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Abstract

Introduction The aim of this study was to examine the effect of
the cellular composition of biopsies on the error rates of
multigene predictors of response of breast tumours to
neoadjuvant adriamycin and  cyclophosphamide (AC)
chemotherapy.

Materials and methods Core biopsies were taken from primary
breast tumours of 43 patients prior to AC, and subsequent
clinical response was recorded. Post-chemotherapy (day 21)
samples were available for 16 of these samples. Frozen sections
of each core were used to estimate the proportion of invasive
cancer and other tissue components at three levels.
Transcriptional profiling was performed using a cDNA array
containing 4,600 elements.

Results Twenty-three (53%) patients demonstrated a 'good'
and 20 (47%) a 'poor' clinical response. The percentage
invasive tumour in core biopsies collected from these patients
varied markedly. Despite this, agglomerative clustering of

sample expression profiles showed that almost all biopsies from
the same tumour aggregated as nearest neighbours. SAM
(significance analysis of microarrays) regression analysis
identified 144 genes which distinguished high- and low-
percentage invasive tumour biopsies at a false discovery rate of
not more than 5%. The misclassification error of prediction of
clinical response using microarray data from pre-treatment
biopsies (on leave-one-out cross-validation) was 28%. When
prediction was performed on subsets of samples which were
more homogeneous in their proportions of malignant and
stromal cells, the misclassification error was considerably lower
(8%—139%, p < 0.05 on permutation).

Conclusion The non-tumour content of breast cancer samples
has a significant effect on gene expression profiles.
Consideration of this factor improves accuracy of response
prediction by expression array profiling. Future gene expression
array prediction studies should be planned taking this into
account.

Introduction

Breast tumours are routinely subclassified according to micro-
scopic morphology, immunohistochemical staining, and stage.
On the basis of this clinical information and patient age, an
estimate of prognosis may be derived [1,2]. Most clinicians

make recommendations regarding the need for adjuvant
chemotherapy on the basis of this estimate.

However, breast cancer is a heterogeneous disease, and dif-
ferences in prognosis and response in distinct molecular sub-
groups need to be taken into account. Improvement in the
accuracy of prediction of prognosis without systemic treat-
ment or with endocrine treatment alone would allow avoidance

AC = adriamycin and cyclophosphamide; cCR = complete clinical response; ER = oestrogen receptor; LOOCV = leave-one-out cross-validation;
MRD = minimal residual disease; NC = no change; OCT = optimum cutting temperature embedding compound; pCR = complete pathological
response; PR = partial response; RMH = Royal Marsden Hospital; SAM = significance analysis of microarrays.
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of non-beneficial chemotherapy in a significant proportion of
women [3]. Additionally, experience with neoadjuvant chemo-
therapy has demonstrated resistance in a significant propor-
tion of primary breast tumours [4]. These patients derive no
downstaging benefits from neoadjuvant chemotherapy. Fur-
thermore, chemosensitivity in the neoadjuvant setting is asso-
ciated with superior long-term survival (relative to
chemoresistance) [5] and therefore may represent a marker of
survival benefit from chemotherapy. Identification of a chem-
oresistant profile would allow further tailoring of treatment by
enabling selection of tumours unlikely to respond and there-
fore unlikely to derive a survival benefit.

Several studies have demonstrated that gene expression
microarray profiling may be useful in improving prediction of
prognosis [6-9] and treatment response [10-16]. These stud-
ies employed non-dissected surgical [7-9], core-cut biopsy
[12], or FNA (fine needle aspiration) samples [10]. However,
breast tumours are non-homogenous in nature. They include
inflammatory and vascular elements but most significantly (by
proportion) connective tissue components [17]. The propor-
tions of these components vary according to tumour type and
sample type and also across a single tumour [17]. In studies
involving surgical samples, those used for profiling can be
selected as those with the highest proportional malignant cell
content. In studies involving biopsies, this is not possible and
the researcher is required to set an arbitrary minimum percent-
age tumour limit.

The impact on expression profile of variation in the proportion
of tumour cells and the nature of the non-tumour components
have been largely unexplored. In this paper, we examine the
effect of percentage tumour content on expression profile
within a study designed to derive an expression profile predic-
tive of response to adriamycin and cyclophosphamide (AC)
neoadjuvant chemotherapy. We also consider methods for
improvement of molecular profile-based prediction of
response to primary chemotherapy by classification of sam-
ples according to cellular makeup or by the incorporation of
sample tumour content information into the predictor.

Materials and methods
Patients and samples

Patients were recruited and treated at the Royal Marsden Hos-
pital (RMH), London, UK. Eligible patients were those under-
going neoadjuvant AC chemotherapy treatment at doses of 60
and 600 mg/m2, respectively, three times a week, for a clini-
cally measurable breast tumour. The study was approved by
the RMH Clinical Research and Ethics Committees (study
number. 1,947), and written consent was obtained in all
cases. Patients had been allocated neoadjuvant treatment for
one of several standard indications, including locally advanced
or inflammatory breast cancer, high tumour-to-breast size ratio,
and tumours located close to the nipple.
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Diagnosis was confirmed histologically by core-cut biopsy. All
patients on hormone replacement therapy at diagnosis were
advised to discontinue this treatment. Patients who demon-
strated at least a partial clinical response received six cycles
of treatment prior to local treatment. Patients in whom there
was no or only marginal response after three or four cycles
proceeded directly to local treatment or were commenced on
alternative systemic treatment (docetaxel).

Clinical size of tumour (largest diameter and a diameter per-
pendicular to this) was recorded prior to commencement and
at completion of treatment. Clinical response was categorised
as follows: no palpable abnormality after treatment, complete
clinical response (cCR); more than 50% reduction in the prod-
uct of the bidimensional measurements, partial response (PR);
less than 50% reduction in the product of bidimensional meas-
urements was recorded as no change (NC); and residual ill-
defined thickening after a good response, minimal residual dis-
ease (MRD). Those cases in which there was no residual inva-
sive carcinoma at surgery were classified as a complete
pathological response (pCR). Good responders were defined
as pCR, cCR, or MRD; poor responders were defined as PR
or NC. These categories were chosen on the basis of our pre-
vious study, which showed that patients with 'good' response
had superior overall survival relative to those with 'poor'
response [18]. A proportion of patients undergoing a com-
plete clinical and radiological (on ultrasound) response
received radiation only as local treatment. Therefore, some of
the cCRs may represent undocumented pCRs.

Research 14-gauge core biopsies were collected prior to
commencing treatment and snap-frozen in liquid nitrogen.
When consented to, a repeat sample was taken at 21 days
after the first cycle of chemotherapy. All samples were there-
after coded using a study number as an identifier. Frozen
cores were embedded in OCT (optimum cutting temperature
embedding compound) and sectioned at -20°C in a cryostat.
Sections (5 um in thickness) were taken for haematoxylin and
eosin staining to assess histological character superficially
from the core as soon as 'full-face' was reached. The percent-
age of cells comprising invasive malignant disease and non-
malignant components (that is, in situ disease, inflammatory
infiltrate, non-malignant ductal/lobular structures, and fibrob-
lastic involvement) were recorded by consensus between two
breast pathologists. For patients in whom multiple biopsies
were available, the biopsy with the highest invasive content
was used for microarray analysis. Biopsies with less than 20%
invasive cancer content were excluded from the study.

RNA extraction and amplification

Cores were extracted from OCT as described by Ellis and col-
leages [19] and pulverised using a pestle and mortar on a bed
of dry ice and subsequently in 1 ml of Trizol reagent (Invitro-
gen, Carlsbad, CA, USA) with a 'Polytron' homogenizer.
Standard 'Trizol' RNA extraction was carried out without use
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Patient, tumour, and pre-treatment biopsy characteristics (43 samples used in prediction analysis)

49 (28-68)
pre: 25 (58%)

lob: 6 (14%)

Age: median (range)
Menopausal status

Histological subtype

ER status +: 29 (67%) -1 13 (30%)
HER-2 status +: 5 (12%) -: 36 (84%)
Inflamm infiltrate nil: 19 (44%) mild: 16 (37%)
Grade 2:18 (42%) 3: 24 (56%)
Percentage invasive tumour: 50 (20-95)

median (range)
pCR: 4 (9%)*
good: 23 (53%)

Response
(*7 [16%] had no surgery)
Clinical stage:

Primary dimension (n)

2.0-3.0cm 15
3.1-4.0 cm 7
4.1-5.0 cm 9
>5.0 cm 11
Multifocal 1
Median dimension (range) (cm) 4 (2-10)
Skin involvement (n) 2 HER2 +
Inflammatory (n) 2
HER2 -
Nodal involvement (n)
NO 29
N1 14
N2 0
NA 0

post: 9 (21%)
duct: 34 (79%)

cCR: 16 (37%)

na: 1 (2%) HRT: 8 (19%)
duct/lob: 1 (2%) medull: 1 (2%) na: 1
na: 1 (2%)
na: 2 (5%)
mod: 6 (14%) severe: 2 (5%)
na: 1 (2%)
MRD: 3 (7%) PR: 8 (19%) NC: 12 (28%)
poor: 20 (47%)
ER + ER -
4 (10%) 1 (2%)
24 (56%) 12 (28%)
(2 na)

'Postmenopausal' refers to patients not on HRT at diagnosis. Postmenopausal patients on HRT at diagnosis are listed under 'HRT". 'Primary
dimension' refers to the maximum tumour diameter (cm). 'Inflammatory infiltrate' score and 'median percentage invasive tumour' relate to values for
the core used in prediction analysis. +, positive; -, negative; cCR, complete clinical response; duct, ductal; duct/lob, mixed ductal/lobular
carcinoma; ER, oestrogen receptor; HRT, hormone replacement therapy; lob, lobular; medull, medullary; inflamm, inflammatory; mod, moderate;
MRD, minimal residual disease; na, not available; NC, no change; pCR, complete pathological response; PR, partial response.

of a carrier according to the manufacturers' instructions. Sam-
ples not giving distinct 18S and 28S peaks on an Agilent Bio-
analyzer (Agilent Technologies, Palo Alto, CA, USA) trace
were excluded from the study. Multiple cores from the same
patient were handled separately for RNA extraction. A single
round of T7 linear RNA amplification was carried out using the
RiboAmp kit (Arcturus, Sunnyvale, CA, USA) with a starting
amount of 1 pg when available or 50% of the available RNA.

Reference RNA was generated from a pool of RNAs extracted
from 20 independent breast cancer surgical samples.

cDNA array hybridisation

Microarray analyses used in-house (Breakthrough Breast Can-
cer Research Centre, London, UK) human arrays spotted with
DNA derived from 4,600 IMAGE cDNA clones in duplicate.
This set of genes represents a subset of the 5,808 Cancer
Research UK (London, UK) gene set that was designed to
include a high proportion of genes documented as being
involved in carcinogenesis or tumour biology. To improve 'cov-
erage' of genes involved in breast cancer, a list of discrimina-
tory genes cited in important microarray studies on clinical
breast cancer samples at time of production was compiled
[7,20-22], and the array was supplemented with these. One

Page 3 of 12

(page number not for citation purposes)



Breast Cancer Research Vol 8 No 3 Cleator et al.

Table 2

SAM (significance analysis of microarrays) analysis of genes correlated to percentage tumour content.

Gene name Genbank accession Unigene cluster ID Symbol Score (d) g-value (%)
ADP-ribosylation factor 1 AK023803 Hs.286221 ARF1 3.11 413
CDC28 protein kinase regulatory subunit 2 BQ898943 Hs.83758 CKS2 2.73 413
TRK-fused gene NM_006070 Hs.446568 TFG 2.65 413
Discs, large homolog 7 (Drosophila) NM_014750 Hs.77695 DLG7 2.60 413
RAB6B, member RAS oncogene family NM_016577 Hs.352530 RAB6B 2.59 413
Epithelial cell transforming sequence 2 oncogene AY376439 Hs.293257 ECT2 2.56 413
FXYD domain containing ion transport regulator 2 CR627143 Hs.413137 FXYD2 2.54 413
Ubiquitin specific protease 9, X-linked (fat facets-like, ~NM_004652 Hs.77578 USPIX 2.48 413
Drosophi/as)

Pitrilysin metalloproteinase 1 CR749279 Hs.528300 PITRM1 2.46 413
Myeloid differentiation primary response gene (88) AK124685 Hs.82116 MYD88 2.44 413
Baculoviral IAP repeat-containing 5 (survivin) NM_001012271 Hs.1578 BIRCS5 242 413
Polo-like kinase 4 (Drosophila) NM_014264 Hs.172052 PLK4 2.40 413
2',3'-cyclic nucleotide 3' phosphodiesterase NM_ 033133 Hs.443836 CNP 2.40 413
Triosephosphate isomerase 1 BM913099 Hs.83848 TPI1 2.39 413
ALL1-fused gene from chromosome 1q BX649117 Hs.75823 AF1Q 2.37 413
Latent transforming growth factor beta binding protein 2 NM_000428 Hs.105689 LTBP2 -3.49 1.00
LIM domain binding 2 AL832772 Hs.4980 LDB2 -3.43 1.00
Collagen, type XV, alpha 1 NM_001855 Hs.409034 COL15A1 -3.39 1.00
Cadherin 5, type 2, VE-cadherin (vascular epithelium) ~ NM_001795 Hs.76206 CDH5 -3.39 1.00
Forkhead box O1A (rhabdomyosarcoma) NM_002015 Hs.170133 FOXO1A -3.17 1.00
TEK tyrosine kinase, endothelial (venous malformations, BC035514 Hs.89640 TEK -3.02 1.00
multiple cutaneous)

Regulator of G-protein signaling 5 NM_003617 Hs.24950 RGS5 -2.97 1.00
Fasciculation and elongation protein zeta 1 (zygin I) NM_022549 Hs.79226 FEZ1 -2.90 1.00
Vascular endothelial growth factor C NM_005429 Hs.79141 VEGFC -2.90 1.00
Tumor necrosis factor receptor superfamily, member NM_003841 Hs.253829 TNFRSF10C -2.82 1.00
10c, decoy without an intracellular domain

CDNA FLJ25106 fis, clone CBR01467 AK128814 Hs.432914 -2.79 1.00
Alpha-2-macroglobulin CR749334 Hs.74561 A2M -2.77 1.00
Meis1, myeloid ecotropic viral integration site 1 homolog NM_170677 Hs.362805 MEIS2 -2.71 1.00
2 (mouse)

Tropomodulin 1 AK096156 Hs.404289 TMOD1 -2.70 1.00
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SAM (significance analysis of microarrays) analysis of genes correlated to percentage tumour content.

Isoleucine-tRNA synthetase NM_013417

Hs.172801 IARS -2.63 1.00

Positive values for score (bold) indicate positive correlation with percentage tumour, and negative values indicate inverse correlation with
percentage tumour (underlined). The table has been truncated to show only genes with the lowest false discovery rates (q).

half to two micrograms of sample RNA and a matched amount
of reference RNA was labeled using the Powerscript Labeling
kit (Clontech, Mountain View, CA, USA) in combination with
Amersham Cy dyes (GE Healthcare, Little Chalfont, Bucking-
hamshire, UK). A single dye swap experiment was performed
for each clinical sample. Slides were scanned using a GenePix
4000B (Axon Instruments Inc., Union City, CA, USA) scanner
and GenePix version 4.0 software.

Data analysis

Most of the data analyses were carried out with the S-plus sta-
tistical software package (Insightful, Seattle, USA) and pur-
pose-written scripts (T Dexter, Breakthrough, UK). Raw
expression values were transformed to Log, ratios (sample/
reference). The loess function [23] was used to remove biases
due to the spot position and spot intensity. Flagged spots
were treated as missing values. Log ratio values from duplicate
spots and hybridisations were averaged. Genes with consist-
ently low intensity and those that exhibited little variation
across samples were removed from the analysis. After the
above pre-processing, 1,286 genes remained for the predic-
tion analysis. Samples were clustered both by complete link-
age and flexible beta (beta = -0.5) agglomerative algorithms
with (1 - correlation) as a distance measure [24,25]. The cor-
relations were estimated using Spearman's rank method.

The nearest neighbour class prediction algorithm (euclidean
distance) was used for all classifications because of its sim-
plicity and good performance on microarray data as reported
by Dudoit and Fridlyand [26]. We elected to use seven nearest
neighbours throughout to give more stable error estimates and
greater robustness than would result with smaller neighbour-
hoods. The weighted Kolmogorov-Smirnov statistic was used
to rank genes for discriminatory information [27]. Each predic-
tor was built starting with the highest ranked two genes from
the training set, and then genes were added to the predictor
in decreasing rank order until the error rates no longer
decreased.

Owing to the limited number of samples, the misclassification
error was estimated by leave-one-out cross-validation
(LOOCQV). In this approach, the class (that is, response) of
each sample was predicted in turn, using the other samples as
the training set. To avoid selection bias, the genes that were
used as predictors were re-selected for each of these leave-
one-out classifications [28]. To estimate the probability of the
misclassification error arising by chance, a permutation p value
was determined as suggested by Radmacher and colleagues

[28]. In this procedure, the LOOCV estimate was determined
1,000 times for permuted class labels; the fraction of these
that gave an equal or lower error estimate than that with true
labels is taken as the p value. We refer to the latter as a 'label
permutation'.

To assess the significance of lower misclassification error esti-
mates for selected subsets of the samples, we needed to con-
trol for the smaller sample sizes. To this end, we defined a
'subset permutation' p value as the fraction of random subsets
(1,000 matched for size and class proportions) of the full set
of samples that gave rise to LOOCYV error estimates equal to
or lower than the selected subset. The correct class labels
were used for subset permutation. The minimum error for each
permutation across the top 2 to 10 ranked genes was used to
calculate the p values for both of the above types of permuta-
tion to avoid bias. Although this is an arbitrary range, the mini-
mum error rates in all the permutations had increased by a
cutoff of 10. Significance analysis of microarrays (SAM) anal-
yses were performed using standard software [29]. Pre-treat-
ment samples only were used for prediction analyses.

Results
Patient and tumour characteristics

RNA of adequate amount and quality was available from 43
tumours before treatment. Of these, 23 (53%) demonstrated
a 'good' and 20 (47%) a 'poor' clinical response. For 16 of
these tumours, a paired 21-day sample was also available.
These 'on treatment' biopsies are included in the analysis of
reproducibility shown below to increase the number of paired
samples but are excluded from the analysis of response pre-
diction. The good responses comprised 16 (37%) that under-
went a cCR, three (7%) that exhibited ill-defined thickening
(MRD) at the end of treatment, and four (9%) that underwent
a pCR (all cCR or MRD). The patient and tumour characteris-
tics are shown in Table 1. The only feature differing between
good and poor responders was tumour size, with pre-treat-
ment size greater in poor compared with good responders
(Mann-Whitney, p = 0.03). Pre-treatment size did not relate to
expression profile (data not shown).

Biopsy characteristics

A total of 147 cores were sectioned in the course of this study,
including 104 that were sectioned at three levels (levels
approximately 50 um apart). Of these 104 cores, only 16
cores showed more than 10% absolute variation in invasive
tumour content across all three sections and only one core
showed more than 20% variation. Only four cores were found
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Table 3

Misclassification error estimates (leave-one-out cross-validation) for response prediction.

Set of samples Sample size Minimum error rate n of genes used in p value on 'subset' p value on 'label'
predictor permutation permutation

All (20%-90%) 43 28% 3 Not determined 0.079

High range (50%—-95%) 25 12% 4 0.026 0.021

Low range (20%-50%) 24 13% 7 0.039 0.028

Mid range (35%-60%) 24 8% 7 0.001 0.002

Column 1 shows the division of samples into three groups according to percentage invasive tumour content. Details of minimum error predictors
for all samples and subsets. Permutation p values were calculated as described in Materials and methods.
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Leave-one-out cross-validation (LOOCYV) error rates for response pre-
diction. Variation in the LOOCYV error estimate with the number of
genes used in the predictor. Misclassification rates are plotted for the
whole data set (n = 43) and subsets according to percentage tumour
content.

to have tumour at some levels and none at others; all four con-
tained not more than 15% invasive tumour at the lowest level
and were therefore excluded from the study. This suggests
that the histological composition did not vary widely over the
width of the core. The histological result from the lowest sec-
tion for a given biopsy was taken as that most representative
of the remaining biopsy used for profiling and hence the level
on which percentage invasive tumour was assessed. The dis-
tribution of percentage invasive content of core (in cases of
multiple cores, that core used for prediction analysis) did not
relate to response as assessed by Wilcoxon rank sum test (p
=0.3) or ttest (p =0.27).

Percentage invasive content in core biopsies included in the
prediction study varied from 20% to 95% (median 50%). For
most core biopsies, the majority of the non-malignant tissue
consisted of connective tissue. Inflammatory infiltrate was also
scored on the lowest section as nil, mild, moderate, or severe.
Of all 147 core biopsies, only six (4%) were scored as having
a 'severe' inflammatory infiltrate at one or more levels.
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Scale of histology gene

Variation in error rate according to scale of 'histology gene'. An 11th
(‘histology') gene was added to a 10-gene predictor as an extra dimen-
sion. This gene was rescaled from 0O to 4 standard deviations, and the
effect on cross-validation error calculated.

Basic validation of array data

To assess consistency of the expression profile between
repeated biopsies, the 43 pre-treatment and 16 paired post-
treatment samples were clustered (Additional file 1). The post-
treatment samples were included in this validation study only
to enhance numbers and were not used in subsequent predic-
tive analyses. All but one pair (0223A and B) of duplicate biop-
sies taken at the same time point relative to treatment (in total,
five pre-treatment and five post-treatment pairs) clustered as
nearest neighbours despite some variation in percentage
tumour between the pairs (Additional file 3). Of 16 pre/post-
treatment pairs, 14 clustered with samples from the same
tumour (Additional file 1). To validate our class prediction
methodology, a supervised analysis was undertaken to obtain
a gene list for prediction of oestrogen receptor (ER) status in
pre-treatment samples (ER-o was excluded from the analysis).
ER status was correctly assigned in 40 of 42 cases on
LOOCV. Discriminatory genes are listed in the supplementary
information (Additional file 4).
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Table 4

Response prediction gene lists.

Symbol Genbar_\k Unigene cluster ID All Low Mid High Name
accession

ZNF146 NM_007145 Hs.444223 100 100 100 0 Zinc finger protein 146

RFC3 CR749565 Hs.115474 100 12 100 0 Replication factor C (activator 1) 3, 38kDa

DLD NM_ 000108 Hs.74635 100 4 100 0 Dihydrolipoamide dehydrogenase

EIF3S8 NM_003752 Hs.534402 0 100 58 0 Eukaryotic translation initiation factor 3,
subunit 8

SOD1 BF131654 Hs.443914 0 91 25 0 Superoxide dismutase 1, soluble
(amyotrophic lateral sclerosis 1 (adult))

PBEF1 NM_005746 Hs.293464 25 0 0 88 Pre-B-cell colony enhancing factor 1

CD9 AK025016 Hs.387579 0 100 0 0 CD9 antigen (p24)

TCEB1 NM_005648 Hs.435169 0 100 0 0 Transcription elongation factor B (SlII),
polypeptide 1 (15kDa, elongin C)

IGFBP4 CR603382 Hs.1516 0 (0] 100 0 Insulin-like growth factor binding protein 4

STMN1 BX647885 Hs.209983 0 0 100 0 Stathmin 1/oncoprotein 18

NDRG1 AK124709 Hs.318567 0 0 0 100 N-myc downstream regulated gene 1

PAM NM_000919 Hs.352733 0 0 0 100 Peptidylglycine alpha-amidating
monooxygenase

ARHE X97758 Hs.6838 20 0 0 76 Ras homolog gene family, member E

MAPK6 NM_002748 Hs.271980 95 0 0 0 Mitogen-activated protein kinase 6

SFRS11 BX640645 Hs.443458 0 91 0 0 Splicing factor, arginine/serine-rich 11

TESK1 BC038448 Hs.79358 79 (o] 0 0 Testis-specific kinase 1

THRAP3 NM_005119 Hs.250113 60 0 0 0 Thyroid hormone receptor associated
protein 3

PTPN7 AK127214 Hs.402773 55 0 0 0 Protein tyrosine phosphatase, non-
receptor type 7

PSMC6 AK127456 Hs.156171 0 41 0 0 Proteasome (prosome, macropain) 26S
subunit, ATPase, 6

CD47 NM_001777 Hs.446414 0 0 37 0 CD47 antigen (Rh-related antigen,
integrin-associated signal transducer)

REST NM_005612 Hs.401145 23 (0] 12 0 RE1-silencing transcription factor

PCNA NM_002592 Hs.78996 0 0 33 0 Proliferating cell nuclear antigen

CTPS BC009408 Hs.251871 0 (0] 16 0 CTP synthase

ARL6IP BC010281 Hs.75249 0 12 0 0 ADf’-yibosyIation factor-like 6 interacting
protein

CDH1 NM_004360 Hs.194657 0 12 0 0 Cadherin 1, type 1, E-cadherin (epithelial)

ITSN1 AF064244 Hs.66392 0 0 0 12 Intersectin 1 (SH3 domain protein)

GATA4 NM_002052 Hs.243987 9 0 0 0 GATA binding protein 4

SNRPB BM564070 Hs.83753 0 8 0 0 Small nuclear ribonucleoprotein
polypeptides B and B1

DLG7 NM_014750 Hs.77695 0 0 8 0 Discs, large homolog 7 (Drosophila)

KCNN3 BX649146 Hs.89230 0 (o] 0 8 Potassium intermediate/small

conductance calcium-activated channel

The genes used in the prediction for the full set of samples (‘all’) and for each of the subsets (defined in Table 3). For each subset, the genes listed
are those used in the minimum error rate predictor (except for the 'all' category, for which a seven-gene predictor was selected to observe a longer
gene list to allow comparison with the other gene lists). The 'support' given for each gene refers to the percentage of the leave-one-out cross-
validations in which the gene was used. Only genes that attain cumulative support across 'all' and the subsets of at least 8% are shown.

Effect of percentage tumour on expression profile was undertaken to assess the impact of variation in the histo-
Before performing prediction analysis, an exploratory analysis logical content of biopsies on the expression profile. A SAM
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regression analysis was performed to establish whether it was
possible to identify genes that correlated with the proportion
of tumour cells in the 43 pre-treatment core biopsies. One
hundred forty-four genes were significant at a false discovery
rate of not more than 5%. Table 2 shows the most correlated
genes from this analysis. Positive values for 'score' (bold) indi-
cate positive correlation with high percentage tumours, and
negative values (underlined) indicate negative correlation with
proportion of tumour cells in the samples. More genes corre-
lated positively with the stromal content (n = 128) than with
the tumour content (n = 16), possibly reflecting the greater
molecular heterogeneity of tumour types across the samples
than that of their associated stromas. This is also reflected in
the higher false discovery rates for 'tumour-associated genes'.

Response prediction using pre-treatment biopsies
Prediction analysis was initially undertaken on the full set of 43
biopsies. The optimum misclassification error estimate
(LOOCQCYV) for the whole sample set was 28% using a three-
gene predictor (Figure 1). To explore the effect of biopsy
tumour content (and its associated influence on the expres-
sion profile) on error of response prediction, we selected three
overlapping subsets of tumour samples which were more
homogeneous in terms of percentage tumour content: (a) >
50% (50%—-95%) invasive tumour (25 samples), (b) < 50%
(20%-50%) invasive tumour (24 samples), and (c) 35%-—
60% invasive tumour (24 samples).

The subset consisting of 35%—-60% represented a group cen-
tered around the median sample in terms of percentage
tumour content and of a size similar to or the same as the other
two groups.

The minimum error of classification for each of the subsets
(8%—13%) was lower than that for the superset of all samples
(28%) (Figure 1), suggesting that homogeneity of tumour con-
tent rather than tumour content per se might be an important
factor for response prediction. However, the comparison of
the subset error estimates with that for all samples is not con-
trolled for the different sample sizes involved. To address this,
we determined a 'subset permutation' p value for each of the
subsets (see Materials and methods). We also estimated the
probability that the subset errors arose by chance (a 'label per-
mutation' as discussed in Materials and methods). Error esti-
mates and corresponding p values for the 'subset permutation’
and the 'label permutation' support the hypothesis that homo-
geneity of biopsy tumour content improves response predic-
tion with the nearest neighbour algorithm (Table 3). The
identity of the genes used in the prediction for each of these
subgroups is presented in Table 4. The mean differential
expression between good and poor responders for these
genes is given in the supplementary information (Additional file
5).
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We found, in common with other studies [20,22,30-32], that
ER-positive and ER-negative tumours were very distinct in
molecular terms (Additional file 4), which may confound
response prediction. Therefore, response prediction was per-
formed on ER-positive samples alone (16 good, 13 poor
responders). Error rates, however, were high (31% with 8
genes, 31% with 25 genes). Within this subset, the effect of
heterogeneity of tumour content on prediction appeared to be
more pronounced (error rates: 31% (all samples, n = 29) ver-
sus 4.5% (< 60% tumour, n = 22)).

Incorporation of histological information into the
predictor

To explore further the effect of biopsy composition on predic-
tion error, we attempted to create a single predictor for all
samples by adding information about tumour content to the
predictor as an extra dimension or 'histology gene'. The impact
of variation in biopsy tumour content on prediction error was
thought to be due partly to the fact that genes that discriminate
between good and poor responders in high-tumour-content
biopsies are often poor discriminators in low-tumour-content
biopsies (and vice versa) as is evident from Table 4. To over-
come this complication, 10 genes were selected that showed
100% support in the subset permutations (Table 4). By adding
the proportion of tumour content to these 10 genes as an 11th
dimension, we aimed to move the samples apart in 'prediction
space' such that differences in tumour content also contrib-
uted to the distances between samples. Thus, samples with
similar expression profiles become nearest neighbours of sim-
ilar proportion of tumour content as well. In the nearest neigh-
bour predictor, like is matched with like in terms of proportion
of tumour content as well as expression profile.

[t was necessary to rescale the histology gene's contribution
to the distance between samples because the standard devi-
ation of most genes lay between 0.5 and 1.5 (log, ratio scale).
Therefore, the percentage tumour figures were standardised
by subtracting the average and dividing by the standard devi-
ation. The 'histology gene' or 11th dimension was then
rescaled from O to 4 standard deviations, and the effect on
cross-validation error determined (Figure 2). After an initial
drop in error, as the scale approached 1.0, the error rose
beyond the initial error as the influence of the histology gene
became too dominant. To test whether the effect of the histol-
ogy gene was specific to the particular set of 10 genes used
above, we tested the effect of adding the histology gene to
1,000 predictors, each containing a random permutation of
between 8 and 16 genes drawn from the top 20 genes ranked
by a combined score (Additional file 6 a-c). In 91% of these,
the addition of the histology gene resulted in a lower error; in
49%, the error drop was greater than 10%.

Discussion
In this study, we set out to explore the possibility that the tran-
scriptional profile(s) of breast tumours relates to sensitivity to



neoadjuvant chemotherapy. Such a profile might be useful in
understanding the molecular mechanisms determining
response or resistance and would provide the basis for a pre-
dictor of chemotherapy response.

However, the biopsy material used in this study had a complex
cellular composition. In planning this study, consideration had
been given to two approaches for ensuring that the percent-
age invasive tumour within biopsies was 'sufficient' and homo-
geneous. Cell selection, either by gross dissection or laser
capture microdissection [33], allows enrichment of the inva-
sive tumour component. We chose, in common with others
[6,7,11,13,14,31], to set a minimum threshold for 'percentage
malignant cells' within a given biopsy. The median percentage
invasive tumour for the core biopsy samples was 50%, and the
range of figures that were included in the study was 20% to
95%. In many biopsies, the dominant non-tumour component,
connective tissue, was admixed with epithelial components,
making enrichment of the malignant compartment difficult
using gross dissection alone.

We hypothesised that this 'contamination' of biopsies by sig-
nificant and variable amounts of non-tumour components
might confound tumour classification. Indeed, at least 10% of
the genes (144 genes) remaining after preprocessing of the
data were found to correlate with cellular composition using a
SAM regression analysis. Genes relatively overexpressed in
low-percentage tumours included established stromal-related
genes (Table 2) (for example, Collagen (type XV, alpha-1) and
Cadherin 5 (type 2, VE-cadherin)). The exact source (histolog-
ical compartment) of production of a given RNA could be fur-
ther confirmed by FISH (fluorescent in situ hybridisation) or by
comparing gene expression in microdissected stromal and
tumour compartments.

However, paired biopsies, despite differences in proportional
non-tumour content (Additional file 3), co-aggregated on clus-
ter analysis (Additional file 1), suggesting a dominant 'tumour
profile' despite variation in the proportion of stroma. Further-
more, prediction of ER status was not confounded by marked
variation in percentage tumour content. This is in keeping with
a number of studies that have shown that strong differential
expression of a relatively high proportion of genes correlates
with ER status [6,7,20,30-32] which would be expected to
result in domination of the expression profile despite variation
in the contribution by the non-tumour component. Further-
more, it has not been demonstrated that the ER expression
signature is derived entirely from tumour cells. However, varia-
tion in the proportion of stroma may be sufficient to mask more
subtle aspects of the tumour expression signature.

We found that the error rate for response prediction for the
whole sample set was poor (28%) but was improved by
increasing the homogeneity of cellular composition by subset-
ting on the basis of histological composition (error rate, 8%—

Available online http://breast-cancer-research.com/content/8/3/R32

13%) (Table 3). The misclassification rates for the subsets
were determined with LOOCYV and therefore represent high
variance estimates, and the sample numbers are modest. We
have used permutation analysis as support for the error esti-
mates; ultimately, however, validation with an independent
data set would address these issues.

We did not find any evidence to suggest that highly stromal
biopsies result in higher prediction error. However, stromal-
tumour content appears to affect the selection of genes that
are used in the predictor for each histological subset, resulting
in different but overlapping lists of predictive genes (Table 4).
Some genes discriminated response in the 'high percentage'
and not the 'low percentage' samples (for example, PBEFT).
This may simply be a dose effect whereby discriminatory
tumour-associated genes are no longer differential in 'low per-
centage samples' due to low signal. Alternatively, discrimina-
tory genes that are expressed in both tumour and non-tumour
compartments may lose discriminatory potential in tumours
with a significant stromal contribution to the molecular signa-
ture. Genes that are discriminatory in low but not high 'per-
centage samples' (for example, SOD17) could be expressed
only at the tumour-stroma interface in stromal and/or tumour
cells. Certainly, breast tumour-induced changes in stromal
expression have been previously documented [34]. Further-
more, it has been shown that tumour gene upregulation can
occur specifically at the tumour-stroma interface [35,36].
Finally, it is also likely that the volume and configuration of stro-
mal tissue within a tumour are a reflection of the tumour molec-
ular subtype.

Thus, this analysis resulted in three distinct response-predic-
tion genes lists that partially overlapped. PBEF, reported in
one study to act as an inhibitor of apoptosis in neutrophils
[37], appeared in the predictor for response for 'high percent-
age' tumours and has also been reported as a component of a
three-gene predictor of AC sensitivity by another group [13].
In both studies, expression of this gene was higher in the
resistant tumours than in sensitive tumours. SOD7 was found
to be relatively overexpressed in resistant tumours ('low' and
'mid percentage') in keeping with a proposed role in the neu-
tralisation of free radicals, one means by which anthracyclines
are thought to inflict cellular damage [38]. NDRG1, upregu-
lated in poor responders (‘high percentage'), is induced by
hypoxia and may reduce p53 expression [39]. Hypoxia may be
a marker of poor vascularisation of tumours and therefore pos-
sible limitation of drug access.

Although here we have defined histological subsets, we have
shown that it might be feasible to build a predictor that extracts
information about the cellular composition of the biopsy from
expression data. We found that adding standardised percent-
age tumour values as a 'histology gene' (Figure 2) to multigene
predictors (Table 4) reduced the error rate significantly, sup-
porting the idea that it may be possible to devise a predictor
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that operates regardless of biopsy composition. This would
avoid the need for microdissection to enrich for malignant
cells. Furthermore, if stromal or stromal-interface gene expres-
sion does carry discriminatory information, then microdissec-
tion would result in loss of predictive information.

Several groups have attempted to define a multigene predictor
of chemoresponsiveness [10-15], using either clinical or path-
ological definitions of response. The reported error rates in
these studies, as assessed on an independent data set or by
LOOCV, range from 5% to 30%. Comparison of gene lists
and error rates across these studies and with ours is ham-
pered by the fact that the treatment regimens, response defi-
nitions, and microarray platforms differ and that the
histological composition of the samples in most studies was
not presented.

A number of samples used in our study have also been profiled
using an Affymetrix platform (Santa Clara, CA, USA) [40]. In
this independent analysis, 12 samples from tumours display-
ing either cCR or pCR and six samples from tumours with
residual tumour greater than 70% were used to define a clas-
sifier (samples with less than 40% tumour were excluded from
the study). The error rate of prediction on LOOCV was 33%
(p = 0.4 on permutation).

Therefore, to date, the reported error rates associated with
expression array prediction of response, certainly for anthracy-
cline combination chemotherapy, remain too high for clinical
utility. This may be due in part to the fact that breast cancer is
an extremely complex and heterogeneous disease that oper-
ates multiple mechanisms of chemotherapeutic response and
resistance which are not consistent across different subtypes,
particularly in the case of combination regimens incorporating
agents that act by multiple mechanisms. Such complexities
mandate that study designs be optimised in terms of biopsy
quality and sample size.

Conclusion

The response prediction using all pre-treatment biopsies was
modestly effective. However, the percentage of invasive can-
cer cells within a sample influenced the expression profile.
Response prediction on subsets of samples more homogene-
ous in terms of cellular composition was associated with lower
error rates. We believe that it is essential that consideration be
given to biopsy composition in planning future studies of this
type using methods such as those discussed above. Larger
studies are required to establish whether optimal accuracy of
response prediction may be achieved by the development of
profiles specific to immunohistochemical breast cancer
subtypes.
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