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ABSTRACT It is now recognized that internal global protein dynamics play an important role in the allosteric function of many
proteins. Alterations of protein flexibility on effector binding affect the entropic cost of binding at a distant site. We present a
coarse-grained model for a potential amplification of such entropic allostery due to coupling of fast, localized modes to the slow,
global modes. We show how such coupling can give rise to large compensating entropic and enthalpic terms. The model
corresponds to the pattern of calorimetry and NMR data from experiments on the Met repressor.

INTRODUCTION

It is now clear that dynamics plays an important role in pro-

tein function. For example, there is growing evidence for a

dynamic contribution to allosteric signaling within protein

molecules (1). Concepts introduced by Cooper and Dryden

(2) have since been developed in coarse-grained theoretical

models (3,4), detailed molecular dynamics (1,5,6), and com-

putational normal mode analysis (7,8) including elastic

network models (9–11). There is also a growing wealth of

experimental evidence for protein dynamics in allostery

(5,12) especially from NMR spectroscopy (13–18), neutron

spin-echo spectroscopy (19), and fluorescence spectroscopy

(20). Information on ligand binding can be communicated to

a distant site in a protein via alterations of the global modes

of vibration as well as by static conformational changes.

High frequency modes are generally localized in proteins

(21) and therefore are unable to communicate over large mo-

lecular distances. In this article, however, we investigate a

mechanism by which such fast modes may contribute to the

allosteric signaling by coupling to the global modes. We in-

troduce and develop a simple theoretical model for such

coupling and apply it to a specific example system, the Met

repressor.

A strong experimental motivation for a model of this type

arises from calorimetry (22) and NMR data (23) on the Met

repressor. The Escherichia coli methionine repressor binds

DNA only with its co-repressor S-adenosyl methionine (SAM),

repressing the genes for the synthesis of the amino-acid me-

thionine (22,24). The Met repressor is a dimer of two inter-

twined monomers, each with 104 amino acids, giving a dimer

mass of 24 kDa. One SAM molecule binds to each monomer

and the repressor dimer binds DNA with a b-strand binding

motif (25). The Met operator contains 2–5 five Met boxes

(tandem repeats of eight basepairs of similar sequence). Two

dimers bind to DNA and form a dimer of dimers (26). The

crystal structures of the holo- and apo-repressors (with and

without co-repressor bound) show no significant conforma-

tion change on co-repressor binding (27). One theory to

explain the activation of this allostery without conforma-

tional change is from long-range electrostatic interactions

between the positive effector SAM and negative DNA

phosphate groups (28). However, due to screening, electro-

static interactions are usually localized in proteins. An alter-

native suggested allosteric mechanism invokes changes in

the flexibility of the repressor on ligand binding (22). This is

supported by crystal structure B-factors (27), which show

a stiffening of the protein on co-repressor binding. Initial

results on the NMR structure and dynamics of the Met

repressor indicate significant decreases in dynamics on SAM

binding (23). Calorimetric data (22) indicate large compen-

satory entropic and enthalpic allosteric energies (;20 kBT).

The entropic term is too large to be accounted for by the slow

modes alone (a typical contribution of each degree of free-

dom in a global mode to entropic allostery is 0.5 kBT (3)).

There is also a large enthalpic component, yet this is unlikely

to be due to major static conformational change, since the

x-ray crystal structures show no structural change on effector

binding (27). These observations motivate the search in this

article for a model coupling fast modes to slow modes, which

accounts for the effect in a way that retains the dynamic

nature of the allosteric signal.

ALLOSTERY AMPLIFIED BY ENSLAVED
FAST MODES

In this section we present a calculation of the vibrational

allosteric free energy of a system that has fast, localized

modes coupled to slow, global modes. The idea is that, by

coupling to the delocalized global modes, despite their lo-

calized nature, the fast modes contribute to the allosteric com-

munication. This contribution may result in an amplification
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of the allosteric signal. To make the idea more quantitative

we begin with the scissor model of an allosteric protein

drawn in Fig. 1 (the simplest case of slow-mode dynamic

allostery). The model consists of two rods representing, for

example, a-helices, with side chains indicated schematically.

In this model there is one slow, delocalized mode (the scissor

motion between the rods). There are several fast localized

modes—the motions of the side chains of the a-helices. At

this level we ignore the local, high wavenumber deforma-

tions of the stiff rods/helices, which also, in principle,

contribute to the spectrum of fast modes. The key assump-

tion of the model is that when the global mode is stiff (of

low amplitude), the localized side-chain modes are also stiff.

In this stiff case, the side chains will experience a more

nativelike environment (a deep narrow native potential be-

tween the a-helices). This exposure to strong, specific inter-

actions restricts their dynamics, corresponding to a deeper

potential well for the motion of their degrees of freedom.

However, if the amplitude of the flexible global mode in-

creases, the enslaved side chains experience a different (and

weaker) potential environment that is no longer as consis-

tently exposed to close, specific interactions. We assume

therefore that the potential seen by the fast modes is de-

pendent on the instantaneous position xs of the slow mode (or

superposition of the slow modes for models with more than

one enslaving slow mode). We assume that at all nonzero

positions of the slow mode (xs 6¼ 0), the fast modes will

experience a flatter potential than the native one seen at the

minimum of the slow mode (xs ¼ 0). Increased motion of

the slow mode, therefore, results in increased flexibility of

the fast modes. On the timescale of the slow mode, the aver-

age motion of the fast modes appears increased. This is due

to the fact that most of the time the side chains see a shal-

lower and flatter potential, since the motion of the helices has

displaced the side chains away from their native positions. At

certain times within the trajectory of the slow mode the side

chains will see their native potential and stiffen. This stiff-

ening will be only temporary, however, before the global

mode moves on and the side chains see a flatter potential

again. Therefore, on the timescale of the slow mode, the aver-

age amplitude of the fast modes’ motion will be correlated

with the amplitude of the average motion of the slow mode.

Here we provide a calculation of this effect using the very

simple scissor model shown in Fig. 1. This has just one slow

global mode ks controlled by the two effective springs, with

spring constants k1, k–1 that are affected by ligand binding

local to them (indicated by primed notation k961). This is an

allosteric model since the stiffening of one spring affects the

vibrations of the other, due to the anchoring effect of the

pivot point (which can be thought of as a spring of infinite

strength). We assume that the system has N fast modes cor-

responding to the vibrations of the side chains shown sche-

matically in Fig. 1. N such fast modes will arise from &N
side chains, since each side chain will contribute one or more

fast-mode degrees of freedom. Our goal is to calculate the

effect of coupled localized modes on the allosteric free

energy DDG, defined as the difference in the free energies of

binding of the substrate at position (–1) in the two cases of

the effector bound and unbound at position (11). DDG will

naturally also be a function of the assumed changes to the

local harmonic stiffnesses (k–1 to k9�1 and k1 to k91) on

binding.

To calculate the partition function as a route to the free

energies of the model, we integrate over all the fast co-

ordinates xfi
and the slow coordinate xs,

Z ¼
Z

dxs

Z
dxfi

exp
�1

kBT
VsðxsÞ1 +

N

i

Vfi
ðxfi

; xsÞ
� �� �

; (1)

for a single slow mode and N fast modes that are coupled to

the slow mode. The quadratic approximation to the slow

mode potential Vs is

FIGURE 1 Single-mode scissor model of dynamic allostery. The rods

represent a-helices. The side chains of such a-helices are shown schemat-

ically. Springs with spring constants k1 and k–1 are modified on binding to

effector and substrate. The free energy for substrate binding is controlled by

the amplitude of the thermally excited scissor mode, itself moderated by the

presence of the effector.
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VsðxsÞ ¼ �Vs0
1

1

2
ksx

2

s ¼ �Vs0
1

1

2
ðk1 1 k�1Þx2

s : (2)

The effective spring constant for the slow mode is ks ¼ k1 1

k–1 (as in Fig. 1), where the effective spring constants k1, k–1

are affected by the binding of ligands local to them. The

value �Vs0
is the minimum of the slow potential. If there is

no coupling or the slow mode is infinitely stiff, the fast-mode

potentials are, in the same harmonic approximation,

Vfi
ðxfi

Þ ¼ �Vf0
1

1

2
kfx

2

fi
; (3)

where �Vf0
is the minimum of the fast potential and kf is the

curvature, which at this level of calculation we assume to be

the same for each fast mode. For a fast mode coupled to a

finite slow mode, we modify the potential, Eq. 3, to

Vfi
ðxfi

; xsÞ ¼ �Vf0
1

1

2

kf

11
kkx

2

s

2kBT

0
BB@

1
CCAx2

fi
; (4)

where kk is the coupling strength with dimensions of the force

constant. Here, the choice of coupling function is arbitrary

and chosen for analytical simplicity. By comparing Eqs. 3

and 4 it can be seen that the instantaneous position of the

slow mode, xs, smoothly decreases the curvature of the

enslaved mode potential (as xs / N the curvature tends to

zero). In this case we assume the depth of the enslaved

mode �Vf0
remains constant. In Dynamic Enthalpic Allostery

we will consider the case where the depth is also affected by

the position of the slow mode.

Substituting Eqs. 2 and 4 into Eq. 1 and integrating over

the fast modes, we obtain

Z ¼
Z
dxs

Z
dxfi

exp
�1

kBT
�Vs0

1
1

2
ksx

2

s

��

1 +
N

i

�Vf0
1

1

2
kfx

2

fi

11
kkx

2

s

2kBT

1
CCA
3
775

¼ exp
Vs0

kBT
1

NVf0

kBT

� �
2pkBT

kf

� �N=2Z
dxse

fðxsÞ; (5)

where

f ðxsÞ ¼ � ksx
2

s

2kBT
1

N

2
ln 11

kkx
2

s

2kBT

� �
: (6)

The integral in Eq. 5 can be evaluated using the method of

steepest decent in which the approximation

f ðxsÞ � f ð�xxsÞ1
1

2
ðxs � �xxsÞ2

f$ð�xxsÞ (7)

is made, where �xxs is the maximum point of the function

f(xs). For ðN=2Þ. ðks=kkÞ, �xx2
s ¼ kBTððN=ksÞ � ð2=kkÞÞ,

leading to

f ðxsÞ � � N

2
� ks

kk

� �
1

N

2
ln

Nkk

2ks

� �
; (8)

� ks

kBT
1 � 2ks

Nkk

� �
ðxs � �xxsÞ2

: (9)

The above case (ðN=2Þ.ðks=kkÞ) is appropriate, since N� 1,

and we assume that at the mean displacement of the slow

mode, the fast-mode potential is modified by order-one

changes to ;ð2=3Þkf or, equivalently, kk ; ks. The coupling

of the fast modes to the slow mode therefore renormalizes

the slow-mode spring constant to an effective spring con-

stant, ksð2 � ð4ks=NkkÞÞ. Substituting this into Eq. 5 and

integrating gives

Z ¼ exp
Vs0

kBT
1

NVf0

kBT
� N

2
� ks

kk

� �� �
2pkBT

kf

� �N=2

3
2pkBT

ks 2 � 4ks

Nkk

� �
0
BB@

1
CCA

1=2

Nkk

2ks

� �N=2

: (10)

From this partition function, we can find the free energy of

the system:

Equation 11 lists explicitly only the terms that change

on ligand binding. In Eq. 12 we apply the approximation

ðN=2Þ � ðks=kkÞ for large N and kk and substitute ks ¼ k1 1

k–1 for the simple scissor model:

G ¼ 1

2
ðN1 1Þ kBT lnðk1 1 k�1Þ1 constant: (12)

Comparing this to the form with no enslaved modes,

G ¼ ð1=2ÞkBT lnðk11k�1Þ, it is clear that enslaving N

G ¼ �kBT lnZ

G ¼ �Vs0
� NVf0

1
N

2
� ks

kk

� �
kBT � 1

2
ðN1 1ÞkBT ln2pkBT1

1

2
NkBT lnkf

1
1

2
ðN1 1ÞkBT lnks 1

1

2
kBT ln 2 � 4ks

Nkk

� �
� 1

2
N kBT ln

Nkk

2

� �

G ¼ 1

2
ðN1 1ÞkBT lnks 1

N

2
� ks

kk

� �
kBT1

1

2
kBT ln 2 � 4ks

Nkk

� �
1 constant: (11)
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modes provides a strong amplification of the allosteric free

energy. Interestingly, providing ðN=2Þ � ðks=kkÞ, the free

energy is independent of the coupling strength kk. For the

simple scissor model, modeling a ligand binding in the

locality of k–1 by a stiffening to k9–1 (e.g., binding to DNA)

in the two cases of apo k1 and holo k91, the allosteric signal

DDG ¼ DGholo – DGapo is given by

DDG ¼ ðN1 1ÞkBT

2
ln

ðk91 1 k9�1Þðk1 1 k�1Þ
ðk91 1 k�1Þðk1 1 k9�1Þ

� �
: (13)

For isothermal changes, this free energy change is purely en-

tropic DDG ¼ �TDDS.

This first model produces a large, purely entropic, allo-

steric free energy. However, it cannot account for the allo-

stery of the Met repressor, since the latter shows large

compensating entropic and enthalpic terms. The potentially

large amplification of the entropic allostery (Eq. 13) might

well modify the calculation of DDG for systems in the class

of the Lac repressor (3). In this light, all slow-mode-only

calculations give a lower bound to DDG. However, further

modifications of this model will clearly be required to pro-

duce a candidate theory for the Met repressor. We detail one

in the following section.

DYNAMIC ENTHALPIC ALLOSTERY

In this section, we repeat the calculations in Allostery

Amplified by Enslaved Fast Modes allowing the minimum

of the potential seen by the fast modes to be affected by the

position of the slow mode as well as the curvature. This is a

much more realistic model because the depth, as well as the

curvature, of the fast-mode potential is likely to be affected

(to a different extent) by the slow mode. In this case we

model the potential for the fast modes using two coupling

functions of xs. The coupling to the well-depth (shallowing)

and to the well-width (flattening) are parameterized by the

constants kv and kk, respectively. We choose for convenience

to give these the dimensions of spring constants, as in the

previous section. Now Eq. 3 becomes

Vfi
ðxfi

; xsÞ ¼
�Vf0

11
kvx

2

s

2 kBT

1
1

2

kf

11
kkx

2

s

2 kBT

0
BB@

1
CCAx

2

fi
; (14)

in place of the form of Eq. 4. Substituting Eqs. 2 and 14 into

Eq. 1 and integrating over the fast modes gives

where

f ðxsÞ ¼ � ksx
2

s

2kBT
1

NVf0
=kBT

11
kvx

2

s

2kBT

1
N

2
ln 11

kkx
2

s

2kBT

� �
: (16)

As in Allostery Amplified by Enslaved Fast Modes, we

use the method of steepest decent (Eq. 7). In this case, the

maximum �xxs ¼ 0 for ðVf0
kv=kBTÞ$ ðkk=2Þ (assuming

ðN=2Þ � ðks=kkÞ) leads to

f ðxsÞ �
NVf0

kBT
� x

2

s

2kBT
ks 1N

Vf0
kv

kBT
� kk

2

� �� �
: (17)

Substituting this into Eq. 15 and integrating gives

Z¼ exp
Vs0

kBT
1

NVf0

kBT

� �

3
2pkBT

kf

� �N=2
2pkBT

ks 1N
Vf0

kv

kBT
� kk

2

� �
0
BB@

1
CCA

1=2

: (18)

The free energy G ¼ –kBT ln Z is therefore

G ¼ �Vs0
� NVf0

� 1

2
ðN1 1Þ ln 2pkBT

1
N

2
kBT ln kf 1

1

2
kBT ln ks 1N

Vf0
kv

kBT
� kk

2

� �� �

G ¼ 1

2
kBT ln ks 1N

Vf0
kv

kBT
� kk

2

� �� �
1 constant: (19)

As can be seen from Eq. 19, the free energy is not linear in

N, so it does not show the amplification obtained in Eq. 12.

In fact, in this case, for finite N and ðVf0
kv=kBTÞ.ðkk=2Þ the

Z ¼
Z
dxs

Z
dxfi

exp
�1

kBT
�Vs0

1
1

2
ksx

2

s 1 +
N

i

�Vf0

11
kvx

2

s

2kBT

1
1

2

kf

11
kkx

2

s

2kBT

0
BB@

1
CCAx

2

fi

0
BB@

1
CCA

2
664

3
775

¼ exp
Vs0

kBT

� �
2pkBT

kf

� �N=2Z
dxs 11

kkx
2

s

2 kBT

� �N=2

exp � ksx
2

s

2kBT
1

NVf0
=kBT

11
kvx

2

s

2kBT

2
664

3
775

¼ exp
Vs0

kBT

� �
2pkBT

kf

� �N=2Z
e

fðxsÞdxs; (15)
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allosteric free energy is less than that for no-enslaved-modes

N ¼ 0. In the simplifying case of ðVf0
kv=kBTÞ ¼ ðkk=2Þ, we

obtain the nonenslaved result. However, this free energy hides

enthalpic and entropic terms that are each affected strongly

by the enslaved fast modes. Calculating the enthalpic and en-

tropic terms separately (assuming isothermal changes) gives

H ¼ kBT
2@ln Z

@T

H ¼ �Vs0
� NVf0

1
1

2
ðN1 1ÞkBT1

NkvVf0
=2

ks 1N
Vf0

kv

kBT
� kk

2

� �

H ¼ NkvVf0
=2

ks 1N
Vf0

kv

kBT
� kk

2

� �1 constant: (20)

This gives a large (linear in N) dynamic enthalpy contribu-

tion to the allosteric free energy where the enthalpy change is

favorable for a stiffening of ks. The entropy TS ¼ kBTln Z1
kBT

2ð@ln Z=@TÞ includes this same term kBT
2ð@ln Z=@TÞ.

Thus this term cancels in the free energy DG ¼ DH � TDS.

In this way, the favorable enthalpy of binding pays for the

entropic cost of stiffening the protein.

If the enslaved fast localized modes are side chains at the

DNA binding site, the potential that is affected by the slow-

mode vibrations is the potential between the protein and the

DNA (i.e., the static enthalpy of binding DNA). In this way

the vibrational dynamics of the slow modes of the free re-

pressor affects the static enthalpy of binding to DNA, caus-

ing a dynamic enthalpy contribution to the allostery. In this

case, the enthalpy of binding to DNA, from Eq. 20 in the

simplifying case of ðVf0
kv=kBTÞ ¼ ðkk=2Þ, is

DH ¼ �Vs0
� NVf0

1 � kv

2ks

� �
; (21)

where �Vs0
� NVf0

is the static enthalpy of binding DNA.

We have made the assumption that the potential minimum

seen by the DNA binding site in the free repressor is zero and

that seen in the complex with DNA is �Vs0
� NVf0

. It can be

clearly seen from Eq. 21 that the stiffer the slow-mode ks, the

more enthalpically favorable the DNA binding. The alloste-

ric enthalpy has a dynamic component,

DDH ¼ �NVf0
kvðk9s � ksÞ
2k9sks

; (22)

where k9s is the slow-mode stiffness of the free holo-repressor

and ks is that of the free apo-repressor. To obtain this equa-

tion we have assumed no static enthalpy change (�Vs0

�NVf0
is unchanged on effector binding). The dynamic al-

lostery is enthalpically favorable if the holo-repressor is

stiffer than the apo-repressor. Since Eq. 22 is linear in the

number of enslaved modes N, this contribution can be very

large. We can easily extend this result for more than one slow

mode coupled to the fast modes by replacing ks with |Ks|, the

modulus of the matrix of slow-mode stiffnesses. There will

be a compensating unfavorable entropy component to this al-

lostery given by

TDDS ¼ �1

2
kBT ln

k9sDNA
ks

k9sksDNA

� NVf0
kvðk9s � ksÞ
2k9sks

: (23)

The allosteric free energy will be the much smaller value

DDG ¼ 1

2
kBT ln

k9sDNA
ks

k9sksDNA

; (24)

which is the same as that for no enslaved modes. The values

ksDNA
and k9sDNA

are the slow-mode stiffnesses of the apo-

repressor complex with DNA and the holo-repressor com-

plex with DNA, respectively. This exact cancellation of the

enslaving effect between the enthalpic and entropic terms

is true for ðVf0
kv=kBTÞ$ ðkk=2Þ. For the other case

ðVf0
kv=kBTÞ, ðkk=2Þ, the result will interpolate between

Eq. 24 and the kv ¼ 0 result (Eq. 13) discussed in Allostery

Amplified by Enslaved Fast Modes. So the condition

ðVf0
kv=kBTÞWðkk=2Þ actually separates two classes of qual-

itatively different behavior, giving zero or finite amplifica-

tion to the net allosteric free energy. The large compensatory

DDH and DDS values seen in the class discussed in this sec-

tion, leaving a modest DDG, is precisely the behavior seen in

the calorimetry of the Met repressor. The plots of Eqs. 22–24

against the slow-mode spring constants ratio, k9s/ks, in Fig. 2,

clearly show the compensating behavior.

APPLICATION TO THE MET REPRESSOR

In this section we apply the theory described in Dynamic

Enthalpic Allostery to the Met repressor as an example-case,

discuss the choice of parameters, and compare the results with

FIGURE 2 Graph of the dynamic allosteric free energy, DDG, from

Eq. 24 (solid) and the enthalpy DDH from Eq. 22 (dashed) and entropy DDS

from Eq. 23 (dotted) components of this, against the stiffening of the

effective slow-mode spring constant on corepressor binding to the apo-

repressor, k9s/ks. For two tandem binding repressor dimers, the values plotted

are twice those given in Eqs. 22–24. The graph is drawn for k9sDNA
¼ ksDNA

,

N ¼ 12, Vf0
¼ kBT, and kv ¼ 3ks (see Application to the Met Repressor for

a discussion on the choice of these values).
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known experimental work. From normal-mode calculations

we deduce parameters that reproduce observed thermody-

namics.

To compare the theory described in Dynamic Enthalpic

Allostery (Eq. 22) with experimental observations we need to

make various assumptions about the values of the parameters

used. Firstly, we assume the depth of the fast-modes potential is

of the order of the strength of one hydrogen bond,

givingVf0
;kBT. For the strength of coupling, we take the as-

sumption kv ; 3 ks and kk ; ks, which is equivalent to saying

that at the mean displacement of the slow mode, the fast-mode

potential strength and stiffness is modified by order-one

changes to ;� ð2=5ÞVf0
and;ð2=3Þkf . The resulting Eqs.

22–24 are not sensitive to the exact choice of kk but are

sensitive to kv. Larger values of kv give correspondingly lower

modified fast-mode potentials and larger compensating

dynamic entropic and enthalpic contributions to the allostery.

We have chosen kv ; 3 ks to fit the observed compensatory

enthalpy and entropy. The crystal structure of the Met

repressor complex with DNA (protein data bank PDB ID:

1CMA (27)) reveals 14 side chains within 5 Å of DNA, six of

which point toward the DNA. We assume the fast modes

associated with these six side chains are enslaved and that

each side chain contributes two fast modes (corresponding to

librations parallel and perpendicular to the polypeptide back-

bone), giving an estimate of N ¼ 12. Finally we assume

k9sDNA
; ksDNA

. This means the slow-mode stiffness of the apo-

and holo-repressors when complexed with DNA are of the

same order, i.e., we assume the limit of large stiffening on

DNA binding.

As an initial parameterization for k9s/ks, we use the six

lowest collective normal modes of the Met apo (PDB ID:

1CMB) and holo-repressor (PDB ID: 1CMC) (27). These

modes are stiffened on binding to DNA and to the co-

repressor SAM. Choosing just the six lowest modes was

found to be not-unreasonable for a coarse-grained model of

the Lac repressor (3). We used the elastic network model

software elNémo (29) (using the Tirion potential (30)) to

calculate the normal modes, the lowest three of which are

shown in Fig. 3. The ratio of the holo- to apo-repressor eigen-

values for the lowest six modes are given in Table 1. Since

the modes calculated by elNémo are normal modes, we

simply multiply the values of k9s/ks for each mode in Table

1 to obtain the ratio of moduli of the stiffness matrices of the

holo- and apo-repressors, |K9s|/|Ks|, for the combined effect

of the lowest six modes. Interestingly the value obtained

(�11) corresponds to the start of the plateau-type behavior of

the compensatory terms seen in Fig. 2. Substituting this into

Eq. 24 and multiplying by two for the two dimers gives

DDG ; �2.4 kBT. For a model at this level, this value

compares favorably with the equilibrium measurements (28)

DDG ¼ �5.5 kBT, since all direct static enthalpic contribu-

tions are ignored. A similar pattern of dynamic allostery

contributing approximately one-half of the total emerged in

analysis of both the Lac repressor (3) and dynein (4) systems.

The parameter values discussed, including the tuned value of

kv ; 3 ks, reproduce to the correct order the enthalpic

contribution to the dynamic allostery, DDH; �32 kBT seen

in the isothermal titration calorimetry experiments (22).

Furthermore, the measured thermodynamics show a lack of

temperature-dependence (22), consistent with the lack of

static conformational changes seen in the crystal structures

(unlike protein-DNA systems with linearly temperature-

dependent compensating enthalpies and entropies thought to

be due to the hydrophobic effect (31)). Our calculated

dynamic enthalpy and entropy terms (Eqs. 22 and 23) are

independent of temperature, so they are candidate explana-

tions for the observed calorimetry.

The simple theory discussed in this article makes some

predictions of NMR spectroscopy data of backbone and side-

chain dynamics. We expect the backbone amplitudes across the

protein structure xs to decrease by ðx9s=xsÞ; ðks=k9sÞ1=2
;0:3

in the holo-repressor compared to the apo-repressor. The

side-chain amplitudes near the DNA binding site xf,

however, will reduce by ðx9f=xfÞ;ðð21ðks=k9sÞÞ=3Þ1=2
;0:8.

This value is obtained by comparing the holo- and

apo-values of the effective fast-mode spring constant

kf=ð11ðkkx2
s=2kBTÞÞ at long times (for which x2

s ¼ kBT=ks)

and using the assumption kk ; ks. This predicted reduction

will be smaller if the number of enslaved modes is larger than

FIGURE 3 Met apo-repressor modes calculated by

elNémo. The equilibrium structure is shown in black and

the structure perturbed along the three lowest frequency

modes are shown in gray. (a) Lowest mode (cleft-opening):

a rotation that opens a cleft in the protein at the top of

figure. (b) Second lowest mode (scissor): a rotation

perpendicular to the first mode that causes the monomers

in the Met dimer to move respect to each other in a scissor

motion. (c) Third lowest mode (rocking): a rotation about

the other perpendicular axis resulting a rocking mode.

TABLE 1 Ratio of eigenvalues for the lowest six modes of

the Met holo- and apo-repressor calculated by elNémo

Mode k9s/ks

1 1.44

2 1.49

3 1.64

4 2.07

5 1.27

6 1.17

2060 Hawkins and McLeish

Biophysical Journal 91(6) 2055–2062



our assumed value of N ¼ 12 and is also sensitive to the

choice of kv. We expect side chains that are distant from the

co-repressor and DNA binding sites to show no change in

dynamics on effector binding in comparison to slower

backbone dynamics showing decreased dynamics far from

the co-repressor binding site due to the delocalized nature of

the slow modes. Initial analysis of NMR data on the Met

repressor (23) indicates a qualitative agreement with these

predictions of changes in dynamics on co-repressor binding.

More quantitative analysis of the NMR data in the light of

the theory presented here, should be possible in the future.

DISCUSSION

Our model allows us to collect the distinctive characteristics

of systems that employ enslaving mechanisms: compensat-

ing, temperature-independent, dynamic entropic and en-

thalpic contributions to the allosteric free energy, and

correlated changes to amplitudes of global and local modes.

We expect repressor proteins, such as the Met repressor, that

have these characteristics, to use an enslaving mechanism.

For repressor proteins, such as the Lac repressor, which do

not show these characteristics, we expect negligible enslav-

ing effects. There are structural reasons to expect the Met and

Lac repressors to belong to different classes. The Lac repres-

sor monomers are internally rather rigid and communicate

via an approximately planar interface. There is consequently

little opportunity for the side chains within each monomer to

couple strongly to their relative motion. The interface be-

tween the Met monomers, on the other hand, is highly con-

voluted and contains many more side chains that may be

affected by slow global modes. There may exist repressor

proteins that display behavior between these two limiting

cases—that is, small but not negligible enslaving effects (for

example, the core-binding factor, CBF (32)).

We have extended previous work on the lowest frequency

modes (3) to consider the case of high frequency modes that

are coupled to these global modes. This results in a dynamic

model of compensating entropic and enthalpic terms in the

allostery. Applying this to the example of the Met repressor

reasonably explains the observed temperature-independent

compensating enthalpic and entropic contributions to the

allosteric free energy. We showed, in principle, how large

amplifications of entropic allostery can be obtained if fast

localized modes are enslaved to slow global modes. The

model suggests both detailed molecular simulations and

experiments that correlate NMR-derived information on

dynamics with calorimetry thermodynamics measurements.

We thank Engineering and Physical Sciences Research Council for funding
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