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ABSTRACT Circadian rhythms possess the ability to robustly entrain to the environmental cycles. This ability relies on the
phase synchronization of circadian rhythm gene regulation to different environmental cues, of which light is the most obvious
and important. The elucidation of the mechanism of circadian entrainment requires an understanding of circadian phase
behavior. This article presents two phase analyses of oscillatory systems for infinitesimal and finite perturbations based on
isochrons as a phase metric of a limit cycle. The phase response curve of circadian rhythm can be computed from the results of
the analyses. The application to a mechanistic Drosophila circadian rhythm model gives experimentally testable hypotheses for
the control mechanisms of circadian phase responses and evidence for the role of phase and period modulations in circadian
photic entrainment.

INTRODUCTION

Circadian rhythms regulate the daily activity cycle of many

different species, from the unimolecular Neurospora to

highly multicellular mammals, as an evolutionary adaptation

to the earth’s rotation. The rhythm is governed by the regu-

lation of several key genes which produces endogenous

oscillations of the mRNA and protein levels with a period of

;24 h (hence the term circadian, meaning approximately a

day). Although the genes differ from species to species, the

architectures of different circadian gene networks are remark-

ably preserved, suggesting an evolutionary convergence (1).

This architecture consists of multiple feedback loops (cou-

pled negative and positive feedbacks) producing a limit-

cycle oscillator. Advances in genetics and molecular biology

have begun to elucidate the circadian genes and their roles

in different organisms including cyanobacteria, Neurospora,

fruit fly (Drosophila), and mammals (2). The effectors of cir-

cadian rhythm control many hormonal, physiological, and

psychomotor performance functions, which, among other

things, impart the organism’s rest-activity cycle (3).

Biological systems, including circadian rhythms, are known

to exhibit robustness to internal and external disturbances

(4–6). Here, robustness constitutes the ability to maintain

certain functions under extrinsic and intrinsic uncertainties

(7). The endogenous circadian period shows little depen-

dence to temperature fluctuations (external) (8) and inherent

stochastic noise in gene expression (internal) (9,10). One key

feature of circadian rhythms is their ability to robustly entrain

or phase-synchronize to natural cycles, such as day and night.

This feature is also the least understood process in chrono-

biology (11,12). Many circadian disorders arise because of the

failure of an organism in entraining its internal circadian clock

to the environmental light-dark cycles (13).

Entrainment refers to an active (dynamic) synchronization

response of a free-running oscillator to a cyclic input. The

dynamic nature of entrainment is exemplified in the phase

response curve (PRC), in which phase shifts depend on the

internal circadian phase at the entraining cue application

(14). To elucidate the mechanisms of circadian entrainment

necessitates an understanding of circadian phase behavior.

Existing studies on the robustness of circadian rhythms mainly

focused on the amplitude and period sensitivity analysis (7,15,

16), which do not directly convey the circadian phase behavior.

Period sensitivity only measures cycle-to-cycle phase change,

and amplitude sensitivity has no direct correlation with the

phase. Though arguably of higher importance than, for ex-

ample, the period, there has been little study on the phase

behavior analysis of circadian rhythms.

Circadian rhythms represent only one example of oscilla-

tory systems in biology. Other important oscillating systems

include cell cycle and neuronal activity. The key attributes of

these systems, including period and phase, do not directly

translate into the traditional framework of sensitivity analysis.

This work presents systems theoretic tools based on isochrons

for analyzing the phase response of oscillatory systems to

perturbations in system parameters. Two phase response

analyses with respect to infinitesimal and finite parameter

variations are presented. The former builds on the analysis

developed for oscillatory chemical systems (17), with exten-

sions to other phase response measures (such as the PRC). The

latter method provides a phase analysis with respect to finite

parameter perturbations for which the linearity assumption

in local sensitivity analysis may fail (such as in modeling

light input in the circadian rhythm (18)). The utility of these

analyses are demonstrated using two Drosophila circadian

rhythm models (19,20). The analysis of a mechanistic

Drosophila circadian model (19) suggests for the underlying

mechanism for photic entrainment in Drosophila.
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PRELIMINARY

The systems considered in this work are described by

coupled ordinary differential equations,

dx
dt

¼ fðxðtÞ; pÞ; (1)

where x 2 Rn denotes the states, p 2 Rm denotes the param-

eters, t is the time, and f is a vector of (nonlinear) functions of

the states and parameters. The states typically represent the

mRNA and protein concentrations, and the parameters

consist of the kinetic constants of different processes such

as transcription, translation, and phosphorylation. The state

trajectory x(t) is assumed to evolve to an asymptotically

stable limit cycle (a closed trajectory in the state space such

as shown in Fig. 1), independent from the initial conditions.

Before discussing the phase response analysis, it is im-

portant to define the meaning of ‘‘phase’’. The phase f in a

limit cycle refers to the (relative) position on the orbit, which

is measured here by the elapsed time (modulo the period)

to go from a reference point to the current position on the

limit cycle (see Fig. 1). Consequently, time and phase are

interchangeable when the trajectory is on the limit cycle. In

addition, the phase difference between two trajectories can

be defined as the difference in the time it takes for each

trajectory to achieve the same phase on the limit cycle (again,

modulo the period), as illustrated in Fig. 1. Thus, a positive-

phase difference implies a phase lag and a negative value

implies a phase lead. Note that this assignment differs from

the common convention in chronobiology, in which the con-

verse is used; a negative phase difference describes a phase

lag (21).

ISOCHRONS

The enabling concept for quantifying phase in the current

work would be phase-level sets known as isochrons (22). An

isochron of a limit cycle is a set of points from which state

trajectories evolve to the same phase on the limit cycle

(as t / N). In a two-state system, the isochrons h(t) can be

visualized as lines traversing the limit cycle (see Fig. 2).

Naturally, the isochron h(t) overlaps with the isochron h(t1
kt) where k is an integer and t is the period. Isochrons have

been used extensively in investigating the dynamics of

neural oscillators (see for example (23–25)). This concept

has also been applied to qualitatively illustrate phase re-

setting in circadian rhythm (11).

The phase difference between two points in the basin of

attraction of a limit cycle (not necessarily on the orbit) can be

directly computed as the time difference between the isochrons

to which these points belong. This phase definition is equiv-

alent to measuring the time difference between two trajectories

to reach the same isochron. In other words, the isochrons act

as the phase grids of a limit cycle. Direct computation of the

isochrons is prohibitively expensive, especially for higher-

order systems. The usual approach employs a phase model or

a coordinate transformation to phase variables (22,24). An-

other method involves backward integration of the system

starting from the limit cycle, and collection of points at a time

interval of the period (J. Moehlis, University of California

Santa Barbara, private communication, 2005). In this work,

the analyses do not require the full mapping of the isochrons.

PHASE RESPONSE ANALYSIS

Infinitesimal parameter perturbation

The influence of an infinitesimal parameter perturbation on

the system outputs fits into the framework of sensitivity

FIGURE 1 (A) An asymptotically stable limit cycle

of a simple two-state Drosophila circadian model. The

phase f is defined as the time distance between the

reference and the current state on the limit cycle

(modulo the period). (B) Two trajectories in a limit

cycle with a phase difference of Df; the solid trajectory

leads the dashed, or vice versa, the dashed trajectory

lags the solid.

FIGURE 2 A hypothetical two-state limit cycle model and a correspond-

ing perturbed limit cycle. The role of isochrons is to transform the state space

into one variable phase axis. The phase of other limit cycles in the same state

space can be measured using the nominal isochrons.
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analysis. First-order sensitivity coefficients provide the most

direct quantification,

Si;j ¼
@yi

@pj

; (2)

where Si,j is the sensitivity coefficient of the ith system

output yi with respect to the jth parameter pj (27). Although

this definition implicitly assumes the continuity of the output

with respect to the parameters, such analysis has been de-

veloped for systems in which this assumption does not hold,

such as in discrete stochastic systems (28). The system

outputs typically comprise the states or some functions of the

states, and thus the coefficients in Eq. 2 can be computed

directly from the state sensitivities. However, in circadian

rhythm and other oscillatory systems, the system attributes

including period and phase cannot be easily represented

as algebraic functions of the states, and thus necessitates

developing a different type of sensitivity analysis.

There exist several methods to compute the state sensi-

tivities from Eq. 1 such as Direct, Green’s function, and finite

difference methods (27). The Direct and Green’s function

methods obtain the sensitivities by solving the derivative of

Eq. 1 with respect to each parameter,

d

dt

@x
@pj

ðtÞ ¼ JðtÞ@x
@pj

ðtÞ1 @f
@pj

ðtÞ; (3)

where J(t) is the Jacobian matrix of f with respect to x (i.e.,

Ji, j ¼ @fi/@xj). The initial conditions to Eq. 3 are typically zero

except when pj is an initial condition of Eq. 1. The latter

method solves a different differential equation for the

Green’s function matrix Gðt; t9Þ
d

dt
Gðt; t9Þ ¼ JðtÞGðt; t9Þ; t$ t9; (4)

with the initial condition Gðt9; t9Þ ¼ I. The sensitivities can

be computed from the Green’s function matrix according to

@x
@pj

ðtÞ ¼ Gðt; 0Þ@x
@pj

ð0Þ1
Z t

0

Gðt; t9Þ @f
@pj

ðt9Þdt9: (5)

Since t9 is the integrating variable, the adjoint of Eq. 4 is a

more practical system to solve, as

d

dt9
G

yðt9; tÞ ¼ �G
yðt9; tÞJðtÞ; t9# t; (6)

where Gyðt9; tÞ ¼ Gðt; t9Þ and the final value condition is

Gyðt; tÞ ¼ I. The adjoint Green function Gyðt; tÞ must be

solved backward in time t9. This method becomes more

efficient than the Direct method when m . n.

Phase sensitivity to initial conditions

The phase response with respect to infinitesimal variations

in initial condition (IC) represents the simplest phase anal-

ysis, but is necessary for the development of more compli-

cated parametric sensitivity. The effect of changes in IC is

only transient, i.e., the perturbed trajectory will eventually

approach the nominal limit cycle as shown in Fig. 3. Thus,

the phase difference corresponds to the isochron shift due

to the perturbation. Since the computation of isochrons is

computationally prohibitive, the phase shift is instead mea-

sured on the limit cycle (see Fig. 3) giving the formulation

(17)

Qjð0Þ ¼
@f

@xjð0Þ
¼ � lim

t9/N

@xiðt9Þ
@xjð0Þ

� ��
dxiðt9Þ
dt

� �
; (7)

where Qj is the IC phase sensitivity with respect to xj(0) and

xi is an arbitrary ith state of the system. The first term on the

right-hand side describes the change in the reference state xi
at time t9 caused by a change in xj(0). The corresponding

phase shift depends on how fast the system is moving at time

t9, which is captured by the second term. The limit in Eq. 7

highlights the fact that the trajectory can only asymptotically

approach the limit cycle. Numerically, the limit should not

pose a problem for many systems as the phase sensitivities

can be computed to sufficient accuracy after a few cycles

around the orbit.

A more efficient method to compute Qj uses the Green’s

function matrix

QjðtÞ ¼ � lim
t9/N

G
y

i;jðt; t9Þ=
dxiðt9Þ
dt

� �
; (8)

which requires the computation of only one row of the

adjoint Green’s function matrix G. Note that Eq. 8 gives not

only the phase sensitivity coefficients with respect to per-

turbations of the initial condition but also to the states at any

given time t.

FIGURE 3 (A) Phase sensitivity with respect to initial

conditions in a two-state system. In this case, the initial

condition change induces a positive phase difference

(phase lag). (B) Phase sensitivity with respect to the model

parameters. The phase difference due to a parameter

perturbation is t2�t1. The dotted lines correspond to

trajectories with nominal parameters, which imply that the

phase difference is measured on the nominal limit cycle.
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Remark. The phase sensitivity to IC gives the combination

of local state perturbations such that the combined phase

difference is zero:

+
n

j¼1

Qj ðtÞdxjðtÞ ¼ 0: (9)

The above formulation gives an alternate procedure to com-

pute the isochrons for a two-state system (n ¼ 2). Here, the

isochrons are lines traversing the limit cycle, whose local

slopes are given by the ratio of the phase sensitivities Qj.

Parametric phase sensitivity

The phase analysis of parametric variations poses a higher

degree of difficulty as perturbations in the parameters will

give different limit cycles from the nominal parameters, and

the comparison of phase between two different limit cycles is

problematic. As noted in the previous section, the phase

difference at time t between the perturbed and nominal

trajectories can be defined as the time difference of each

trajectory to reach the isochron h(t). Application of the same

concept on the parameter perturbations allows the formula-

tion of parametric phase sensitivity (17)

@fðtÞ
@pj

� �
h

¼ +
n

i¼1

Qi ðtÞ
@xiðtÞ
@pj

: (10)

The subscript h signifies that the parametric phase sensitivity

is measured in reference to a given isochron, h(t). Equation

10 suggests that the parametric phase sensitivity reflects the

cumulative phase shifts from the difference between the

perturbed and nominal states. Note that the phase difference

is measured here on the same nominal limit cycle, which is

illustrated in Fig. 3.

Period sensitivity

When a parameter perturbation causes a period change, the

parametric phase sensitivity diverges as the phase difference

accumulates for every cycle around the orbit (29). The rate of

accumulation around each cycle is exactly equal to the period

change, which provides a method to quantify the period

sensitivities from Eq. 10 (17),

@t

@pj

¼ @fðt1 tÞ
@pj

� �
h

� @fðtÞ
@pj

� �
h

; (11)

where t is sufficiently large to exclude transient behavior.

The removal of the period change effects from the phase

sensitivities provides the local variations of phase,

@fðtÞ
@pj

� �
t

¼ @fðtÞ
@pj

� �
h

� t

t

@t

@pj

: (12)

The parametric phase sensitivity reflects only one part

(path-dependent) of the state sensitivities. The remainder cor-

responds to variations in the trajectory that lie on the iso-

chron h(t) as these variations do not produce a phase shift

(path-independent). Fig. 4 illustrates an alternate derivation to

Kramer et al. (17) for the decomposition of state sensitivities

into the path-dependent and path-independent parts:

@xi

@pj

¼ @xi

@pj

� �
h

� @f

@pj

� �
h

dxi

dt
: (13)

A similar decomposition also exists that separates the state

sensitivities into the shape and periodic contributions (30),

@xi

@pj

¼ @x
@pj

� �
t

� t

t

@t

@pj

dxi

dt
: (14)

Relative phase sensitivity

Aside from the definition used in the previous sections, the

term phase can also describe the time separation between two

relative reference isochrons in the limit cycle, such as peaks

and/or troughs of the states, as illustrated in Fig. 5. A special

case of this phase definition is the period, which is the time

distance between the same consecutive peak/troughs. Sen-

sitivity analysis of this relative phase f̂f can also fit in the

framework of the preceding phase sensitivity. However, the

most intuitive method to evaluate the relative phase sensi-

tivity from Eq. 10 in the spirit of Eq. 11, proves to be

incorrect (results not shown). The complexity arises because

a parameter perturbation can change the limit cycle shape

such that the peaks/troughs references move to different

isochrons (see Fig. 5). In this case, the parametric sensitivity

reflects the difference between how long it takes the

perturbed trajectory to travel from the isochrons A9 to B9
and the nominal trajectory from A to B. Consequently, the

computation of the relative phase sensitivity needs to correct

for the aforementioned shape change effect

FIGURE 4 A geometrical decomposition of state sensitivity into path-

dependent and -independent parts. A perturbation in a parameter can change

the state trajectory, whose magnitude and direction are given by the state

sensitivity as shown in the left figure (dashed arrow). This difference

consists of two parts as magnified in the right figure; the first is a path-

dependent change causing the phase shift Df (dotted arrow perpendicular

to the isochron), and the second is a path-independent portion along the

isochron. Note that the path-dependent phase change �Dfðdx=dtÞ is

equivalent to �Dpjð@f=@pjÞhðdx=dtÞ:
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@f̂f

@pj

¼ @f

@pj

� �
h

����
B

A

� +
n

i¼1

Qi

@xi

@pj

� �
t

� �����
B

A

; (15)

where

gðtÞ
����

B

A

¼ gðtBÞ � gðtAÞ; (16)

and g(t) is some function of time. The last term in Eq. 15

takes into account the isochron shifts due to the shape change

in the limit cycle.

Remark. As noted, the period sensitivity is a special case

of the aforementioned relative phase sensitivity. In such as

case, the correction terms in Eq. 15 cancel out, which gives

Eq. 11.

Finite parameter perturbation

Sensitivity analysis captures the system changes to infini-

tesimal variations in the parameters (including initial con-

ditions). However, the linear sensitivity coefficients may be

inaccurate for larger parameter perturbations due to the

nonlinearity of the systems (a limit cycle model is inherently

nonlinear). In practice, finite parameter perturbations are

used to model different inputs to the limit cycle system,

such as light entrainment in circadian rhythm (18) or gene

knockouts (31). As mentioned above, such parameter per-

turbations can change the limit cycle to which the states

evolve. Nevertheless, the phase response to finite parameter

perturbations can still be evaluated using the same isochron-

based approach. Fig. 2 illustrates a hypothetical limit cycle

model in which one of the parameter is perturbed.

The following algorithm outlines the computation of

phase response to a finite parameter perturbation:

1. Generate the perturbed limit cycle (i.e., the system with

one or more of its parameters perturbed).

2. Discretize the perturbed limit cycle (usually equally

spaced in time).

3. From each discretized point, simulate a nominal trajectory

(the system with the original parameters) to approach the

nominal limit cycle. The simulation length is selected to be

an integer multiple of the nominal period. This length

varies from system to system according to the strength of

attraction to the limit cycle (for the circadian rhythm

model used here (19), the trajectories approach the nomi-

nal limit cycle to a sufficient accuracy in five cycles).

4. Record the state vector at the final time and associate this

information with the initial condition. Each perturbed-

nominal state vector pair belongs to the same isochron.

5. Select one pair of perturbed-nominal states from item 4
as the reference. From the nominal reference, compute

the phase (time distance) to the remaining nominal states

identified in item 4 in sequence. (Note that the perturbed

phases are equally spaced by design in item 2.)

6. Compute the phase response, Df, by subtracting the

nominal phases in item 5 from the corresponding per-

turbed phase.

As in the above sensitivity analysis, the phase response

can be normalized to the magnitude of the parameter

FIGURE 5 Sensitivity analysis of the alternate phase f̂f

shown here as the peak-to-peak time separation. The pa-

rameter perturbations can produce changes in the shape of

the limit cycle which shifts the reference isochrons of f̂f

from A to A9 and from B to B9.

FIGURE 6 An overview of Drosophila circadian rhythm gene regulation.

The key genes are Per and Tim, which correspondingly produce the proteins

PER and TIM. In the cell, the proteins can become phosphorylated and then

degraded, or form the dimer PER-TIM, which in turn inhibits the tran-

scription of per and tim in the nucleus. Light preferentially increases the rate

of degradation of TIM protein.
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perturbation, which constitutes a finite difference approxi-

mation (27). Also, the period change can be obtained from

the phase response after one period around the limit cycle.

Remark 1. The phase response of one orbit around the

limit cycle suffices for computing the continuing cycles as

the phase shift cumulatively sums. The computational cost

of the above algorithm scales linearly with the number of

discretization points in item 2.

Remark 2. The premise of the above algorithm is to use

the nominal system’s isochrons as a metric for phase. The

assumption in this approach is that the perturbed limit cycle

lies inside the basin of attraction of the nominal system.

Although the phase difference of interest here is between the

nominal and perturbed limit cycles, the same method also

applies for arbitrary limit cycles as long as these limit cycles

satisfy the aforementioned assumption. This assumption can

be relaxed to only include the discretized points in item 2.

PHASE RESPONSE CURVE

In circadian rhythm, the efficacy of an entraining agent

typically depends on the time at which it is administered.

This efficacy is summarized in a phase response curve

(PRC), which gives the phase shift induced by a pulse of

entraining agent at different phases in a circadian clock. The

PRC represents the dynamical aspect of the phase response.

By definition, an entraining agent needs to modify the phase

of the endogenous oscillator. For this reason, modeling

environmental cues typically involves perturbations on one

or more parameters (18). If the perturbation is sufficiently

small and/or the system behaves considerably linear, the

parametric phase sensitivity provides an avenue to compute the

PRC. In this case, the PRC, r(t), represents the accumulated

phase shift over the duration of entrainment effect,

rðtÞ ¼ +
r

j¼1

@fðt1DuÞ
@pj

� �
h

� @fðtÞ
@pj

� �
h

" #
Dpj; (17)

where Du denotes the effective duration of parameter

changes caused by the resetting pulse, r is the total number

of parameters affected by the entrainment, and Dpj represents

the magnitude of parameter change due to entrainment.

The algorithm for computing the phase response to finite

perturbations gives an alternative, and more accurate, method to

compute the PRC. Here, the perturbed limit cycle corresponds

to the system with constant exposure to the entraining cue. The

PRC can be computed using a similar formula

rðtÞ ¼ Dfðp1Dp; t1DuÞ � Dfðp1Dp; tÞ; (18)

where Dfðp1Dp; tÞ is the phase response to finite param-

eter perturbations Dp.

CASE STUDIES

The case studies are based on models of Drosophila (fruit fly)

circadian rhythm gene networks: a simple two-state model

(20) and a 10-state mechanistic model with light entrainment

input (19). The circadian clock in a fruit fly consists of a gene

regulation where the key genes’ transcriptions: period (Per)
and timeless (Tim), are repressed by their own proteins (PER

and TIM) (8), as illustrated in Fig. 6. The regulation produces

autonomous oscillations of mRNA and protein concentrations

FIGURE 7 A simple Drosophila circadian rhythm

model with an oscillatory response and its correspond-

ing limit cycle. The time is reported in circadian time

(CT), which scales the endogenous period to 24 h.

FIGURE 8 Phase sensitivities of a two-state circa-

dian rhythm model. For clarity, only three of the

parametric phase sensitivities were plotted.
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because of the effective delay between the transcription of

mRNAs and the nuclear translocation of repressor proteins

(1). In Drosophila, the core circadian clock exists mainly in

lateral neurons in the central brain (8).

Simple Drosophila circadian rhythm

One of the simplest models of the autonomous circadian

rhythm tracks only the mRNA and protein concentrations (20),

dM

dt
¼ nm

11 ðPtð1 � qÞ=2PcritÞ2 � kmM

dPt

dt
¼ npM � kp1Ptq1 kp2Pt

Jp 1Pt

� kp3Pt

q ¼ 2

11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 8KeqPt

p ; (19)

where M and Pt denote the mRNA (per or tim) and the

protein (PER or TIM) concentrations respectively, and [nm,

km, np, kp1, kp2, kp3, Keq, Pcrit, Jp] are the model parameters.

For the parameter values given in Tyson et al. (20), the

system has an asymptotically stable limit cycle with a period

of ;25 h (see Fig. 7).

The phase sensitivities in Eqs. 7 and 10 along the limit

cycle are presented in Fig. 8. The period sensitivities can be

directly calculated from the parametric phase sensitivity

curves at t ¼ t. Comparisons to the SVD method (30) in

Table 1 confirm the accuracy of the period sensitivities. In

fact, the present approach gives the most accurate estimates

of period sensitivities among the existing techniques (30,32)

because the only source of inaccuracy comes from simula-

tion error (other methods involve additional numerical

approximations). Using the relative phase definition as the

(smaller) time separation between the peaks of M and Pt

(f̂f � 8:3 h), Table 2 lists the relative period sensitivities

Eq. 15 that are in general agreement with the crude estimates

from a finite difference approach (27).

10-state Drosophila circadian rhythm

Light entrainment necessitates modeling the transcriptional

regulation of both key proteins PER and TIM, since light

selectively promotes the degradation of TIM (33,34). The

second model consists of two negative feedback loops as

shown in Fig. 6, and involves 10 states (two mRNAs, two

proteins, two phosphorylated forms of each protein, and

cytoplasmic and nucleic dimers) with 38 model parameters

(not shown here for brevity) (19). Photic entrainment

increases the rate constant of TIM degradation, where a

10-min light pulse is assumed to double the rate constant for

a duration of 3 h (18). The autonomous oscillatory response

of the model in absence of light is shown in Fig. 9.

The inclusion of light input in the model allows the

construction of PRCs from the phase analyses. The para-

metric phase sensitivities with respect to infinitesimal and

finite perturbations are shown in Figs. 10 and 11, respec-

tively. The light-induced TIM degradation can cause both

phase advance and delay depending on the timing of the light

input, as indicated by the positive (delay) and negative

(advance) sloping curves in the phase sensitivity analyses

(most apparent in Fig. 11). As expected, the PRCs for a

TABLE 1 Period sensitivities of two-state circadian model

p This work SVD*

nm 2.5297 2.5064

km �187.87 �188.18

np 5.0452 6.7089

kp1 �0.0399 �0.0921

kp2 �31.775 �32.752

kp3 �90.793 �93.415

Keq 0.0028 0.0041

Pcrit 48.088 47.363

Jp �108.22 �105.36

*SVD approach as in Zak et al. (30).

TABLE 2 Relative phase sensitivities

p This work Finite difference

nm 0.8543 0.4923

km �63.457 �56.512

np 1.7014 0.9846

kp1 �0.0135 0.0223

kp2 �10.724 �7.6604

kp3 �30.635 �35.982

Keq 0.0010 �0.0001

Pcrit 16.241 3.6333

Jp �36.517 �17.517

FIGURE 9 Oscillatory behavior of a mechanistic

model of Drosophila circadian rhythm. The model

includes both the per and tim mRNAs (MP and MT,

respectively), the proteins and their phosphorylated

forms (P0, P1, P2 for PER and T0, T1, T2 for TIM),

and the PER-TIM dimer complexes (cytoplasmic C

and nucleic CN).
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10-min light pulse (assuming Du ¼ 3 h and 100% perturba-

tion in the rate constant (18)) exhibit both phase advance and

delay, as shown in Fig 12. As light induces a strong effect on

the TIM degradation, local sensitivity analysis in Fig. 10

may give inaccurate prediction of the phase shifts due to the

nonlinearity of the system, which explains the superior accu-

racy of phase analysis using a finite perturbation in predicting

the PRC.

DISCUSSION

The aforementioned phase analyses allow the study of

different key attributes of an oscillatory biological system,

including the period sensitivity and the PRC, from a single

curve: the parametric phase sensitivity @f/@pj in the first

analysis and the phase response Df in the second. Here,

isochrons provided a key concept to measure phase in a limit

cycle. The present analyses however, do not require an

explicit computation of the isochrons, which avoids the high

computational cost. The first analysis builds on previous work

(17), which is rederived above in the framework of isochrons

and extended to other notions of phase response behavior. The

algorithm in the second analysis derives from the concept of

isochrons, but does not entail the typical coordinate transfor-

mation of the system to phase variables required in other

isochron-based approaches (22,24). The analysis of such a

transformed system gives little insight, since the parameters in

the model no longer have physical interpretations. In contrast,

both analyses here can be directly applied to mechanistic

models of biological oscillatory systems, where the states

represent physical entities (mRNAs and proteins), and the

model parameters correspond to the kinetics of underlying

processes (such as rates of transcription and translation). Such

analysis permits a direct identification of processes in the

system that are most responsible for a given behavior.

A recent work on the phase analysis of circadian rhythm

presented the concept of impulse response curves (IRCs)

(35), which quantify the system output change from an

impulse parameter perturbation. The IRCs and the infinites-

imal phase sensitivities (17) are equivalent phase analyses, in

which the slope of the parametric phase sensitivities with

respect to time give the IRCs, i.e.,

fpi ;periodðtÞ ¼
d

dt

@fðtÞ
@pi

� �
h

; (20)

where fpi;period is the IRC of the period to an impulse

perturbation in the parameter pi. There are several advan-

tages of the present approach over the IRC. Numerically, the

computation of the PRCs or phase shifts in general involves

only subtraction operations (see Eq. 17 or Eq. 18), while the

same computation requires an integration of the IRCs. As in

the phase analysis of infinitesimal perturbation, the IRCs

represent a local (linear) analysis, which may give inaccurate

predictions of the (nonlinear) phase response to large (finite)

perturbations. In addition, the use of isochrons permits the

comparison of any arbitrary limit cycles in the basin of

attraction of the reference limit cycle.

The phase analysis of the mechanistic Drosophila model

(19) provides a classification of the circadian parameters, as

shown in Fig. 13. Quadrants I and III represent the param-

eters exerting strong effect on either phase response or period

modulation, respectively. On the other hand, quadrants II

and IV contain the parameters having comparable effects

on both the phase and period; comparably strong in II and

comparably weak in IV. The parameters in quadrant I are

FIGURE 10 Parametric phase sensitivities of the 10-state mechanistic

Drosophila circadian rhythm model. The parameters ndT, k2, kd, and kdN

refer to the TIM degradation rate constant, the nuclear transport constant of

the dimer PER-TIM, the degradation rate constant of proteins, and the

degradation rate constant of nuclear dimer, respectively.

FIGURE 11 (A) Nominal and perturbed limit

cycles of 10-state Drosophila model with repre-

sentative pairs of points on the same isochrons.

Each pair of perturbed-nominal states is marked by

the same symbol. (B) Phase response to a finite

perturbation in the TIM protein degradation rate

constant (ndT). The parameter is increased by 100%

of the nominal value.

2138 Gunawan and Doyle

Biophysical Journal 91(6) 2131–2141



consistently associated with the transcription of mRNAs

(parameters nsP, nsT, KIP, and KIT in (19)). Quadrant III con-

tains the parameters involved in the formation and nuclear

transportation of PER-TIM dimers (parameters k1, k2, and

k3). Finally, the parameters with comparably strong phase

and period effects control the degradation of both mRNAs

and proteins, and the protein translation (parameters nmT,

nmP, ndP, ndT, ksP, and ksT).

Fig. 13 suggests that there exist overlapping control mech-

anisms as well as specialized regulatory points that modulate

the period and/or phase responses to perturbations in the

system. This classification can be experimentally tested using

genetic experiments that change the value of associated pa-

rameters. For example, transcription rates can be varied by

tuning the promoter strength using directed evolution (36),

translation rates can be controlled using ribosomal binding

sites of different activities (37), and degradation kinetic of

mRNA can be altered through modification of its secondary

structure for stability (38). The experiments can confirm or

disprove the analysis based on the observed period versus

phase changes. As an example, altering the transcription

rates should give little change in the endogenous period but

large shifts in the phase response, such as the relative timing

of the peaks and/or troughs of mRNAs and proteins.

Fig. 13 also provides insights into the photic entrainment

in Drosophila circadian rhythm. In chronobiology, there

exists two classical models for the mechanism of photic

entrainment. One model uses the system phase response to

explain entrainment (nonparametric entrainment by Pitten-

drigh), and another uses the system period modulation

(parametric entrainment by Aschoff) (39). Another hypoth-

esis has also been proposed suggesting both period and

phase modulation in circadian entrainment (40). This

hypothesis was partly supported by the observations called

‘‘aftereffects’’ in which the circadian periods between pre-

and post-entrainment differ (41). Such a phenomenon has

been observed in many organisms, for example in fruit

flies (42), cockroaches (43), Bulla gouldiana (44), and

hamster (45). As noted above, light input increases the TIM

degradation rate in Drosophila, and thus, exerts comparable

phase and period response (parameter ndT in quadrant II).

That is, the analysis in Fig. 13 provides support for the role

of both period and phase modulation in Drosophila photic

entrainment. This result provides the first theoretical confir-

mation of such behavior at the gene regulation level.

Finally, the relative phase in Eq. 15 is useful in the model

identification of oscillatory systems. Parameter values in

biological models are typically very difficult to obtain and

thus, the magnitudes-of-state predictions often carry limited

value. Therefore, data fitting in modeling biological systems

needs to rely on relative measures such as the peak-to-peak

time separation in the case of an oscillatory system. For

example, the peaks of PER and TIM levels in Drosophila
circadian rhythm typically lag those of their respective

mRNAs by ;6 h (8). In addition, the experiments in

circadian rhythm heavily rely on behavioral measurements,

such as activity cycles in the form of actograms (21), that

have only phase information. Here, the relative phase

sensitivities can direct the parameter estimation to match

experimental observations.

CONCLUSIONS

The most important function of a circadian rhythm relies on

the system phase response to synchronize its endogenous

FIGURE 12 Experimental and numerical PRCs of Drosophila circadian

rhythm. The experimental data were adapted from Hall and Rosbash (46).

The predicted PRCs come from the phase response analysis of finite (solid

line) and infinitesimal perturbations (dashed line). In a PRC, a positive value

of phase shift indicates a phase advance and vice versa, a negative value for a

phase delay.

FIGURE 13 Correlation between the parametric

sensitivity of period and phase responses. The axes

represent the normalized magnitude with respect to

the largest among the parameters, such that the value

1 refers to the parameter with the largest sensitivity

magnitude. The local phase sensitivity is from Eq. 12

and the PRC is computed for a pulse of infinitesimal

parameter perturbation (i.e., the slope of parametric

phase sensitivity). The parameters are grouped based

on 50% ratio to the largest sensitivity magnitude.
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phase with the entraining cue, such as light. The phase

analyses presented in this work offer a method for quanti-

fying the dependence of phase response on the system

parameters using isochron-based phase measures. Applica-

tion of the analyses on a mechanistic model of Drosophila
circadian rhythm (19) produced the classification of pro-

cesses in the circadian gene regulation based on their phase

and period response contributions. In particular, the mRNA

transcriptions were found to preferentially regulate the phase

response of the Drosophila circadian model. In addition,

photic entrainment in this system by modulating the TIM

degradation was identified to have comparable control over

the phase and period responses, in agreement with literature

evidences. The resulting classifications can be tested using

genetic experiments to alter the kinetic of processes in the

circadian gene regulation.
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