not differ greatly between apical-middle

and basal segments, but the scale factor is larger for basal

segments indicating that the basal segments are stiffer than

apical-middle segments. Furthermore, if both the stress-strain

and modulus-stress functions are consistent power functions,

the exponent d should equal 1 – b, which it does approx-

imately. Finally, the chord longitudinal modulus at the lowest

stresses were estimated with linear regression to be 0.45 kPa

with an interquartile range of 0.3 kPa for apical segments

and 0.88 kPa with an interquartile range of 0.64 kPa for basal

segments. These values are within the range of longitudinal

modulus values shown in Table 1 at the lowest strain.

Thickness of the TM

To see if the geometry of the TM might be related to the

difference in stress-strain functions, we measured the thick-

ness of each TM. The results (Table 1) show that the apical-

middle segments were significantly thicker than basal segments.

DISCUSSION

Use of osmotic pressure to apply stress

The use of osmotic pressure to apply mechanical stress to the

TM has some desirable features. No mechanical contact with

the TM is required; stress is applied by changing the

TABLE 1 Stress-strain functions for apical-middle and

basal TM segments

Apical-middle Basal

Number of TMs 11 5

Stress-strain function fits

ã; IQRa 0.31, 0.11 0.10, 0.10

b̃; IQRb 0.31, 0.08 0.21, 0.19

Modulus-stress function fits

M̃c; IQRM (@ 25 Pa) 0.47, 0.11 kPa 0.53, 0.34 kPa

M̃c; IQRM (@ 5 kPa) 11.52, 4.02 kPa 24.92, 69.66 kPa

c̃; IQRc 3.26, 1.41 kPa 10.12, 11.72 kPa

d̃; IQRd 0.69, 0.06 0.78, 0.19

TM thickness at Hensen’s stripe

h̃; IQRh 43.75, 6.00 mm 31.60, 4.50 mm

Results obtained for apical-middle and basal segments of the TM. Estimates

are given of the parameters of power functions fit to measured stress-strain

functions and modulus-stress functions. The value of the chord longitudinal

modulus (kPa) is shown at a low stress (25 Pa) and high stress (5 kPa). The

thickness of each TM was measured at Hensen’s stripe when the TM was

immersed in AE. The median and interquartile range, IQR, are given for

each variable.

FIGURE 12 The chord longitudinal modulus defined by Eq. 11 was

computed for all 11 apical-middle and all five basal segments. Plot symbols

represent the median strain and the lengths of vertical lines show the

interquartile ranges. The lines through the data are regression lines fit to

the basal and apical-middle data whose parameters are given in Table 1. The

basal data are shaded to help distinguish them from the apical-middle data.

FIGURE 13 Example of the effect of osmotic pressure on TM thickness

in the radial direction for one TM from the apical-middle region of the

TM. Each dot represents the height of one bead on the TM when the TM is

bathed in AE. The shaded (1) symbols show the height of the same beads

when the TM is immersed in AE plus PEG. A concentration of PEG, with

a molecular mass of 511 kDa, was used to produce an osmotic pressure of

10 kPa. Radial distance was measured from the outer edge toward the

modiolus. The locations of anatomical landmarks are indicated by dotted

vertical lines.
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chemical composition of the bathing solution. In contrast,

the use of mechanical probes to apply stress to the TM yields

mechanical characteristics that depend upon the dimensions

of the probe. Thus, the osmotic pressure method is suitable

for measuring bulk mechanical properties of small, fragile

tissue of nonuniform geometry that are easily damaged by

mechanical probes. The principal disadvantage of the method

is that only static, equilibrium properties of these tissues can

be measured; other methods are required to measure dynamic

mechanical characteristics.

Nonosmotic effects of PEG on the TM

Our intention was to use PEG to change the osmotic pressure

of the bathing solution. We now consider whether or not it is

likely that PEG produced other, unintended effects on the

TM. Fig. 4 indicates that the effects of PEG on the appearance

of the TM in light microscopy are reversible. Furthermore, we

observed that the effect of PEG on the TM architecture varied

with applied stress rather than with PEG molecular mass or

concentration.

Since the TM is very sensitive to Ca12 concentration (22),

perhaps PEG interacts with the Ca12 in the bath solution. If

PEG were to bind Ca12, the Ca12 concentration in the bath

would decrease, causing the TM to swell (22). However,

Fig. 11 shows that increasing the PEG concentration results

in shrinkage of the TM. Alternatively, PEG might release

bound Ca12 from the TM, thereby increasing the Ca12 con-

centration in the bath. However, previous studies have shown

that even if the concentration increased 100-fold (i.e., from

20 mM to 2 mM), the TM would only shrink 0.7 mm or

;1.75% (22). Therefore, the primary effect of PEG could not

be the binding of Ca12. In general, the effects of changes in

electrolyte concentration produce much smaller changes in

TM volume than do changes in osmotic pressure. It seems

most likely that the changes in the TM in response to changes

in PEG concentration are due to changes in osmotic pressure.

Equivalence of osmotic and hydraulic pressure

Theories assume (33) and measurements confirm (34) that

osmotic and hydraulic pressures are equivalent. This equiv-

alence has been noted in measurements on connective tissues

(15–17). Because the osmotic pressure of a PEG solution

depends nonlinearly on both the concentration and molecular

mass of PEG (Fig. 2), establishing this equivalence is not

trivial. Using a theory for dependence of osmotic pressure on

PEG concentration and molecular mass (27) allowed us to

compute the osmotic pressure of our solutions. We tested the

equivalence of hydraulic and osmotic pressure on PMAA

gels (Fig. 3). The results showed the strain on the gel was the

same for hydraulic pressures that were equivalent to osmotic

pressures predicted by the theory even at relatively high

stress. This was strong evidence that osmotic pressure could

be used to apply a known mechanical stress to the TM.

TM filtration

Reflection coefficient

If PEG were excluded from the TM for all molecular masses

of PEG, we would expect the strain produced by a fixed

FIGURE 15 Strain as a function of radial position from seven TMs at an

osmotic pressure of 10 kPa. For each TM segment, we computed the strain

of all points located on the outer segment of the TM from the limbal attach-

ment. We computed the mean of these values and normalized the strains to

this mean value. The height of each bar equals the mean strain and the verti-

cal line segments have lengths that equal twice the standard error of the

mean. The value N is the number of data points.

FIGURE 14 Strain as a function of radial position. These are examples of

strain as a function of radial position measured from the outer to the inner

edge of the TM at a stress of 10 kPa for two TMs. The thin lines connect the

median strains computed in 20-mm bins; the vertical line segments represent

the interquartile ranges of the measurements in the bins. The top panel is

from the same data as shown in Fig. 13. The bottom panel shows the radial

dependence of strain for a different TM. The locations of anatomical land-

marks are indicated by dotted vertical lines.
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stress to be independent of molecular mass. The results (Fig.

7) show that this is indeed the case for MM $ 200 kDa, but

not below that value. Thus, below 200 kDa the osmotic

pressure of PEG is not fully expressed. The extent to which

osmotic pressure is fully expressed or not can be quantified

by the reflection coefficient, r, which is the ratio of the effec-

tive osmotic pressure to the osmotic pressure (35),

r ¼ seff

s
: (14)

If we use the power function fit of the data, then we get

r ¼ ðez;eff=aÞ1=b

ðez=aÞ1=b
¼ ez;eff

ez

� �1=b

; (15)

where Ez,eff is the measured strain and ez is the strain

expected if the osmotic pressure were fully expressed. Thus,

Fig. 7 can be recast as a plot of the reflection coefficient as a

function of molecular mass (Fig. 16). The reflection coef-

ficient approaches unity for MM $ 200 kDa, indicating that

the osmotic pressure is fully expressed, i.e., PEG is fully

reflected from the TM. Below that value, the effective osmotic

pressure is lower than the osmotic pressure calculated from the

PEG concentration and molecular mass, i.e., PEG permeates

the TM to some extent. If PEG permeated the TM freely, the

reflection coefficient would be zero.

Estimation of the maximum pore radius of the TM

One simple mechanism that accounts for an effective osmotic

pressure that is less than the osmotic pressure of the solution is

for PEG to enter the TM. With this interpretation, Fig. 16

indicates that PEG with MM$ 200 kDa is excluded from the

TM, but below that value PEG permeates the TM. Thus,

the results from Fig. 7 can be used to estimate the pore radius

of the TM. First, we need to compute the radius of PEG

for different molecular masses. The radius of gyration of

PEG, which defines the thickness of the shell surrounding

PEG, has been determined experimentally (36). The radius

of gyration is

Rg ¼
3hW

10pNz3

� �1
3

; (16)

where W is the molecular mass of PEG, N is the Avogadro

number, and z is the Flory-Fox parameter, which is taken as

0.8. The value h is the intrinsic viscosity of PEG solution,

which is

h ¼ 0:0646W
0:645

: (17)

Fig. 17 shows the radius of gyration calculated using Eqs. 16

and 17 as a function of PEG molecular mass. PEG with MM

$ 200 kDa is excluded from the TM. The radius of gyration

of PEG with a molecular mass of 200 kDa is;22 nm. Thus,

we infer that the maximum pore radius of the TM is;22 nm.

This is a conservative figure since the probe PEG molecules

we used have a distribution of molecular masses. For

example, PEG with a nominal molecular mass of 100 kDa

contains a small fraction of PEG molecules with lower and

higher molecular masses. Thus, the fact that the reflection

coefficient is ,1 at a molecular mass of 100 kDa (Fig. 16)

may have resulted from a small amount of lower molecular-

mass PEG in solution. Thus, the maximum pore radius is

likely to be somewhat smaller than 22 nm. In any case, these

results imply that ions and small solutes can freely diffuse

into the TM but larger organic molecules such as proteins are

excluded. The molecular architecture of the TM reveals the

presence of weakly hydrated and strongly hydrated type B

protofibrils, which are linked together by staggering cross-

bridges occurring at 12–15 nm intervals (37). Thus, this

fibrillar structure has dimensions of the right order of

magnitude to form the pores that exclude high molecular-

mass PEG from the TM.

Pore dimensions play an important role in the dynamic

mechanical properties of cartilage (13). Since the TM is made

FIGURE 16 Reflection coefficient versus molecular mass of PEG solu-

tion. The reflection coefficient was computed from the median strain in Fig. 7

using Eq. 14 under the assumption that the maximum reflection coefficient

was one.

FIGURE 17 Radius of gyration versus molecular mass of PEG as calcu-

lated from Eqs. 16 and 17 (solid line). The data points are the values of the

radius of gyration for each molecular mass of PEG used in our experiments.
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up of similar proteins we expect the pore dimensions to be

important for TM dynamics as well. For example, we would

expect the diffusion coefficient of ions in the TM and the

osmotic permeability to decrease as the pore radius decreases.

This would lead to an increase in the time constant of dif-

fusion and osmosis and, thereby, decrease the rate of TM

response to stimuli.

Caveat on the use of osmotic pressure to measure tissue
mechanical properties

PEGs are available for a large range of molecular masses.

We found that PEGs of different molecular masses produced

different strains of the TM even when the stress applied was

the same. We have interpreted this finding to indicate that

low molecular-mass PEGs can permeate the TM and hence

produce a smaller effective osmotic pressure than higher

molecular-mass PEGs. Hence, use of PEG to apply a known

mechanical stress to a tissue requires not only that the

osmotic pressure be calculated correctly, but also that the

PEG not permeate the tissue appreciably.

Comparison with previous measurements on
the TM obtained with mechanical probes

The point stiffness of the TM has previously been measured

by calibrated hairs (38) and a glass micropipette (39). These

measurement techniques estimated the transverse point

stiffness to be 0.1–10 N/m and 0.125 N/m, respectively.

Recently, the TM’s dynamic point stiffness has also been

measured using a magnetic bead (9,40). From these mea-

surements, the point stiffness at 10 Hz was found to be 0.14,

0.40, and 0.04–0.22 N/m in the longitudinal, radial, and

transverse directions, respectively.

The relationship between point stiffness and longitudinal

modulus depends on the mechanical properties of the TM. If

we assume the material to be semiinfinite, homogeneous, and

elastic, the relation between point stiffness, S, and longitu-

dinal modulus, M, is given by

S ¼ 2Mrð1� 2nÞ
ð1� nÞ2

; (18)

where r is the radius of the circular contact region, and n is

Poisson’s ratio (41).

To test whether our point stiffness estimates agree with

previously published results, we estimated r to be 10 mm for

results obtained previously (9), n to be close to 0 for the

equilibrium condition at which M was measured and M to

be 0.45 kPa. For the physiologically relevantM value, the lin-

ear regression fit to the chord longitudinal modulus value

measured at the lowest stress was used. However, it is

important to keep in mind that this value is an upper bound

on the actual physiologically relevant value. Using these

numbers, the point stiffness was found to be ;0.009 N/m,

which is close to the lower end of the previously published

results for transverse point stiffness. Moreover, in vitro we

estimate r to be the radius of a hair bundle, which is ;5 mm

and take n to be close to 0, and the point stiffness is esti-

mated to be ;0.014 N/m, which is approximately an order-

of-magnitude stiffer than hair bundles (0.001–0.006 N/m)

(42). However, this conclusion needs to be checked with

measurements of the dynamic longitudinal modulus of the

TM at physiological stress levels.

Comparison to equilibrium longitudinal modulus
of other connective tissues

The longitudinal modulus of the TM is compared to those

of other connective tissues in Fig. 18. As in the previous

section, for the longitudinal modulus of the TM, the linear

regression-fit to the chord longitudinal modulus value mea-

sured at the lowest stress was used. The longitudinal mod-

ulus of a number of connective tissues spans a range of

102–1010 Pa. The comparisons of longitudinal moduli among

connective tissues must be viewed with caution. The stress-

strain relations of most connective tissues are nonlinear,

making estimation of a single value for the modulus some-

what arbitrary. Sources of variability for these measurements

also result from differences in type of tissue specimens,

species, methods, etc. Estimates are based on measurements

of tension as well as compression. Nevertheless, the range of

values for different connective tissues spans eight orders of

magnitude, so while one might argue about the exact rank

order of tissues by their longitudinal moduli, the difference

between the stiffest tissues and the least stiff tissues is not in

doubt. The modulus of the TM is the smallest of those shown

and is approximately seven orders-of-magnitude lower than

for mollusk shell, tooth enamel, cortical bone, and tooth

dentin. It is also four orders-of-magnitude smaller than artic-

FIGURE 18 Comparison of longitudinal moduli of several connective

tissues (13,46–65).
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ular cartilage, even though the solid compositions of the TM

and articular cartilage are very similar. However, the TM

(97% water) is more hydrated than is articular cartilage (65%

water). The longitudinal modulus of the TM is more com-

pliant than either the sea anemone mesoglia and intraocular

lens, two of the most flexile tissues tested.

Implications for a gel model of the TM

Previous measurements of the TM have been interpreted in

terms of a model of the TM as a polyelectrolyte gel (10,

11,43). In this model, the mechanical constitutive relation of

the TM, which relates its change in volume to stress, obeys

Hooke’s law. That is, the microscopic longitudinal modulus

of the model is constant. The amount of fixed charge in the

model is also constant. Thus, it was of interest to see whether

or not this model could fit the nonlinear stress-strain relation

measured with PEG-induced osmotic pressure changes.

With constant microscopic longitudinal modulus and fixed

charge concentration, the gel model does produce a nonlin-

ear stress-strain relation. However, we have not been able to

fit the measurements with this model (Fig. 19). When we

chose either the microscopic longitudinal modulus or the

fixed charge concentration to be functions of stress, it was

possible to obtain adequate fits of our measurements (Fig.

19). Another way of fitting the measurements is to assume

that the TM is not homogeneous but instead consists of two

different gels with different material properties; this model

also fit the data as shown in Fig. 19. These results show that

the measurements can be fit either by a one-layer gel model

with nonlinear constitutive relations or by a two-layer gel

model with linear constitutive relations. Our data are not

sufficient to allow us to distinguish among these alternatives.

Even though the molecular origin of the nonlinearity of

the longitudinal modulus is unclear, the longitudinal modu-

lus in conjunction with the pore radius provides a quanti-

tative basis for developing a poroelastic model of the TM.

The poroelastic model might describe the measured fre-

quency dependence of TM properties such as shear imped-

ance, which has been shown to be inconsistent with simple

viscoelastic models (40).

Spatial dependence of TM properties

The TM properties vary in both the radial and longitudinal

directions. In the radial direction, Fig. 14 shows that the

strain is 20% smaller in the inner region than in the outer

region for the same stress. These results are qualitatively sim-

ilar to the shear modulus measurements made with atomic

force microscope (14), which also found that the TM is more

rigid toward the inner zones. Both of these results imply that

the hair bundles contact a more compliant region of the

TM. Perhaps this pattern allows the compliance of the hair

bundles to more closely match that of the TM.

However, unlike the atomic force microscope measure-

ments, which found no trend in longitudinal elasticity (14),

Fig. 11 shows that the basal region of the TM has a larger

equilibrium longitudinal modulus than the apical region. In

addition, results obtained by others (44,45) as well as by us

(Table 1) show that the TM thickness decreases from apex to

base. The fact that TM dimensions and material properties

vary from apex to base suggests that the TM may have a role

in tonotopic organization of cochlear macromechanics as

well as micromechanics.
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