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ABSTRACT To elucidate the regulation of kinetochore microtubules (kMTs) by kinetochore proteins in Saccharomyces
cerevisiae, we need tools to characterize and compare stochastic kMT dynamics. Here we show that autoregressive moving
average (ARMA) models, combined with a statistical framework for testing the significance of differences between ARMA model
parameters, provide a sensitive method for identifying the subtle changes in kMT dynamics associated with kinetochore protein
mutations. Applying ARMA analysis to G1 kMT dynamics, we found that 1), kMT dynamics in the kinetochore protein mutants
okp1-5 and kip3D are different from those in wild-type, demonstrating the regulation of kMTs by kinetochore proteins; 2), the
kinase Ipl1p regulates kMT dynamics also in G1; and 3), the mutant dam1-1 exhibits three different phenotypes, indicating the
central role of Dam1p in maintaining the attachment of kMTs and regulating their dynamics. We also confirmed that kMT
dynamics vary with temperature, and are most likely differentially regulated at 37�C. Therefore, when elucidating the role of a
protein in kMT regulation using a temperature-sensitive mutant, dynamics in the mutant at its nonpermissive temperature must
be compared to those in wild-type at the same temperature, not to those in the mutant at its permissive temperature.

INTRODUCTION

One of the most intriguing processes in cell biology is the

symmetric segregation of replicated chromosomes frommother

to daughter cells during mitosis. To achieve this, cells as-

semble specialized machinery known as the mitotic spindle,

which is composed of microtubules (MTs) that emanate from

two oppositely located spindle poles. MTs grow and shrink

and switch between growth and shrinkage in an apparently

stochastic process referred to as dynamic instability (1). Dy-

namic instability is thought to promote the capture of chro-

matids by MTs (2,3), which, after proper bipolar attachment

(4), pull sister chromatids apart into the two daughter cells.

MT-chromosome attachment takes place at the centromere

(CEN), where a protein complex known as the kinetochore

assembles and acts as the interface between centromeric DNA

and kinetochore MTs (kMTs). In addition to establishing a

physical linkage between chromosomes and MTs, it seems

likely that kinetochore proteins are involved in regulating the

dynamics of attached MTs. However, very little is known

about the specific functions of kinetochore proteins in terms

of how they may control kMT dynamics, what chemical or

mechanical signals they may process, and in what hierarchy

they may transmit these signals to kMTs.

To establish the roles of kinetochore proteins in kMT reg-

ulation, we chose a quantitative genetics approach, using the

budding yeast Saccharomyces cerevisiae as a model system.

Our strategy relies on the quantitative comparison of kMT

dynamics in wild-type (WT) and in strains carrying kineto-

chore protein mutations, to eventually consolidate this data

pool into a mechanistic model of the kinetochore and its

regulation of kMT dynamics.

In addition to its powerful genetics, S. cerevisiae offers

several advantages for studying kinetochore function. 1),

Each sister chromatid is attached to only one kMT (5), whose

minus-end is fixed at the spindle pole body (SPB) (6). Thus,

the motion of a chromatid is the direct result of assembly and

disassembly at the plus end of one kMT, and will be altered

when kinetochore proteins are mutated if the latter indeed

regulate kMT dynamics. 2), The motion of a single chro-

matid can be visualized by a TetO/TetR-based fluorescent

tag proximal to the CEN (7,8). By fusing a second fluo-

rescent tag to the SPB-specific protein Spc42p, the dynamics

of the kMT connecting the tagged CEN to the SPB can be

obtained from the temporal variation of the distance between

the two tags (9). 3), The S. cerevisiae kinetochore is com-

posed of a relatively small number of proteins (;70), many

of whose properties are known from biochemical and bio-

physical assays (10,11). These proteins can be genetically

deleted or mutated to deduce their role in regulating kMT

dynamics. 4), Unlike chromosomes in higher organisms,

S. cerevisiae chromosomes remain attached to the SPB via

kMTs in G1. This provides us with an even simpler model

system to study, in which no forces are exerted on, or signals

transmitted to, the kinetochore or its associated MT due to

cohesion between sister chromatids.

However, the comparison of S. cerevisiae kMT dynamics

between different conditions is not straightforward. Not only

are the observed kMT length series intrinsically stochastic

due to the random switching of MTs between assembly

and disassembly (1), but they also suffer from extrinsic

stochasticity due to undersampling. As discussed in Dorn
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et al. (9), the S. cerevisiae spindle requires three-dimensional

imaging, currently limiting temporal sampling to 1 frame/s.

However, the average time spent in either the growth phase

or the shrinkage phase is observed to be;1.5 s (9). Thus, our

sampling rate is at the limits of, if not even slower than, the

necessary sampling rate. Undersampling increases the dis-

connect between consecutively observed kMT states, in-

creasing the apparent randomness, i.e., introducing extrinsic

stochasticity, in kMT behavior.

Since in a stochastic system the state at time t defines the
set of possible states and not the exact state at time t 1 1,

kMT length series cannot be compared time point by time

point. Rather, they must be compared indirectly via a set of

parameters, referred to as descriptors throughout this article,

which capture the characteristics of these length series. But

changes in kMT behavior associated with protein mutations,

even if lethal, are often qualitatively comparable in magni-

tude to the intrinsic heterogeneity and cell-to-cell variation of

WT kMT dynamics (Fig. 1). Consequently, very sensitive

descriptors of kMT dynamics must be devised to capture the

details of kMT states and the transitions between them.

Generally, MT dynamics have been analyzed within the

framework of the original MT dynamic instability model (1):

They are characterized by the average growth and shrinkage

speeds, and the average time spent in growth (equal to the in-

verse of catastrophe frequency) and in shrinkage (equal to the

inverse of rescue frequency) (12,13).More advanced schemes

have considered not only the averages of these descriptors

but also their distributions (9,14–16). However, even by

including speed and frequency heterogeneity, differences be-

tween the three evidently dissimilar MT length series shown

in Fig. 2 a are not detected. The mean speeds and frequencies

in the three cases are the same (Fig. 2 b, below diagonal), and
the speed and frequency distributions cannot distinguish be-

tween the experimental MT length series and their randomly

rearranged counterparts (Fig. 2 b, above diagonal). In

contrast, the autocorrelation function of the corresponding

MT plus-end velocity series reveals a difference between the

three cases (Fig. 2 c). This implies that the growth and

shrinkage speeds and times are not a complete set of de-

scriptors of kMT dynamics, and that the autocorrelation

function extracts information about kMT dynamics that these

traditionally employed descriptors do not capture.

The autocorrelation function and other functions derived

from it, such as the partial autocorrelation function and the

spectral density, have been used previously to characterize

MT behavior (16–18). However, such nonparametric time

series analysis tools are not appropriate to characterize and

compare S. cerevisiae kMT dynamics. Changes in dynamics

FIGURE 1 Very sensitive analysis

tools are needed to characterize kMT

dynamics. MT length series from (a)

three different conditions and (b) the

same condition are shown. The ran-

domness in these series and the weak-

ness of the effects of mutations on the

dynamics render the distinction of

meaningful phenotypes difficult.

FIGURE 2 Growth and shrinkage speeds and rescue and catastrophe

frequencies do not characterize kMT dynamics completely. (a) kMT length

trajectories from WT at 25�C, from a Monte Carlo simulation of MT

dynamics, and from a random rearrangement of the sequence of experi-

mental MT velocities in WT at 25�C. (b) Discrimination matrices showing

p-values for comparing the means (using Student’s t-test, below diagonal)

and distributions (using Kolmogorov-Smirnov test, above diagonal) of the

traditional MT dynamics descriptors of the three trajectories. p-Values

,0.01 (highlighted in gray) indicate statistically significant differences.

Although these trajectories are visually different, the traditional descriptors

fail to detect most of the differences. (c) Autocorrelation functions of the

plus-end velocities derived from these three trajectories detect differences

between them. The two horizontal lines indicate the 99% confidence range

for significant correlation values (highlighted by a second circle).
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caused by mutations are very subtle and difficult to detect

in a qualitative comparison of autocorrelation, partial

autocorrelation, and spectral density plots (Supplementary

Material, Fig. S1). Rather, a quantitative comparison of pa-

rameters describing the autocorrelation and partial auto-

correlation functions and spectral densities is needed. Such

parameters can be descriptive, such as the width of spectral

densities and the decay constant of autocorrelation functions,

or can be the set of adjustable parameters in generic

functions fitted to autocorrelation and spectral density plots.

In either case, the parameter uncertainties and covariances

that are needed for the quantitative comparison of parameters

are not readily available. Therefore, it is very difficult to

quantitatively compare in a rigorous manner the information

extracted by nonparametric time series analysis tools.

To capture the details of kMT states, the transitions be-

tween them and the time-correlation in kMT behavior, and to

allow the quantitative comparison of kMT dynamics by

statistical testing procedures, we propose the characterization

of kMT plus-end velocity series with parameters of auto-

regressive moving average (ARMA) models (19). ARMA

models are time series analysis tools that reveal the de-

pendence of a stochastic variable on its history and on an

associated white noise process that renders the variable’s

behavior stochastic. They provide a platform for the analysis

of kMT behavior that is independent of any assumptions

regarding the physical basis of the observed dynamics. In-

deed, ARMA models were proposed as a possible method

for the characterization of MT dynamics (16). However, the

methodology was not practically implemented and its appli-

cability to the dynamics of interest, advantages, and disad-

vantages were not thoroughly investigated. ARMA models

were also utilized for the analysis of cell motility (20).

However, in that study the fitting was restricted to an

ARMA(1,1) model, based on a priori knowledge about the

dynamics.

ARMA models are primarily utilized to predict future

values of a time series (19). In contrast, our goal is to employ

ARMA model parameters for the comparison of time series

to distinguish between mutants based on their kMT dynam-

ics. To achieve this, we have expanded the ARMA model

fitting framework with statistical tools that test the signifi-

cance of differences between ARMA model parameters,

taking into account their uncertainties and interdepen-

dencies. Due to their ability to capture local details, ARMA

model parameters are ideal for the quantitative comparison

of stochastic time series with subtle differences between

them. To the best of our knowledge, this is the first time that

ARMA model parameters are employed for the rigorous

statistical comparison and classification of stochastic behav-

ior resulting from normal and mutated molecular systems in

living cells.

In this article, we demonstrate the performance of the

ARMA analysis framework by classifying phenotypes of

kMT dynamics in S. cerevisiae in the G1 phase of the cell

cycle. We show ARMA model profiles of kMT dynamics

in WT and in mutants of kinetochore proteins, motors and

MT-associated proteins. Based on these data, we have dis-

covered that 1), the linker kinetochore protein Okp1p affects

kMT assembly and disassembly rates; 2), Dam1p—part of the

DASH complex that forms rings around kMTs (21,22)—is

critical for proper kMT attachment and regulation; and 3),

the kinase Ipl1p that is essential for achieving bipolar attach-

ment (23,24) regulates kMT dynamics also in G1. Further-

more, the motor Kip3p, located at the kinetochore, affects

kMT dynamics, whereas the motor Kar3p, located at the

SPB, does not. Finally, we confirm that kMT dynamics vary

with temperature, and that they are most likely differentially

regulated at 37�C.

MATERIALS AND METHODS

Image acquisition and analysis

Single kMT trajectories in the budding yeast S. cerevisiae in G1 were

acquired as described in Dorn et al. (9) and Rines et al. (25). In brief, tandem

copies of the Tet operator (TetO) were placed next to the CEN of Chro-

mosome IV (7,8). A single, diffraction-limited tag of the CEN was then

obtained by fusing the corresponding repressor with GFP (TetR-GFP). The

SPB, on the other hand, was tagged with GFP fused to the protein Spc42p.

The motion of the two tags was tracked in 3D using a DeltaVision optical

sectioning microscope. Every second, 16–18 z-slices were taken at a lateral

spatial sampling of 48 or 66 nm and an axial sampling of 200 or 250 nm.

Photobleaching and phototoxicity limited the total observation time in each

experiment to 100–200 s (25).

These movies were then analyzed automatically, as described in Dorn

et al. (9), and Thomann et al. (26,27). The analysis determined the positions

of the CEN and SPB tags at all observation time points. Moreover, the

uncertainties in the extracted positions were calculated from the image noise

using error propagation methods (9). From these positions and uncertainties,

the SPB-CEN distance and its uncertainty were calculated at each time point.

In the case of chromosome attachment, the SPB-CEN distance was ap-

proximately equal to the length of the corresponding kMT, and its variation

over time reflected kMT dynamics (9).

ARMA ANALYSIS OF MT DYNAMICS

Introduction to ARMA models

An ARMA model relates the value of an observed variable to its values at

previous time points (the autoregressive (AR) component of the model) as

well as to the present and past values of a white noise (WN) variable (the

moving average (MA) component). An ARMA(p,q) process is defined as

xi ¼ a1xi�1 1 . . . 1 apxi�p 1 ei 1 b1ei�1

1 . . . 1 bqei�q; e; Nð0;s2Þ; (1)

where xi (i ¼ 1,2,. . .,n) is the series being analyzed, ei (i ¼ 1,2,. . .,n) the WN

series (assumed to be normally distributed with mean zero and variance s2),

p the AR order, fa1,. . .,apg the AR coefficients, q the MA order, and

fb1,. . .,bqg the MA coefficients. An ARMA(1,2) model is depicted in Fig. 3.

Throughout the article, fa1,. . .,ap,b1,. . .,bqg are collectively referred to as

ARMA coefficients, whereas fa1,. . .,ap,b1,. . .,bq,s
2g, used for time series

characterization, are referred to as ARMA descriptors.

Time series to be described by ARMA models must be nonperiodic and

stationary with zero mean (19). MT length trajectories are indeed non-

periodic, but not stationary (Fig. 4). Hence, Eq. 1 cannot be applied to them.
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Therefore, we analyzed the instantaneous MT plus-end velocity series,

defined as v1i ¼ (li11�li)/(ti11�ti) (l ¼ MT length, t ¼ time, and i ¼ time

point). Calculating v1 is equivalent to taking the first difference of MT

length trajectories, removing linear trends, and rendering the series sta-

tionary with zero mean (Fig. 4). Note that we do not treat growth and

shrinkage separately; instead, the plus-end velocity is positive when an MT

grows and negative when it shrinks.

Eq. 1 is guaranteed to have a unique solution (19) if and only if the

polynomial

AðzÞ ¼ 1� a1z � . . .� apz
p 6¼ 0; jzj ¼ 1: (2)

This implies that two trajectories are equivalent if they are described by the

same ARMA model, which satisfies the above condition. Without loss

of generality, we impose two more conditions on Eq. 1 for mathematical and

computational convenience: the causality condition, A(z) 6¼ 0 for all

jzj # 1; and the invertibility condition, B(z) ¼ 1�b1z�. . .�bpz
p 6¼ 0 for all

jzj # 1 (19).

Estimation of ARMA descriptors

Requirements

The characterization of time series with an ARMA model involves

estimating the AR order p, the MA order q, the corresponding coefficients

fa1,. . .,ap,b1,. . .,bqg and the WN variance s2. To apply ARMA analysis to

MT plus-end velocity series, the estimation algorithm must have the

following properties:

1. It must be able to handle series with missing observations, since kMT

plus-end velocity series suffer from the occasional absence of data. This

happens when tag detection and tracking fail, mainly due to low signal/

noise ratio.

2. It should account for the uncertainty of observations due to measure-

ment noise, as reported by our image analysis software (9,26,27).

Observations with lower uncertainty should have a larger contribution

to the estimation of descriptors than those with higher uncertainty.

3. It should be able to combine data from several movies to accumulate a

large enough data set that is representative of the dynamics under a

certain condition. As will be shown below, unambiguous descriptor

estimation requires series of 1500–2000 time points. However, due to

photobleaching and phototoxicity, experimental kMT trajectories are

limited to lengths of 100–200 time points. Even without photo-

bleaching, the duration of the specific phase of the S. cerevisiae cell

cycle of interest might be too short to accumulate the required number

of time points. For example, the G1 phase in S. cerevisiae lasts;20 min

(1200 s) in the mother (28), which is shorter than the required trajectory

length. Thus, trajectories from several movies must be appropriately

combined to achieve the required number of observations.

4. Besides the estimation of descriptor values, the framework must also

propagate the uncertainty in kMT plus-end velocity series to predict the

uncertainty in and interdependency between the estimated descriptors.

This information is required for the comparison of ARMA descriptors

by statistical hypothesis testing.

5. A critical aspect of the fitting is determining the orders p and q of the

ARMA model. As model order gets larger, a model becomes more

flexible and thus fits the data better. However, at the same time, the

interdependency between ARMA coefficients increases and their reliab-

ility decreases (19). Thus, an optimal balance between improved fitting

and decreased reliability with increasing p and q must be achieved.

Algorithm

In view of the above requirements, the estimation of ARMA descriptors is

achieved via a two-step procedure (Fig. 5):

1. For a range of AR orders p ¼ p1; . . . ; pnp and MA orders

q ¼ q1; . . . ; qnq , the best fitting values of fa1,. . .,ap,b1,. . .,bq,s
2g and the

uncertainties in fa1,. . .,ap,b1,. . .,bqg are determined in two steps:

1a. Maximum likelihood estimation (MLE): Jones (29) has proposed an

algorithm that fits ARMA models to series with missing observations and

that determines the contribution of a data point to the estimation based on its

uncertainty. Using a state-space representation of ARMA models, the

algorithm uses Kalman recursion to predict the velocities at the observed

time points. The likelihood, L, of a model is then calculated as

Lða1; . . . ; ap; b1; . . . ; bq;s
2
; v

1

1; . . . v
1

n Þ

¼
Yn�
i¼1

ð2pViÞ�1=2
exp �ỹ

2

i =2Vi

� �
; (3)

where i is the time point, n the total number of time points, ỹi the difference

between the predicted and observed velocity values at time point i, and Vi the

sumof the prediction variance andmeasurement error variance at time point i.
The asterisk above n indicates that only time points that have actual

observations are included in the product in Eq. 2. The best set of ARMA de-

scriptors faâa1; . . . ; aâap; b̂1; . . . ; b̂q; ŝs
2g is the one maximizing the likelihood L.

FIGURE 3 Illustration of an ARMA(1,2) model. The MT plus-end

velocity at time t is the sum of a13(velocity at time t � 1), WN at time t,

b13(WN at time t � 1) and b23(WN at time t � 2).

FIGURE 4 MT length trajectories are not stationary, as indicated for an

experimental kMT length series over 110 s. The moving average of the series

over seven time points indicates linear trends, i.e., nonstationarity, in the

series. In contrast, the moving average of the differenced series, the

instantaneousMT plus end velocity, does not vary with time (�0 at all times).

ARMA Analysis of Microtubule Dynamics 2315

Biophysical Journal 91(6) 2312–2325



We have extended the algorithm by Jones to concatenate several time

series in the estimation of one set of descriptors, assuming that kMT plus-

end velocity series from different movies correspond to different segments

of one series with an infinite number of missing observations between them.

This allows the construction of one likelihood from as many series as

necessary:

Ltot ¼
YM
j¼1

Lj; (4)

where j is the time series number, M the total number of concatenated series,

and Lj the likelihood calculated by fitting series j (Eq. 3). The maximization

of Ltot then yields descriptor estimates for kMT dynamics under one

experimental condition.

The goodness of fit of a model determined by MLE must be determined

by checking the ‘‘whiteness’’ of the WN series (fe1,. . .,eng in Eq. 1). If the

model represents the time series appropriately, fe1,. . .,eng will be uncorre-

lated, since all correlation between time points is explicitly captured by the

ARMA coefficients. We test the degree of correlation in the WN series using

the Ljung-Box portmanteau test (19). Only models that pass the portmanteau

test are considered in steps 1b and 2.

1b. Least squares (LS): MLE yields estimates of model coefficients, but

not their uncertainties and interdependencies. To obtain this information for

the subsequent statistical comparison of ARMA descriptors, model fitting is

reformulated as an LS problem, where the observed plus-end velocity values

are regressed onto previous velocity values and the WN series estimated in

step 1a. LS delivers another estimate of the ARMA coefficients fâ91; . . . ; â9p;

b̂91; . . . ; b̂9qg and their variance-covariance matrix Ĉ (30). Consistency

between MLE and LS is ensured by testing the similarity between the

ARMA coefficients they yield (see coefficient comparison test below). Only

models that pass this consistency test are considered in step 2.

2. Among the valid models obtained from step 1, the best fitting model is

the one minimizing the Bayesian Information Criterion (BIC) (31). For an

ARMA(p,q) model, the BIC is given by

BICðp; qÞ[� 2ln Ltotðaâa1; . . . ; aâap; b̂1; . . . ; b̂q; ŝs
2Þ

1 ðlnNÞðp1 q1 1Þ; (5)

where N is the total number of fitted time points contained in the con-

catenated series. The first term in the BIC decreases with increasing model

order, whereas the second term penalizes higher model orders. Therefore,

the model that minimizes the BIC offers the best fit to the data with only the

necessary number of parameters. The BIC has been shown to be a consistent

order-selection criterion whose minimization guarantees convergence to the

correct model order as a series gets longer (31).

Properties of algorithm

Descriptor estimation requires 1500–2000 time points

The characterization of stochastic time series requires sufficient data to

represent all possible states of the system and all possible transitions be-

tween states. If a time series is too short, only a subset of its possible states

will be sampled and descriptor estimation will be biased.

Since low-order ARMA models seem to be needed for characterizing

kMT plus-end velocity series (see Results and Discussion), we determined

the number of data points required for the fitting of low-order ARMA

models. Based on simulated ARMA trajectories, we found that the algorithm

requires trajectories that are 1500–2000 time points long to estimate ARMA

descriptors within 5–10% of their true values (Supplementary Material, Fig.

S2, a and b). Descriptors derived from shorter trajectories were often far

from their true values, and suffered from large uncertainties and high

variability. In agreement with simulation results, the fitting of ARMA

models to experimental kMT plus-end velocity series also requires 1500–

2000 time points (Fig. S2 c). Thus, the integration of measurements from

15–25 experiments is necessary to accommodate for the implicit heteroge-

neity of kMT dynamics in single-cell observations.

Estimation is robust with up to 30% of observations missing

Missing observations in a trajectory not only reduce the effective number of

available time points, but also lead to suboptimal Kalman recursion in the

MLE step (step 1a above). Nevertheless, the fitting of simulated ARMA

trajectories shows that, for trajectories with ;2000 time points, low-order

ARMA descriptors are insensitive to the deletion of up to 20–30% of the

data points (supplementary material, Fig. S3). Experimental trajectories

analyzed in this study have 7–22% of the observations missing. Therefore

we expect that their ARMA descriptors are estimated robustly.

FIGURE 5 Flowchart of the ARMA model fitting algorithm. See text for

details.
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Comparison of ARMA descriptors

Comparison of models of equal order

The ARMA descriptors of a time series are the orders p and q, the co-

efficients fa1,. . .,ap,b1,. . .,bqg, and the WN variance s2. For simplicity, we

initially assume that the two ARMA models to be compared have the same

order. In this case, one must compare the ARMA coefficients and the WN

variances of the two models:

1. Comparison of ARMA coefficients. Due to the interdependency be-

tween the estimated ARMA coefficients describing kMT dynamics (as

represented by the large off-diagonal values of the variance-covariance

matrices shown in supplementaryTable S1), a comparison of the

coefficients independently of each other is misleading and will give

erroneous results. Instead, the ARMA coefficients in each model must

be treated as one entity, and a group comparison that uses the full

variance-covariance matrices must be performed. For example, a

coefficient-by-coefficient comparison ofWT at 34 and 37�C (see Table

S1) that does not take into account the interdependencies between

coefficients will lead to the conclusion that their coefficients are

statistically indistinguishable. However, a proper group test of the

coefficients, as described below, will show that they are different. The

following statistical test is used for comparing the ARMA coefficients in

twomodels of orderp and qfitted to trajectories of total lengthsn1 andn2.

Let j1 and j2, of length p 1 q, be the two coefficient sets to be

compared.

Let C1 and C2, of size (p 1 q) 3 (p 1 q), be their variance-covariance

matrices.

Define the null hypothesis, H0: j ¼ j1 � j2 ¼ 0, i.e., the coefficients are

equal.

Define the alternative hypothesis, HA: j 6¼ 0, i.e., the coefficients are

different.

Calculate the test statistic value, given by T0 ¼ jTC�1j/(p 1 q), where
C ¼ C1 1 C2. Under H0, the test statistic, T, is Fisher-distributed

with degrees of freedom p 1 q and n ¼ min(n1,n2) (30).

Calculate the p-value ¼ p(T $ T0) assuming that H0 is true.

Reject H0 if the p-value is ,10�3. If H0 is rejected, the ARMA

coefficients of the two models are considered to be different.

2. Comparison of WN variances.

Let s2
1 and s2

2 be the two WN variances to be compared.

Define the null hypothesis, H0: s
2
1 ¼ s2

2, i.e., the WN variances are

equal.

Define the alternative hypothesis, HA: s
2
1 6¼ s2

2, i.e., the WN variances

are different.

Calculate the test statistic value, given by T0 ¼ s2
1=s

2
2. Under H0, the

test statistic, T, is Fisher-distributed with degrees of freedom n1 and

n2, where n1 and n2 are the lengths of the two fitted series.

Calculate the p-value ¼ p(T $ T0) assuming that H0 is true.

Reject H0 if the p-value is ,10�10. If H0 is rejected, the WN variances

of the two models are considered to be different.

Comparison of models of different orders

The uncertainty in the estimated coefficient values and the interdependency

between them renders obsolete the simple notion that two models with

different orders are necessarily different. As an illustrative example, suppose

we want to compare model A, of order (1,2), with model B, of order (2,2). By

definition, model A can be rewritten as an ARMA(2,2) model with a2 ¼ 0.

Suppose that a2 in model B is small and not significantly different from zero.

In this case, the difference in the orders of models A and B is meaningless and

one cannot conclude that the two models are different simply because they

have different orders. On the contrary, one should perform a group test on the

sets of coefficients after rewriting model A as an ARMA(2,2) with a2 ¼ 0.

Given this indirect but intimate coupling between model orders and

coefficients, model differences cannot be inferred from differences in their

orders. Instead, we first compensate for order mismatch by padding the co-

efficient sets with zeros and modifying their variance-covariance matrices

accordingly (see Appendix for an illustration of order mismatch compen-

sation), and then compare the new coefficient sets using the coefficient

comparison test described above. If the coefficients of the two models

are found to be significantly different, then the orders are also significantly

different. Otherwise, the differences in model order are meaningless.

Of course, the WN variances of the two models are also compared using

the test described above.

p-Value thresholds

The thresholds 10�3 and 10�10, below which p-values indicate statistically
significant differences between ARMA coefficients and WN variances,

respectively, were determined with a bootstrapping-like method, where we

analyzed the variability in kMT dynamics between cells of the same strain.

Each of the three largest experimental data sets available was divided into

two random, mutually exclusive subsets, and their best fitting ARMA de-

scriptors were compared. The test was repeated 1000 times for each time

series, with different subsets in each case. In 90% of the cases, the ARMA

coefficients and WN variance comparison p-values were found to be.10�3

and 10�10, respectively. In other words, the probability of obtaining an

ARMA coefficient comparison p-value ,10�3 or a WN variance compar-

ison p-value ,10�10 when the dynamics are in reality equivalent is 10%.

Thus, to conclude with 90% confidence that two conditions or strains exhibit

different kMT dynamics, their ARMA coefficient comparison p-value

should be,10�3, their WN variance comparison p-value should be,10�10,

or both.

RESULTS AND DISCUSSION

We analyzed the dynamics of G1 chromosomes and kMTs in

S. cerevisiae in various strains and under several experi-

mental conditions. Plus-end velocity series were fitted with

ARMA models of orders p,q ¼ 0,. . .,3 and all but one

phenotype of dam1-1 (which was best described by an

ARMA(1,0) [ AR(1) model) were characterized best by

ARMA(1,2) models. The estimated descriptors and their

variance-covariance matrices are provided in Table S1.

Interpretation of ARMA descriptors and
their variations

ARMA descriptors have no direct link to the molecular

mechanisms underlying kMT dynamics, and their interpre-

tation is not straightforward. To get insight into the meaning

of ARMA descriptors, we generated MT plus-end velocity

series via Monte Carlo simulations using the MT dynamic

instability model proposed by Odde and Buettner (16).

Based on experimental evidence, this model assumes that the

time an MT spends in the growth phase or the shrinkage

phase is G-distributed. It is useful for investigating the mean-

ing of ARMA descriptors because variations in the width of

phase-time distributions alter the coupling betweenMTstates.

In particular, a narrower distribution (i.e., smaller standard

deviation) leads to more regularity in the switching and,

hence, longer-range coupling, whereas a wider distribution

leads to less regularity and hence less persistent coupling.

For our simulations, we have extended the model of Odde

and Buettner (16) such that the growth and shrinkage speeds
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do not assume a single value each, but are also G-distributed.

The G-distribution has been chosen because it is always

positive and it is very close to a normal distribution when the

standard deviation is small. This extension of the model is

consistent with our observation that both growth and shrink-

age speeds assume a range of values, even within one growth

or shrinkage phase (9).

We performed nine simulations (parameters shown in

Table 1), and the generated MT length trajectories were sam-

pled at 1-s intervals. This rendered the analyzed trajectories

aliased like our experimental data. The orders of the ARMA

models that best describe the generated plus-end velocity

series are shown in Table 1. The p-values for comparing the

ARMA descriptors of the nine trajectories are shown in

Fig. 6. In the following, we present our main observations:

1. ARMA orders indicate the persistence of coupling be-

tween kMT states (Table 1): Simulations 1–5 use the

same parameters for the growth and shrinkage time dis-

tributions, and hence are described by ARMA models of

the same order. Simulations 6 and 7, on the other hand,

used narrower phase-time distributions, leading to more

persistent correlation. The resulting plus-end velocity

series required higher-order ARMA models. Similarly,

simulations 8 and 9 used wider phase-time distributions,

leading to less persistent correlation and lower-order

ARMA models. Although in these simulations more per-

sistent coupling was induced by more regularity in the

switching, higher-order ARMA models do not necessar-

ily mean more periodicity in the data. For instance, more

persistent coupling might be the result of an increase in

the average phase time.

2. WN variance reflects the range of observed plus-end

velocities: Variations in average growth and shrinkage

speeds alone do not change the coupling between kMT

states. Hence, they did not affect ARMA orders or

coefficients (Table 1, and Fig. 6, first four rows and
columns, above diagonal). However, they affected the

WN variance, which increased or decreased depending

on whether the average speeds increased or decreased,

respectively (Fig. 6, first four rows and columns, below
diagonal).

3. ARMA coefficients represent the type of coupling be-

tween time points: In simulation 5, the widths of the

growth and shrinkage speed distributions were larger than

those in simulation 1. This led to increased heterogeneity

in the simulated MT plus-end velocities, which changed

the nature of the coupling between successive MT states.

Therefore, simulations 1 and 5 required models of the

same order but different coefficients. Similarly, the phase

time distributions of simulations 6–9 differed among each

other and from simulation 1. Changing the time distri-

bution altered the coupling between kMT states, a change

that resulted in variations in the ARMA coefficients

(Fig. 6, above diagonal). Interestingly, the ARMA coef-

ficients of simulations 6 and 7 were different from each

other, even though both of their plus-end velocity series

required models of the same ARMA order. The same

holds for simulations 8 and 9. These examples highlight

the ability of ARMA coefficients to detect differences in

coupling, even when correlation persists to the same

extent in two series. These are the subtle differences that

might be not noticeable in a qualitative comparison of

autocorrelation and partial autocorrelation functions and

spectral densities of time series.

Note that, in the case of undersampled data, changes in the

WN variance must be interpreted with caution when the cor-

responding ARMA coefficients also change. For example,

the WN variance varied between simulation 1 and simula-

tions 6–9 (Fig. 6, below diagonal), although the growth and

shrinkage speeds were the same in the simulations. This is a

consequence of undersampling, which alters the observed

velocity values. Sampling the trajectories generated in

simulations 8 and 9 every 0.1 s instead of every 1 s, for

instance, yielded trajectories that were not undersampled and

whose WN variances were found to be indistinguishable (p
_
�

10�3). However, the same trajectories, when undersampled,

had significantly different WN variances (p
_
�10�208, Fig. 6).

In summary, the order of an ARMA model describing a

kMT velocity series indicates the persistence of coupling

between plus-end velocities over time, the ARMA coeffi-

cients represent the type of coupling between kMT velocity

TABLE 1 Model parameters used in generating synthetic kMT plus-end velocity series and the ARMA orders needed for their fitting

Sim no. Parameter changed vg (m/min) vs (mm/min) tg (s) ts (s) ARMA order

1 4 6 0.3 4 6 0.3 0.8 6 0.26 0.8 6 0.26 (1,2)

2 avg(vg), avg(vs) 8 6 0.3 8 6 0.3 0.8 6 0.26 0.8 6 0.26 (1,2)

3 avg(vg) 2 6 0.3 4 6 0.3 0.8 6 0.26 0.8 6 0.26 (1,2)

4 avg(vg) 8 6 0.3 4 6 0.3 0.8 6 0.26 0.8 6 0.26 (1,2)

5 std(vg), std(vs) 4 6 0.9 4 6 0.9 0.8 6 0.26 0.8 6 0.26 (1,2)

6 std(tg), std(ts) 4 6 0.3 4 6 0.3 0.8 6 0.13 0.8 6 0.13 (2,2)

7 std(tg) 4 6 0.3 4 6 0.3 0.8 6 0.13 0.8 6 0.26 (2,2)

8 std(tg), std(ts) 4 6 0.3 4 6 0.3 0.8 6 0.52 0.8 6 0.52 (1,0)

9 std(tg) 4 6 0.3 4 6 0.3 0.8 6 0.52 0.8 6 0.26 (1,0)
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states at different time points, and the WN variance is pro-

portional to the range of observed plus-end velocities.

ARMA descriptors provide a more complete
characterization of kMT dynamics than do
growth and shrinkage speeds and times

By definition, the white noise term in an ARMA model (e in
Eq. 1) is completely uncorrelated. If a series is well described

by an ARMA model of a certain order, the resulting e series
should be completely uncorrelated. On the other hand, if an

ARMA model is not suitable, then some residual correlation

from the original trajectory will be observed in the autocor-

relation function of the e term. Therefore, the ability of

ARMA models to describe S. cerevisiae kMT dynamics is

reflected in the ‘‘whiteness’’ of the e series in the estimated

models. Testing for the ‘‘whiteness’’ of the e term is an in-

tegral part of our algorithm (step 1a in the model fitting

process), and the models chosen to describe kMT dynamics

under all conditions considered satisfy this criterion. Fig. 7

demonstrates the goodness of fit of an ARMA(1,2) model to

kMT plus-end velocity series in WT at 25�C: Although the

velocity has a significant correlation at lag 1 s, the e series is
completely uncorrelated.

The uniqueness of ARMA model solutions under the

condition expressed in Eq. 2 implies that the ARMA de-

scriptors of kMT dynamics should allow us to generate

synthetic dynamics that are equivalent, at the level of obser-

vation, to the experimentally observed dynamics. To test this,

we used the ARMA descriptors of the strains and conditions

analyzed in this article (Table S1) to generate synthetic plus-

end velocity series. These series were found to have the same

autocorrelation, partial autocorrelation, and spectral density

as the original experimental series (Fig. S1). Furthermore,

time integration of the synthetic velocity series yields syn-

thetic kMT length trajectories that should be equivalent to the

experimentally observed kMT length series. To test this

equivalence, we assigned each synthetic length an observa-

tional error that was randomly generated in agreement with

experimental observational error distributions (9), and deter-

mined the growth and shrinkage speeds and switching fre-

quencies of both the experimental kMT length trajectories and

the ARMA-generated trajectories via the algorithm described

in Dorn et al. (9). Both the speed distributions (Fig. 8) and

frequency distributions (data not shown) of the synthetic

trajectories were found to match those of the corresponding

experimental data.Thesefindings illustrate thatARMAanalysis

not only supplies us with a very detailed description of kMT

dynamics, but also with a unique way of using these descriptors

to generate trajectories that mimic experimental data.

In contrast, MT growth and shrinkage speed and time

distributions do not provide us with a rule of how to repro-

duce experimental data. As illustrated in the introduction,

whether a kMT transitions to a state based on its current state

(original WT at 25�C data, which has a significant correla-

tion at lag 1 s, Fig. 2 c) or independently of it (rearranged

data, which has no significant correlation, Fig. 2 c), the re-

sulting speed and frequency distributions are the same (Fig. 2 b).
This means that there are multiple scenarios of kMT behav-

ior that could result in the same speed and frequency dis-

tributions. Therefore, the description of kMT dynamics by only

the growth and shrinkage speeds and times (even when their

distributions are taken into account and not only their av-

erages) is incomplete. Additional descriptors are needed, such

as the probability of transitioning to a slow growth-speed

FIGURE 6 ARMA descriptors distin-

guish between dynamics simulated with

different model parameters. The discrim-

ination matrix shows p-values for the

comparison of ARMA coefficients (above

diagonal) and WN variance (below diag-
onal). Coefficient comparison p-values

,10�3 and variance comparison p-values

,10�10 (highlighted ingray) indicatestatis-

tically significant differences. p-Values of
0 indicate p-values ,10�324.

FIGURE 7 The fit of plus-end velocities with the appropriate ARMA

model extracts all correlation between data points. The significant autocor-

relation in the plus-end velocities in WT at 25�C at time lag 1 s (highlighted

by a second circle) is absent from the WN series of the best fitting

ARMA(1,2) model. The two horizontal lines indicate the 99% confidence

range for significant correlation values.
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state versus the probability of transitioning to a fast growth-

speed state after a state of fast shrinkage speed, or, since

speeds vary even within one state (9), the probability of

transitioning from a fast growth state to a slow growth state.

Without these additional descriptors, kMT dynamics in two

mutants might have the same growth and shrinkage speed

and time distributions, and thus appear to be the same, even

though they are different. This conclusion does not pur-

port that dynamic instability is an inappropriate model of

S. cerevisiae kMT dynamics—it simply means that, within

the context of dynamic instability models, the average and

distributions of growth and shrinkage speeds and rescue and

catastrophe frequencies are not sufficient, and additional

parameters are needed to obtain a complete characterization

of kMT dynamics.

An alternative approach for the analysis of MT dynamics

that requires the estimation of only a small number of

parameters is diffusion analysis (9), or diffusion-with-drift

analysis (32,33). In this model, an MT end is assumed to

undergo a one-dimensional, possibly confined, random walk

with drift. Thus there are at most three parameters to be

estimated for a full characterization of kMT dynamics in the

context of this model (diffusion constant, drift coefficient,

and confinement radius). However, diffusion-with-drift

models are only asymptotically equivalent to dynamic in-

stability models (32). They do not capture the details of MT

behavior at a short timescale (32), which is precisely the

scale at which changes in kMT dynamics due to kinetochore

and MT-associated protein mutations occur (9). Therefore,

diffusion analysis is inappropriate for our task.

In summary, ARMA analysis provides us with a succinct,

yet very detailed, description of kMT dynamics. It captures

the coupling between kMT velocity states over time, i.e.,

how kMTs transition from one state to the next—information

that is not captured by the traditionally employed average

growth and shrinkage speeds and times, and only partly

captured when their distributions are also calculated. Fur-

thermore, ARMA descriptors implicitly include these growth

and shrinkage speed and time distributions, and thus they

define a more complete set of descriptors of kMT dynamics.

ARMA descriptors reveal that G1 kMT dynamics
are regulated by kinetochore proteins

In this study, we utilized comparative ARMA analysis to test

our hypothesis that kinetochore proteins are involved in the

regulation of kMT dynamics. Such a role would be revealed

by differences in the ARMA descriptors of kMT dynamics

between mutant S. cerevisiae strains and WT. We have

focused on the G1 kMT-kinetochore system because of its

relative simplicity: although G1 S. cerevisiae chromosomes

are attached to kMTs (9), no forces due to cohesion between

sister chromatids are exerted on kinetochores or their as-

sociated MTs since DNA has not been replicated yet. In

contrast to cohesion forces, other forces that are present in

G1, such as viscous drag, are not kinetochore-specific. They

are not expected to influence kinetochore protein activity or

play a direct role in the regulation of kMT dynamics.

Therefore, for the purpose of elucidating the regulation of

kMT dynamics by kinetochore proteins, they can be ne-

glected. Consequently, G1 provides a simpler system to test

comparative ARMA analysis and establish it as a suitable

framework for future screens of kinetochore proteins at var-

ious stages of the cell cycle.

We analyzed chromosome motion, and thus kMT dy-

namics in the case of attachment, in mutants of the core

kinetochore protein Ndc10p, the linker kinetochore protein

Okp1p, and the outer kinetochore motor Kip3p. Further-

more, we analyzed chromosome motion resulting from mu-

tating the kMT-binding protein Dam1p—part of the DASH

complex that forms rings around kMTs (21,22)—and motion

in a mutant of the chromosomal passenger protein Ipl1p.

Finally, we also analyzed kMTdynamics inmutants of theMT-

associated proteins Bim1p and Stu2p, and of the minus-end

directed motor Kar3p that is located at the SPB. A schematic

indicating the approximate locations of these proteins is

shown in Fig. 9 a.

FIGURE 8 ARMAdescriptors implicitly contain the dynamic information

captured by growth and shrinkage speeds. Box and whisker plots of (a)

growth and (b) shrinkage speed distributions from experimental data and

corresponding ARMA-generated trajectories (see text for details) show that

the experimental and ARMA-generated distributions are equivalent. Box

lines indicate the 25th percentile, median, and 75th percentile of a distri-

bution, whereas whiskers show its extent. Boxes whose notches do not over-

lap represent distributions whose medians differ at the 5% significance level.
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Control experiments

We analyzed CEN tag motion in WT and in the mutant

ndc10-1, both at 37�C (the nonpermissive temperature of

ndc10-1), with and without 40 mg/ml of the drug benomyl

that is known to affect MT dynamics (9,34). In WT, chro-

mosomes are attached to kMTs and their motion is driven by

kMT dynamics. Thus, the addition of benomyl alters CEN

tag motion (9). Accordingly, ARMA descriptors of WT with

and without benomyl were significantly different: p � 10�16

for the ARMA coefficient comparison test, and p � 10�24 for

the WN variance comparison test. On the other hand, the

mutant ndc10-1 fails to form a kinetochore at 37�C and its

chromosomes do not get attached to MTs (35,36). Thus,

CEN tag motion in ndc10-1 is independent of kMT

dynamics, and the addition of benomyl should have no

effect on it (9). This was found to be indeed the case: p ¼
0.38 for the ARMA coefficient comparison test, and p ¼
0.37 for the WN variance comparison test. Furthermore,

chromosome motion in ndc10-1 was observed to be different

from that in WT (Fig. 9 b). These examples illustrate the

ability of ARMA models to properly detect differences in

kMT dynamics, and to indicate the lack thereof when a

system perturbation does not affect the observed motion.

Comparative analysis of mutants

The p-values for comparing kMT-dynamics in the S.
cerevisiae strains studied are shown in Fig. 9, b and c. The
following is a summary of our major findings:

The linker kinetochore protein Okp1p regulates kMT
assembly and disassembly rates. Okp1p is part of the

COMA linker complex in the kinetochore (23). It localizes to

centromeres in G1 (37). The okp1-5 mutant at 37�C suffers

from reduced transient sister separation in metaphase (11).

Using ARMA descriptors, we detected a difference between

kMT dynamics in okp1-5 and those in WT, where the WN

variance in okp1-5 was much smaller than that in WT,

although the ARMA coefficients stayed the same. This

indicates that Okp1p plays a role in regulating kMT as-

sembly and disassembly rates in G1, but not the coupling

between kMT states from one time point to another. The

reduced assembly and disassembly rates of kMTs in okp1-5
might account for the reduced transient sister separation

observed in metaphase.

Dam1p is required for proper kMT attachment and
regulation. Dam1p is part of the DASH complex that

forms rings around kMTs, mediating the attachment of

MTs to kinetochores (21,22). Mutations in DASH subunits

FIGURE 9 ARMA descriptors detect differences between kMT dynamics in mutants of kinetochore and other MT-binding proteins in G1. (a) Schematic of

an S. cerevisiae G1 cell (for graphical simplicity, only one chromosome is depicted) with a zoom-in on the region of kMT-chromosome attachment, showing

the approximate locations of the investigated proteins. (b) Discrimination matrix showing p-values for the comparison of kMT dynamics in WT at 37�C and

various temperature-sensitive mutants at their nonpermissive temperature of 37�C. (c) Discrimination matrix showing p-values for the comparison of kMT

dynamics in WT and strains carrying deletions of nonessential proteins at 25�C. Coefficient comparison p-values ,10�3 and variance comparison p-values
,10�10 (highlighted in gray) indicate statistically significant differences. p-Values of 0 indicate p-values ,10�324.
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prevent proper bipolar attachment and destabilize the spindle

in metaphase (38). Interestingly, we found three classes of

chromosome dynamics in this mutant at 37�C. Some cells

had ARMA descriptors that were statistically indistinguish-

able from those in ndc10-1, indicating that their chromo-

somes were detached (Fig. 9 b, dam1-1 P3). Other dam1-1
cells had WN variances similar to the WN variance of WT,

indicating that their chromosomes were attached (dam1-1 P1

and P2 in Fig. 10), but their ARMA coefficients were dif-

ferent from those of WT and from each other.

The fact that we see both attached and detached phenotypes

for this mutant shows the central role of the DASH complex in

mediating the linkage between kMTs and the kinetochore.

Mutations in Dam1p induce a profound instability in the

kinetochore-kMT attachment, and any further perturbation can

induce a complete loss of the kMT-kinetochore link.Moreover,

the attached case exhibits two modes of kMT dynamics, a

behavior hitherto not observed for any other mutation. This

reflects thedirect or indirect involvement of theDASHcomplex

in the regulation of kMT dynamics by the kinetochore.

Ipl1p regulates kMT dynamics in G1. Ipl1p (S.
cerevisiae homolog of Aurora kinases) is a key regulator

in the mitotic spindle. In metaphase, it induces kMTs of

sister chromatids with syntelic attachment to depolymerize

and detach, giving the sister chromatids the chance to re-

attach properly to two SPBs (23,24). Once bipolar attach-

ment is achieved, tension is thought to downregulate Ipl1p,

stabilizing kMTs (23,24). Our analysis indicates a role for

Ipl1p in regulating kMT dynamics in G1 as well: although

ipl1-321 at 37�C required an ARMA model of the same

order as WT, its ARMA coefficients and WN variance were

significantly different from those of WT. They were also

significantly different from those of ndc10-1. In fact, the WN

variance of ipl1-321 was even smaller than that of WT which

was much smaller than that of ndc10-1 (Table S1). There-

fore, chromosomes in ipl1-321 were attached to MTs, but

regulated differently from WT. The change in ARMA coef-

ficients when Ipl1p is mutated implies that Ipl1p plays a role

in regulating the transitions of kMTs between states.

The outer kinetochore motor Kip3p regulates kMT
dynamics. Kip3p is a kinesin-8 that localizes to kinetochores

and its deletion has been observed to alter kMT dynamics in

G1 (39). Our analysis reveals that Kip3p indeed plays a role in

regulating kMT assembly and disassembly rates in G1, since

the WN variance of kip3D is significantly different from that

of WT (at 25�C). In particular, the WN variance of WT is

larger than that of kip3D (Table S1), implying that Kip3p

promotes assembly and/or disassembly rates when present.

On the other hand, the ARMA coefficients of kip3D and WT

are the same, indicating that Kip3p does not influence the

coupling between kMT states over time.

The minus-end directed motor Kar3p has no effect on
kMT dynamics in G1. Kar3p is a minus-end-directed motor

that localizes mostly to the SPB in S. cerevisiae (39). Since it
destabilizes MT minus-ends in vitro (40), the question arises

whether it also destabilizes kMT minus-ends in vivo. Our

analysis shows that deleting it does not alter kMT dynamics.

This implies that Kar3p plays no role in G1 spindle

dynamics, and provides further evidence that there is no

kMT flux in S. cerevisiae. Consequently, chromosome

motion observed in our experiments results from assembly

and disassembly at the plus-ends of kMTs only.

The MT-binding proteins Stu2p and Bim1p do not
regulate kMT dynamics in G1. Stu2p is a microtubule

associated protein, without which cells produce fewer and

less dynamic cytoplasmic MTs in G1, and less dynamic

kMTs in metaphase (41). Stu2-10 cells arrest in metaphase,

and, if allowed to proceed to anaphase, have unusually short

spindles (42). A recent study of chromosome capture byMTs

after DNA replication suggests that Stu2p increases MT

rescue to prevent chromosomes from falling off of MTs (43).

Surprisingly, we did not see any differences in kMT dy-

namics between stu2-277 and WT in G1, although Stu2p

seems to be in the nucleus in G1 (data not shown). This could

suggest either that Stu2p does not influence kMT dynamics

in G1 or that the mutation in stu2-277 does not affect the

interaction between Stu2p and kMTs.

Bim1p, the S. cerevisiae homolog of EB1, is another

MT-binding protein that has been observed to promote the

dynamicity of cytoplasmic MTs (44), a property that is

needed for proper spindle orientation (45). EB1 in higher

organisms has also been found to play a role in spindle

formation (46). However, although Bim1p is found in the

nucleus in G1 (data not shown), we do not see any change in

kMT dynamics when Bim1p is deleted, indicating that

Bim1p does not play a role in kMT regulation in G1.

ARMA descriptors reveal differential regulation
of kMT dynamics in WT at 37�C

To reveal protein function, it is common practice in genetics

to compare the phenotypes of temperature-sensitive mutants

at their permissive and nonpermissive temperatures. This

FIGURE 10 The regulation of kMT dynamics at 37�C is different from

that at lower temperatures. Shown are the p-values for comparing the

ARMA descriptors of kMT dynamics in WT at several temperatures.

Coefficient comparison p-values ,10�3 and variance comparison p-values

,10�10 (highlighted in gray) indicate statistically significant differences.

p-Values of 0 indicate p-values ,10�324. Between 16 and 34�C, only the

WN variances are different. At 37�C, however, the ARMA coefficients are

also different.
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practice assumes that temperature changes have no effect on

the observed phenotype. For the design of future screens, we

have tested whether this assumption holds for the profiling of

protein mutations based on kMT dynamics.

We analyzed kMT dynamics in WT in the temperature

range 16–37�C. Upon varying the temperature, MT polymer

dynamics were expected to change due to thermodynamic

equilibrium shifts between polymerization and depolymer-

ization (47). Between 16 and 34�C, only the WN variance in-

creased (Fig. 10), although the ARMA coefficients remained

the same, indicating that in this range only the polymeriza-

tion and/or depolymerization rates increased with tempera-

ture. However, at 37�C, both WN variance and ARMA

coefficients were different from those at lower temperatures

(Fig. 10). This change in ARMA coefficients indicates that

changes in kMT dynamics at 37�C are not only due to ther-

modynamic equilibrium shifts due to rising temperature, but

that, most likely, new regulatory pathways, such as the heat

shock pathways (48), get activated.

In conclusion, kMT dynamics in a mutant at its nonper-

missive temperature must be compared to those in WT at the

same temperature, and not to those in the mutant at its per-

missive temperature. This point is particularly important if the

nonpermissive temperature is 37�C, where our data show that

new regulatory pathways might get activated. This critical

principle of experimental design with temperature-sensitive

mutants has been followed in all comparisons in Fig. 9.

CONCLUSION

This study establishes ARMA models as a new, rigorous

method for the characterization and comparison of MT dy-

namics. We have developed an algorithm that combines

noisy, incomplete experimental measurements and estimates

ARMA descriptors including their variance-covariance ma-

trices. To compare stochastic time series, we have also

developed a statistical scheme that compares ARMA model

parameters quantitatively, taking into account their uncer-

tainties and interdependencies.

We have demonstrated that ARMA models extract the

time correlation between kMT states, and implicitly include

the information contained in the traditionally used but in-

complete growth and shrinkage speeds and rescue and

catastrophe frequencies. Thus, ARMA descriptors provide a

more complete set of descriptors of kMT dynamics. This

makes them ideally suited for the comparison of experimen-

tal kMT dynamics under different conditions, and for the

comparison of experimental and simulated kMT dynamics

for the sake of calibrating mechanistic models of the ki-

netochore and its regulation of kMT dynamics.

Applying ARMA analysis to kMT dynamics in various S.
cerevisiae strains in the G1 phase of the cell cycle, we have

shown that the kinetochore does play a role in regulating

kMT behavior. In particular, we have shown that the linker

kinetochore protein Okp1p and the outer kinetochore motor

Kip3p affect kMT assembly and disassembly rates. The key

spindle regulator Ipl1p also regulates kMT dynamics in G1.

Furthermore, the MT-binding protein Dam1p is required for

the proper attachment and regulation of kMTs to kineto-

chores, and its mutation makes the system labile, exhibiting

multiple phenotypes, some associated with chromosome

detachment and others with differentially regulated kMT

dynamics. Finally, a crucial find in our analysis is that kMT

dynamics at 37�C are differentially regulated from dynamics

at lower temperatures, implying that the effects of mutations

must be deduced from comparing a mutant to WT at the same

temperature. This finding is especially relevant to tempera-

ture-sensitive mutants, where it implies that kMT dynamics

in the mutant at its nonpermissive temperature must be com-

pared to dynamics in WT at that temperature, and not to dy-

namics in the mutant at its permissive temperature.

ARMA models are potentially of general utility in cell

biology, beyond MT characterization. They offer low-

dimensional descriptor spaces for the characterization of

intrinsically and extrinsically stochastic data that are often

the readouts of time-dependent biological processes. Our

augmentation of ARMA analysis with statistical tools for

descriptor comparison provides a powerful new approach for

the identification of cellular phenotypes based on dynamic

molecular processes with a strong stochastic component.

APPENDIX A: COMPENSATION OF ORDER
MISMATCH FOR THE COMPARISON OF
ARMA COEFFICIENTS

Comparing the coefficients of two models that have different AR and

MA orders requires first a modification of the coefficient vectors and their

variance-covariance matrices to eliminate order mismatch. If one model is an

ARMA(p1,q1) and the other is an ARMA(p2,q2), then both models should be

represented as ARMA(p12,q12), where p12 ¼ maxðp1; p2Þ and q12 ¼ max

ðq1; q2Þ.
The conversion procedure is illustrated in the following example, where

an ARMA(1,3) model is compared to an ARMA(3,2) model. In this case,

both should be represented as ARMA(3,3) models.

Modification of coefficient vectors

An ARMA(p,q) model is equivalent to an ARMA(p9,q9) model (p9 $ p and

q9 $ q) if ai ¼ 0 for p11# i # p9 and bi ¼ 0 for q11# i # q9 in the

ARMA(p9,q9) model. Thus, the coefficient vectors of the two models,

j1 ¼ a11; b11; b
1
2; b

1
3

� �
9 and j2 ¼ a2

1; a22; a
2
3; b

2
1; b22

� �
9, are rewritten as

j91 ¼ a11; 0; 0; b
1
1; b

1
2; b13

� �
9 and j92 ¼ a21; a22; a23; b

2
1; b22; 0

� �
9.

Modification of variance-covariance matrices

A fit with an ARMA(p,q) model is equivalent to a fit with an ARMA(p9,q9)

model (p9 $ p and q9 $ q) with the constraints ai ¼ 0 for p11# i # p9 and
bi ¼ 0 for q11# i # q9. Thus, in principle, j91 can be obtained by fitting

data with an ARMA(3,3) model and imposing the constraints a12 ¼ 0;

a13 ¼ 0. Similarly, j92 can be obtained by fitting data with an ARMA(3,3)

model and imposing the constraint b23 ¼ 0.
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The variance-covariance matrix, C9, of parameters obtained in a

constrained minimization is related to the variance-covariance matrix, C,

of the same parameters but estimated in an unconstrained minimization

through the equation

C9 ¼ C � CH
TðHCH

TÞ�1
HC; (A1)

where H is the matrix of constraints (30). In our example, C for each model

is the variance-covariance matrix obtained when fitting the data correspond-

ing to that model with an ARMA(3,3) process. Note that, in general, we

already have C, since each data set is fitted by a series of models during

the descriptor estimation stage, and the common ARMA model, e.g.,

ARMA(3,3) in this case, is usually one of those already tested.

Equation A1 also requires the matrix of constraints,H. When representing

an ARMA(p,q) model as an ARMA(p9,q9) model, H is given by

In our example, the constraint matrices are given by

H1 ¼
0 1 0 0 0 0

0 0 1 0 0 0

� �
and

H2 ¼ ð 0 0 0 0 0 1 Þ:

Using C1, C2 and H1, H2 in Eq. A1, the variance-covariance matrices

corresponding to j91 and j92 are given by

C91 ¼

s
29

a
1
1

0 0 c9
a
1
1b

1
1

c9
a
1
1b

1
2

c9
a
1
1b

1
3

0 0 0 0 0 0

0 0 0 0 0 0

c9
a
1
1b

1
1

0 0 s
29

b
1
1

c9
b
1
1b

1
2

c9
b
1
1b

1
3

c9
a
1
1b

1
2

0 0 c9
b
1
1b

1
2

s
29

b
1
2

c9
b
1
2b

1
3

c9
a
1
1b

1
3

0 0 c9
b
1
1b

1
3

c9
b
1
2b

1
3

s
29

b
1
3

0
BBBBBBBBBB@

1
CCCCCCCCCCA

and

C92 ¼

s
29

a
2
1

c9
a
2
1a

2
2

c9
a
2
1a

2
3

c9
a
2
1b

2
1

c9
a
2
1b

2
2

0

c9
a
2
1a

2
2

s
29

a
2
2

c9
a
2
2a

2
3

c9
a
2
2b

2
1

c9a22b
2
2

0

c9
a
2
1a

2
3

c9
a
2
2a

2
3

s
29

a
2
3

c9
a
2
3b

2
1

c9
a
2
3b

2
2

0

c9
a
2
1b

2
1

c9
a
2
2b

2
1

c9
a
2
3b

2
1

s
29

b
2
1

c9
b
2
1b

2
2

0

c9
a
2
1b

2
2

c9
a
2
2b

2
2

c9
a
2
3b

2
2

c9
b
2
1b

2
2

s
29

b
2
2

0

0 0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

The variances s29 and the covariances c9 are functions of the variances

and covariances from the unconstrained ARMA(3,3) fitting, as determined

by Eq. A1. As expected, the constrained coefficients have zero variance and

zero covariance with all other coefficients.
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http://www.biophysj.org.
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