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ABSTRACT The r1 subunit of the ionotropic GABA receptors is thought to contribute to the formation of the GABAC receptors
with pharmacological and physiological properties distinct from those of GABAA receptors. Previous characterization of this
subunit expressed in the Xenopus oocytes revealed an ion channel with slow activation and deactivation and no desensi-
tization, quite different from the properties of GABAC receptors observed in native cells. We expressed the human r1 subunit in
human embryonic kidney (HEK) 293 cells and quantitatively characterized the kinetic properties of these receptors using a rapid
drug application device. The r1 subunit expressed in HEK293 cells exhibited pharmacological and kinetic properties quali-
tatively identical to those described when r1 was expressed in the oocytes. An apparent desensitizing current observed during
a constant GABA application was determined to be secondary to an ECl shift. Detailed kinetic analyses and parameter esti-
mation for a five-state kinetic model revealed that the channel is best described by a set of rate constants with a notably faster
GABA unbinding Koff rate compared to the parameters proposed for the same subunit expressed in the oocytes. The same
subunit expressed in hippocampal neurons showed activation and deactivation kinetics identical to the current characterized
in HEK293 cells. The kinetic properties of r1 subunit expressed in a nonoocyte model system may be better described
quantitatively by the rate constants presented here.

INTRODUCTION

The human r1 subunit of the ionotropic GABA receptors

forms functional ion channels with properties distinct from

the GABAA receptors when expressed in Xenopus oocytes.
The homomeric r1 receptors exhibit insensitivity to bicu-

culline, barbiturate, or benzodiazepine with essentially no

desensitization in the continued presence of GABA (1).

Quantitative characterization revealed the r1 homomeric

receptors to be 40 times more sensitive to GABA, to activate

8.3-fold more slowly, and to close eightfold more slowly

than a prototypic abg GABAA receptor (2). A careful

concentration-response study using a combination of wild-

type and activation-impaired mutant r1 led to a kinetic ac-

tivation model in which GABA occupation of three of the

five identical GABA-binding sites leads to the channel open-

ing (3). Further parameter estimation using a concurrent di-

rect [3H]GABA binding and voltage-clamp study identified

an optimum kinetic model most notable for the slow asso-

ciation constant, where the ligand binding rate is three orders

of magnitude slower than diffusion and the trapping of the

ligand by the opened receptor slowing the ligand dissocia-

tion (4).

More recently, the human r1 subunit has been expressed

in mammalian cells including human embryonic kidney

(HEK) 293 cells and rat hippocampal neurons (5–7). In

general, the GABA-evoked currents mediated by the

homomeric r1 receptors expressed in HEK293 cells dem-

onstrated relative permeability to anions (8), resistance to

bicuculline, and slow deactivation rate (5) qualitatively simi-

lar to the properties of these channels well characterized in

the Xenopus oocyte expression system. However, the quan-

titative details of the r1 homomeric channels expressed in

the HEK293 cells differ considerably from the same subunits

expressed in the Xenopus oocytes, particularly with respect

to the deactivation kinetics and the apparent desensitizing

response in the continued presence of GABA.

A quantitative understanding of the r1 homomeric chan-

nel behavior in a mammalian expression system is a prereq-

uisite in understanding how these receptors may work in

mammals.Weused a piezoelectric driver-based rapid solution

exchange system to quantitatively characterize the kinetics

of homomeric r1 receptors expressed in HEK293 cells and

interpreted the resulting data in the context of the five-state

model proposed by Weiss.

MATERIALS AND METHODS

Cell culture

HEK293 cells (ATCC, Manassas, VA) seeded at a density of 5 3 105 cells/

35-mm dish maintained in DMEM supplemented with 10% fetal bovine

serum and antibiotics were transiently transfected with the indicated plas-

mids using Lipofectamine Plus (Invitrogen, Carlsbad, CA) following the

manufacturer’s recommended protocol. The human r1 cDNA kindly pro-

vided by Dr. Cutting (Johns Hopkins University) was subcloned into the

pCI/neo (Promega, Madison, WI) eukaryotic expression plasmid and 1.5 mg

r1-pCI/neo1 0.5 mg pEGFP (Invitrogen) per dish used for transfection. The

transfected cells identified under an epifluorescent microscope were used for

patch-clamp experiments 24–48 h after transfection.
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Neonatal (from 1 to 2 days old) Sprague Dawley rat pups deeply

anesthetized with halothane were decapitated, and the hippocampi dis-

sected out in ice-cold Ca21- and Mg21-free Hanks’ balanced salt solution.

The tissue was enzymatically digested with papain and bovine serum albumin

(1 mg/ml for each) (Sigma, St. Louis, MO) for 20 min at 37�C. Cells were
disaggregated by trituration and plated on Matrigel-coated 35-mm tissue

culture plates (Becton Dickinson, Bedford, MA) in Neurobasal medium

(Invitrogen) supplemented with 2 mM L-glutamine, 10% fetal calf serum

(Hyclone, Logan, UT), 5% horse serum, and B-27 supplement (Invitrogen).

After 2–3 days of growth in a 95% O2/5% CO2 humidified incubator at

37�C, the dishes were treated with 10 mM cytosine arabinoside for 24 h to

suppress the growth of glial cells. Thereafter, the medium was switched to a

Neurobasal containing 5% horse serum and changed every 2–4 days until

used for experiments. The hippocampal culture was transduced with an ap-

proximate multiplicity-of-infection (MOI) of 10 with adenovirus designed to

express both the r1 subunit and the reporter EGFP protein (see Cheng et al.

(7) for details). The transduced hippocampal neurons were visually

identified for the patch-clamp experiment.

Electrophysiology

Patch electrodes were pulled from 1.5-mm OD borosilicate capillary glass

(WPI, Sarasota, FL) and fire polished. Typical electrodes had a resistance of

5–10 MV when filled with intracellular solutions. The intracellular solution

consisted of (in mM): 140 CsCl, 4 NaCl, 2 MgCl2, 10 K-EGTA, 10 HEPES,

titrated to pH 7.3 with CsOH, and supplemented with 2 mM Mg-ATP. The

external solution contained (in mM): 140 NaCl, 2.8 KCl, 1 MgCl2, 3 CaCl2
10 HEPES, 10 glucose, and was titrated to pH 7.4 with NaOH. For hip-

pocampal neurons, TTX 1 mM was added to the external solution to inhibit

action potentials. Recordings were made using an AxoPatch 200A amplifier

(Axon Instruments, Foster City, CA). A typical access resistance of ;15

MV in the whole-cell mode of patch clamp was limited to 75% electronic

compensation without causing instability. Voltage measurement errors re-

sulting from uncompensated series resistance for large currents underreport

the true current, possibly underestimating the degree of apparent desensi-

tization. The cell input capacitance was approximated by directly reading off

the capacitance compensation dial of the amplifier. Recorded membrane

currents were filtered at 5 kHz, digitized using Clampex v8.0, and analyzed

with Clampfit v6.0 (Axon Instruments). A syringe pump delivered the ex-

ternal solution at 15 ml/h through orifices of a u tube mounted on a pie-

zoelectric transducer (Burleigh Instruments, Fishers, NY). This perfusion

rate was determined after a series of careful preliminary experiments looking

at the time course of shift in the whole-cell holding current in response to

application of a high-potassium (100 mM K1) solution. Command steps at

120-s intervals rapidly moved the perfusion ports, exposing the cell to either

the control or the drug solution. At this GABA application interval, no

decrease in the peak response to 100 mM GABA was noted. The perfusion

device allowed exchange of solution in ;15 ms (10–90% rise time) for the

whole-cell recording configuration. All experiments were performed at room

temperature (20–25�C). Aqueous solutions of GABA and bicuculline

methiodide, and DMSO solutions of etomidate and I4AA prepared as

31000 stock were stored as frozen aliquots at �20�C and freshly diluted on

the day of the experiments. The I4AA-blockable, bicuculline-resistant

current seen in virally transduced hippocampal neurons has been thoroughly

characterized and determined to be a r1 receptor-mediated current (7).

Drugs were purchased from Sigma Chemicals.

Model simulation

Simulations of the gating model were performed using the Q-matrix method

written in Matlab (Mathworks, Natick, MA). A Q-matrix corresponding to

the five-state gating model (see Fig. 4 A) was entered, and the time course of

the state vector solved according to the matrix equation X(t) ¼ eQ(t) * X(0).
X(t) is the 53 1 time-dependent state vector (i.e., C1, C2, C3, C4, O) at time

t,Q(t) is the 53 5 Q-matrix, andX(0) is the 53 1 initial state vector equal to

[1 0 0 0 0]T. The simulation time was separated into two time epochs: during

GABA application and on GABA removal. Within each of these epochs,

the GABA concentration-dependent rates of the Q-matrix were held con-

stant. Simulations during the two epochs correspond to the time course of

activation/desensitization during GABA application and deactivation after

GABA removal. The predicted rate constants and the respective coefficients

describing the macroscopic activation and deactivation were calculated

from the eigenvalues of the Q-matrix and a spectral matrix expansion of the

Q-matrix as detailed in Colquhoun and Hawkes (9). The predicted steady-

state response was taken as the sum of the row entry of the spectral matrix

corresponding to the eigenvalue¼ 0. The model parameter optimization was

accomplished by minimizing the sum squared error consisting of a linear sum

of the errors from the concentration-response, the concentration-independent

deactivation rate, and the limiting monoexponential activation rate at a high

GABA concentration (i.e., a 1 b). The concentration-response relationship

was determined by fitting the equation: response ¼ 1/(1 1 (EC50/

[GABA])^n) where EC50 is the concentration for half-maximal response

and n ¼ Hill slope to the normalized empirical data or the maximum current

attained during a 20-s GABA exposure for the simulated data. The final

model parameters used for the simulation are shown in Table 1. The Matlab

m-file codes implementing these routines are available from the correspond-

ing author.

RESULTS

Exogenous application of GABA to the voltage-clamped

(�60 mV) HEK293 cells transfected with r1 subunit elicited

an inward-going current (Fig. 1 A). The peak magnitude of

the current depended on the GABA concentration as well

described by a Hill equation with an EC50 ¼ 2.11 mM and a

slope ¼ 2.08. The elicited current was notable for an ap-

parent desensitization in the presence of higher GABA and

a concentration-independent slow deactivation on removal

of GABA (Fig. 1 A). The current was not blocked by

TABLE 1 A comparison of optimized parameters for the

five-state kinetic model shown in Fig. 4 A

Model parameters Oocyte HEK Cell Experimental

a (s�1) 0.31 0.16 –

b (s�1) 3.6 9.83 –

Kon (mM
�1s�1) 0.096 0.32 –

Koff (s
�1) 0.18 4.59 –

EC50 (mM) 0.80 2.15 2.11 6 0.15

Slope 2.37 2.09 2.08 6 0.10

tdeact (s) at 1 mM 26.4 10.7 11.0 6 0.44

tact (s) at 1 mM* 5.83 6.46 5.9 6 0.45

10–90% rise time (s) 12.8 14.2 13.0 6 2.30

tact (s) at 30 mM* 0.55 0.18 0.16 6 0.01

10–90% rise time (s) 1.2 0.4 0.38 6 0.05

The parameters for the receptors expressed in oocytes system were taken

from Chang and Weiss (4), but the calculations were done with our soft-

ware implementation.

*The activation kinetics is clearly complex, demonstrating a sigmoidal acti-

vation as expected for a channel with multiple cascading states; therefore,

the monoexponential fit listed is only an approximation of the true acti-

vation kinetics, which in theory is always a sum of four exponentials with

time constants corresponding to the inverse of the nonzero eigenvalues of

the Q-matrix. The 10–90% rise time was determined from the sum of four

exponentials.
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bicuculline, not potentiated by etomidate, but blocked by

I4AA (Fig. 1 B), confirming the general pharmacological

properties expected of the r1 receptors.

A careful examination of the rising phase of the current

showed complex kinetics with an obvious initial sigmoidal

take-off clearly visible for the slowly activating current at the

low GABA concentration (Fig. 2 A). Therefore, the activa-

tion rate was quantified as both a 10–90% rise time and a

monoexponential activation time constant (tactivation) (Fig. 2

B). However, as the activation rate increased with increasing
GABA concentration, the time course of the current was well

approximated by a monoexponential function. Kinetic analy-

sis of the current revealed a GABA concentration-dependent

acceleration of the activation rate reaching an asymptote of

;10 s�1 at 100 mM GABA. The decay of the current on

removal of GABA or the current deactivation was mostly

monoexponential with a time constant of tdeactivation and

independent of GABA concentration (Fig. 2 C).
r1 homomeric receptors expressed in the Xenopus oocytes

showed no desensitization; however, the current magnitude

recorded from the HEK cells clearly decreased with time in

the presence of constant GABA. This apparent desensitiz-

ation varied from cell to cell even for the same concentration

of GABA (Fig. 3 A). In fact, a scatter plot of the mono-

exponential time constant fit to the apparent desensitization

FIGURE 1 GABA concentration-response and pharmacological properties

of r1 GABAC receptors expressed in HEK293 cells. (A, upper) Represen-
tative current traces from a cell voltage-clamped at �60 mV and GABA

applied (line) by a rapid-perfusion device. Note the current decay observed

during the drug application at the higher GABA concentrations. (A, lower) A

concentration–response relationship derived from the measured peak current

magnitude normalized to the response to 3 mMGABA. The continuous curve

is a Hill equation with an EC50 ¼ 2.11 mM, n ¼ 2.08 fit to the data points.

The model fit using the optimized rate constants (see Table 1) gave an EC50

¼ 2.15 and n¼ 2.09, completely overlapping the empirical data. The number

of independent observations is noted within the parentheses. (B) Pharma-

cological response of the GABA-evoked currents to I4AA (100 mM),

bicuculline (100 mM), and etomidate (8.2 mM). [GABA] was 100 mM for the

I4AA and bicuculline experiments but 3 mM for etomidate because a non-

saturating concentration of GABA was desirable to detect possible poten-

tiation of the current by etomidate. n ¼ 5–8 cells for each, and * denotes p,

0.05 by a two-tailed t-test.

FIGURE 2 Kinetic properties of r1 receptors. (A) Representative current

traces to 1 or 30 mMGABA application showing the activation (left) and the

deactivation (right) phases of the responses. (B) The activation phase of the

current was approximated by a monoexponential function and the time con-

stant of activation (tactivation) plotted for different GABA concentrations.

The limiting activation time constant was 101 6 6.4 ms (n ¼ 7). The same

data plotted as a 10–90% rise time (right axis) corresponding to the mono-

exponential time constant axis. (C) The same as above except for the current

deactivation. For both panels, the dotted lines represent the model prediction

using the optimized parameters.
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showed no GABA concentration dependence (Fig. 3 B),
arguing against a true desensitization or the entry of a GABA-

bound channel into a nonconductive state. Further analysis

of the data showed that the magnitude of apparent desen-

sitization correlated well with the initial current magnitude

(Fig. 3 C), suggesting a possible time-dependent decrease in

the chloride reversal potential as a possible mechanism for

the apparent receptor desensitization. A direct assessment of

the chloride reversal potential by issuing a ramp-command

voltage at the beginning and the end of the decreasing

GABA-evoked current confirmed a shift in the chloride re-

versal potential (Fig. 3 D). Overall, the shift in the driving

force accounted for the decrease in the current magnitude

well (Fig. 3 E). Therefore, the time-dependent decrease in the

current magnitude was not caused by receptor desensitiza-

tion but rather by a decreased driving force from chloride ion

depletion within the patch-clamped cell.

To gain a better quantitative understanding of the channel

behavior, we sought the optimized rate constants for the five-

state kinetic model (Fig. 4 A) that best describe the experi-

mental data. A kinetic simulationwas implemented inMatlab,

and the model parameters optimized based on a global sum

squared error measure. The simulated current as a function of

time and the steady-state GABA concentration–response

relationship are shown in Fig. 4, B and C, respectively. The
concentration-response predicted from the oocyte parameter

set is shown for comparison (Fig. 4 C, open squares). The
GABA concentration-independent deactivation time con-

stant was ;11 s, and the limiting monoexponential current

activation at high [GABA] was 0.1 s (i.e., 1/(a 1 b)). Table

1 lists the optimized rate constants and some predicted prop-

erties of the present model compared to the kinetic model

derived from the same r1 subunit expressed in the Xenopus
oocyte (4). All four rate constants governing the channel

behavior are different, but the most notable is the signif-

icantly faster Koff (0.18 s
�1 for Xenopus oocytes and 4.59 s�1

for HEK cells). The model quantitatively recapitulated the

experimental steady-state concentration-response (Fig. 1,

solid line), the activation (Fig. 2 B, dashed line), and de-

activation (Fig. 2 C, dashed line) kinetics well.
Next, the chloride ion shift responsible for the decline

in the current magnitude during GABA application was

incorporated into the model. Assuming the initial chlo-

ride concentration inside the cell [Cl]i,0 ¼ 140 mM, the

FIGURE 3 Current decay during GABA appli-

cation correlates with the current magnitude. (A)
Two examples of current evoked by 30 mMGABA

(bar) with extreme differences in the apparent

desensitization. Both cells were voltage clamped at

�60 mV and had comparable cell capacitance and

access resistance. (B) A scatter diagram of the

apparent desensitization (tdesensitization) for different

GABA concentrations. Open circles are individual

cells, and the solid square is the mean6 SE. (C) A

scatter plot of percentage of current decay during

GABA application versus peak amplitude for 100

mM (D), 30 mM (:), 10 mM (s), and 3 mM (d).

(D) A ramp command voltage (�80 to 150 mV)

was issued at different times (a near peak and b

after decline) during a response to 30 mM GABA

application (inset), and the resulting I-V curve cal-

culated as the difference between the passive I-V

obtained before GABA application (heavy dashed

c) and the active I-V curves (dot b and line a),
demonstrated a shift of ECl from 0 mV to �20 mV.

For this particular cell, the passive I-V curve

demonstrated a linear input resistance of;32 MV.

Arrows denote the apparent reversal potential de-

fined as the intersection between the passive and

active I-V curves. (E) A scatter plot of 16 cells

examined at 30 mM GABA with the best fitting

linear correlation with 95% confidence interval

(r2 ¼ 0.79) between the percentage of current

decay and percentage change in driving force as

determined by the ramp I-V experiments.
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discrete time-dependent change in [Cl]i,t1Dt as a result of the

chloride flux ¼ It (coul/s)/F (coul/mol) was determined, and

the current at a discrete time t1 Dt calculated as It1Dt ¼ K *

pt1Dt * (Vm � ECl,t1Dt) where K (S) is a constant dependent
on the cell size, single-channel conductance empirically

determined for each cell, and channel density; p ¼ proba-

bility of channel being in the open state; Vm¼ �60 mV, and

ECl,t1Dt¼ 58 log([Cl]i,t1Dt / [Cl]o) mV. The resulting current

magnitude showed a time-dependent decline despite the con-

stant probability of channel being open during GABA appli-

cation (Fig. 4 B, iii). Because the time-dependent ECl shift

and a decrease in the driving force resulted in an underes-

timation of the peak current, a slight rightward shift of the

EC50, and an underestimation of the Hill slope (Fig. 4 C,
dashed line) were observed.
The potential role of receptors with these properties in

a traditional fast synapse was simulated by examining the

response of channels with the above kinetic properties to a

brief pulse of 1 mM GABA. A 1-ms duration pulse typical of

a fast presynaptic transmitter release time course yielded

only a peak p(open) of 0.04 and approached 0.5 for a very

long pulse of 20-ms duration (Fig. 4 D). As expected from

channels with a slow deactivation time constant, the p(open)
to a 1-Hz train of 10-ms pulses saturates within five pulses,

indicating that a synapse populated with these receptors will

serve as a poor transducer of dynamic information (Fig. 4 E).
The r1 subunit may form a heterologous receptor in com-

bination with the GABAA receptor g2 subunit (10). Such

coassembly of the r1 subunit into a nonhomologous receptor

could create channels with novel properties. Because HEK293

cells do not express the GABAA receptor g2 subunit

(11; unpublished observations), we examined the kinetic

properties of the bicuculline-resistant current recorded from

cultured hippocampal neurons transduced with the r1-

subunit-expressing adenovirus (7). Coapplication of GABA

(100 mM) and the GABAA receptor blocker bicuculline (100

mM) revealed a smaller bicuculline-resistant component in

virally transduced neurons (Fig. 5 A). This bicuculline-

resistant current was previously demonstrated to be I4AA

sensitive and represents current flowing through the ex-

pressed r1 receptor (7). The kinetic properties of current acti-

vation and deactivation of this bicuculline-resistant current

were indistinguishable from the homologous r1 receptors

expressed in HEK293 cells (Fig. 5 B), suggesting that no

FIGURE 4 A kinetic model of r1 GABAC chan-

nels and simulations based on the optimized rate

constants. (A) A five-state model of r1 channel

previously used to explain the kinetic behavior of the

same subunit expressed in Xenopus oocytes (4). The
model consists of three identical GABA binding

sites and a single transition of the fully bound recep-

tor (C4) to an open state (O). (B) A plot of simulated

probability of opening versus time for the oocyte

parameter set (i), optimized HEK cell parameter set

(ii), and as in ii but incorporating an ECl shift into the

model (see Table 1). (C) Simulated concentration-

response curves based on the peak conductance

attained during the GABA application without (cir-

cle) or with (diamond) the ECl shift. Note the slight

underestimation of the peak current magnitude at

high [GABA] caused by the loss of driving force and

a slight rightward shift of the estimated concen-

tration–response curve (dashed line). The oocyte

parameter set results in a leftward shifted concen-

tration–response curve (square). (D) Simulated re-

sponses to 1 mMGABA pulses of different durations

(1, 2, 5, 10, 20 ms). (E) A response to a slow train (1

Hz) of 1 mM GABA pulses. Note the saturation of

the conductance because of the slow deactivation

kinetics even at this very slow rate of action potential

train. The vertical axis represents the probability of

channel opening p(o) except for the simulation

incorporating the ECl shift (Biii), which represents

the normalized macroscopic current I(t)/N*g ¼
p(o)*(Vm � ECl), where N ¼ channel number, g ¼
single-channel conductance, p(o) ¼ probability of

channel opening, Vm ¼ membrane potential, and

ECl ¼ Cl� Nernst potential.
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channels with novel kinetic properties emerged even in the

presence of numerous other endogenous GABAA receptor

subunits present in the hippocampal neurons.

DISCUSSION

Analysis of GABA-evoked currents in HEK293 cells

transfected with the human r1 subunit revealed channels

less sensitive toGABAwith a faster deactivation kinetic com-

pared to the same subunit expressed in the Xenopus oocytes.
Parameter estimation demonstrated that the experimentally

observed properties of the current could be accounted for by

the same five-state kinetic model employed to describe the

currents obtained in Xenopus oocytes but with a much larger

dissociation rate constant Koff. Our data quantitatively differ

from those reported by Filippova et al. (5), where EC50 ¼
0.75 mM and Hill¼ 3.14 but agree in the observation that the

current deactivation time constant was around 11 s. The

reason for this discrepancy is unclear, but parameter estima-

tion based on their target data (assuming a limiting activation

rate a1 b ¼ 10 s�1 not reported in their study) yielded a ¼
0.13 s�1, b ¼ 9.89 s�1, Kon ¼ 1.49 mM�1s�1, Koff ¼ 8.31

s�1, which are qualitatively not different from our stated

results. The conclusion remains that the same r1 receptor

expressed in the oocytes or HEK cells demonstrates different

kinetic behavior.

Ion channel proteins do not exist in isolation but rather

interact with associated proteins, and the presence or absence

of the potential partner proteins most likely accounts for the

expression of system-dependent differences in the channel

function. Two-hybrid screening has identified the cytoskel-

etal protein MAP-1B (12), a splice variant of the glycine

transporter GLYT-1 (13), and a protein kinase z-interacting

protein ZIP3 (14) as likely protein partners interacting with

the r-subunits. The interaction between the r-subunits and

MAP-1B increases the sensitivity of the receptor, doubling

the current magnitude elicited by low concentrations of

GABA (15). Further receptor diversity is introduced by the

likely interaction among the three r-subunits (16,17) all

coexisting within a single hippocampal pyramidal or granule

cell (18). Direct coimmunoprecipitation experiments support

the notion that the r subunit protein biochemically interacts

with the GABAA receptor a1 and g2 subunits (19). The func-

tional consequence of this interaction may be acceleration of

the deactivation kinetics (10) and creation of receptors exhi-

biting mixed GABAA and GABAC pharmacology (20,21).

HEK293 cells do not express endogenous r or GABAA

subunits, although one report suggested a possible expres-

sion of an endogenous GABAA b-like subunit in these cells

(11). It is unknown whether any of the other identified pro-

tein partners are expressed in the HEK293 cells, but the r1

subunit interacting with a GABAA subunit as the reason for

the observed channel behavior is unlikely. The similarity of

the current activation and deactivation kinetics observed in

HEK cells and when the r1 subunit was expressed in the hip-

pocampal neurons with abundant potential GABAA subunit

partners present supports this conclusion. The functionally

significant putative r1 protein partner is likely to exist in the

HEK cells and hippocampal neurons.

Given the kinetic behavior of r1 receptors expressed in

a mammalian cell, what are the implications for a possible

synaptic response mediated by these receptors? The simu-

lated response to a brief but high-concentration GABA

application to these receptors most likely to occur at a fast

FIGURE 5 Current decay during GABA application

is observed in hippocampal neurons expressing the r1

subunit. (A) Current traces of GABA (100 mM)–evoked

responses in a hippocampal neuron transduced with an

adenovirus expressing the r1-subunit without (top) or

with (bottom) coapplication of 100 mM bicuculline. The

dashed lines are the best-fitting monoexponential func-

tion fit to the activation and the deactivation phases of the

bicuculline-resistant current. See Cheng et al. (7) for

further details on the r1 subunit-expressing adenovirus.

(B) A bar diagram summary of the approximate mono-

exponential time constant of activation (top) and deacti-

vation (bottom) for HEK293 cells (n ¼ 12) and

hippocampal neurons (n ¼ 37); p ¼ 0.178 for activation

and p ¼ 0.192 for deactivation time constants based on a

two-tailed t-test; thus, the difference in mean was not

statistically significant for either measure.
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synapse showed the activation rate to be too slow to mount

a significant postsynaptic response. A 1 mM GABA pulse

approaching 10 ms was necessary for eliciting any appre-

ciable current. Furthermore, the slow deactivation rate

limited the ability of synapses mediated by the r1 receptors

to dynamically respond to even a very slow train of action

potentials without saturating the response. Therefore, r1 re-

ceptors with the observed kinetics are unlikely to mediate a

fast synaptic response but more likely to play a role in setting

the background conductance level of a neuron more akin to

the tonic inhibitory receptors discovered in the hippocampus

(22). A GABAC receptor-mediated synaptic response in reti-

nal bipolar cells evoked by electrical stimulation of the inner

plexiform layer of the retina exhibited a time course well de-

scribed by a biexponential decay with time constants of 125

and 1351 ms (23), thus exhibiting much faster deactivation

not recapitulated by the r1 subunits expressed in HEK293

cells or the hippocampal neurons. The r1-protein component

of the GABAC receptor subserving a synaptic function in the

retina must be interacting with protein partners not present in

the HEK293 cells or the hippocampal neurons to accelerate

the deactivation kinetics by almost 10-fold.

Direct measurement of ramp I-V curves during GABA

application with a proper subtraction of the passive conduc-

tance demonstrated that an ECl shift was responsible for the

apparent desensitization of the r1 receptors in HEK293 cells.

Our technical limitation with uncompensated series resis-

tance underreports the true current magnitude, particularly at

the beginning of GABA application when the current is

large. Despite this limitation, our analysis confirmed that a

reduction in the driving force mostly accounted for the appar-

ent desensitization. An ECl shift contributing to an apparent

desensitizing GABA-evoked current in patch-clamped hip-

pocampal cells was first reported by Huguenard and Alger

(24). Filippova et al. (5) observed a current decline mediated

by r1 receptors expressed in HEK293 cells when the current

was greater than 1 nA, similar to the apparent desensitizing

responses seen in our experiments. However, our channel

simulation taking into account the ECl shift demonstrated

that the slow time course decrease in the current had little

effect on the concentration-response or the time course of

activation and deactivation, suggesting that the quantitative

model parameters based on our experimental data remain

valid. Synaptically activated currents are surely much

smaller than the levels of currents observed in the experi-

mental systems with overexpressed receptors. In contrast, the

cellular volume of the postsynaptic dendritic spine is orders

of magnitude smaller than the whole-cell patch-clamped

cells. Therefore, an ECl shift caused by chloride ion accumu-

lation could contribute to a decline in the long-term efficacy

of an inhibitory synapse.

We presented a quantitative set of rate constants describ-

ing the behavior of the r1 homomeric receptors expressed

in HEK293 cells significantly different from the values

obtained from similar experiments in Xenopus oocytes. We

suggest that the parameter set for a five-state model of the

r1 homomeric receptor described in our work may better

describe the behavior of these channels in mammals.
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