Phylogenetic and structural analysis of centromeric DNA and
kinetochore proteins

Patrick Meraldi**', Andrew D McAinsh™***, Esther Rheinbay" and

Peter K Sorger”

Addresses: “Department of Biology, Massachusetts Institute of Technology, Massachusetts Ave., Cambridge, MA 02139, USA. "Institute of

Biochemistry, ETH Zurich, Schafmattstr.,18 CH-8093 Zurich, Switzerland. *Chromosome Segregation Laboratory, Marie Curie Research
Institute, The Chart, Oxted, Surrey RH8 0TL, UK.

= These authors contributed equally to this work.

Correspondence: Peter K Sorger. Email: psorger@mit.edu

Published: 22 March 2006 Received: 19 October 2005

Genome Biology 2006, 7:R23 (doi:10.1186/gb-2006-7-3-r23) i‘z‘c’::i d{ 92‘?‘;:2’:12‘:; ;ggz

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2006/7/3/r23

© 2006 Meraldi et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Kinetochores are large multi-protein structures that assemble on centromeric
DNA (CEN DNA) and mediate the binding of chromosomes to microtubules. Comprising 125
base-pairs of CEN DNA and 70 or more protein components, Saccharomyces cerevisiae
kinetochores are among the best understood. In contrast, most fungal, plant and animal cells
assemble kinetochores on CENs that are longer and more complex, raising the question of whether
kinetochore architecture has been conserved through evolution, despite considerable divergence
in CEN sequence.

-
o,
o
]
o
o
[=§
]
o
w
[]
Y
5
fal
=

Results: Using computational approaches, ranging from sequence similarity searches to hidden
Markov model-based modeling, we show that organisms with CENs resembling those in S. cerevisiae
(point CENss) are very closely related and that all contain a set of | | kinetochore proteins not found
in organisms with complex CENs. Conversely, organisms with complex CENs (regional CENs)
contain proteins seemingly absent from point-CEN organisms. However, at least three quarters of
known kinetochore proteins are present in all fungi regardless of CEN organization. At least six of
these proteins have previously unidentified human orthologs. When fungi and metazoa are
compared, almost all have kinetochores constructed around Spcl05 and three conserved multi-
protein linker complexes (MIND, COMA, and the NDCB80 complex).

Conclusion: Our data suggest that critical structural features of kinetochores have been well
conserved from yeast to man. Surprisingly, phylogenetic analysis reveals that human kinetochore
proteins are as similar in sequence to their yeast counterparts as to presumptive Drosophila
melanogaster or Caenorhabditis elegans orthologs. This finding is consistent with evidence that
kinetochore proteins have evolved very rapidly relative to components of other complex cellular
structures.
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Background

Kinetochores are eukaryote-specific structures that assemble
on centromeric (CEN) DNA and perform three crucial func-
tions: they bind paired sister chromatids to spindle microtu-
bules (MTs) in a bipolar fashion compatible with chromatid
disjunction; they couple MT (+)-end polymer dynamics to
chromosome movement during metaphase and anaphase [1];
and they generate the spindle checkpoint signals linking ana-
phase onset to the completion of kinetochore-MT attachment
[2]. Despite the conservation of these functions, and of MT
structure and dynamics, CENs in closely related organisms
are highly diverged in sequence, as are CENs on different
chromosomes in a single organism [2,3]. The simplest known
CENs, those in the budding yeast Saccharomyces cerevisiae,
consist of 125 base-pairs (bp) of DNA and three protein-bind-
ing motifs (CDEI, CDEII and CDEIII) that are present on all
16 chromosomes [4]. These short CEN sequences, often called
'point’ CENS, are structurally similar to enhancers and tran-
scriptional regulators in that their assembly is initiated by
highly sequence-selective DNA-protein interactions [5]. In
contrast, CEN DNA in fungi such as the budding yeast Cand-
ida albicans and fission yeast Schizosaccharomyces pombe,
plants such as Arabidopsis thaliana, and metazoans such as
Drosophila melanogaster and Homo sapiens, are longer and
more complex and exhibit poor sequence conservation [6-
10]. These regional CENs range in size from 1 kb in C. albi-
cans [6], to several megabases in H. sapiens [8] and typically
contain long stretches of repetitive AT-rich DNA. CEN organ-
ization is particularly divergent in nematodes such as
Caenorhabditis elegans, which contain holocentric CENs
with MT-attachment sites distributed along the length of
chromosomes [11]. Sequence-selective DNA-protein interac-
tions have not been identified in regional CENs and it is
thought that kinetochore position is determined by a special-
ized chromatin domain whose formation at one site on each
chromosome is controlled by epigenetic mechanisms [2,12].

A combination of genetics and mass spectrometry in S. cere-
visiae has yielded a fairly detailed view of the composition
and architecture of its simple kinetochores. S. cerevisiae
kinetochores contain upwards of 70 protein subunits organ-
ized into 14 or more multi-protein complexes that together
have a molecular mass in excess of 5 to 10 MDa [5]. S. cerevi-
siae kinetochore proteins can be assigned to DNA-binding,
linker, MT-binding and regulatory functions. While 'linker

http://genomebiology.com/2006/7/3/r23

protein’ is used rather loosely, all linkers exhibit a clear hier-
archical relationship with respect to DNA and MT-binding
proteins: linker proteins require DNA binding proteins, and
possibly also other linker proteins, for CEN DNA binding but
not MTs or MT-associated proteins (MAPs).

Kinetochore assembly in S. cerevisiae is initiated by associa-
tion of the essential four-protein CBF3 complex with the
CDEIII region of CEN DNA. CBF3-CDEIII association then
recruits several additional DNA binding proteins, including
scCseq4, a specialized histone H3 found only at CENs
(CenH3). CenH3-containing nucleosomes are thought to be
core components of all kinetochores [13]. When CEN associ-
ated, the DNA binding subunits of S. cerevisiae kinetochores
recruit four essential multi-protein linker complexes, the
NDC80 complex (four proteins), COMA (four proteins),
MIND (four proteins) and the SPCi05 complex (two pro-
teins). These complexes, in turn, recruit a multiplicity of
motor proteins and MAPs to form a fully functional MT-
attachment site (P De Wulf and PK Sorger, unpublished
observation) [14-16].

A key question in the study of kinetochores is whether archi-
tectural features currently being elucidated in S. cerevisiae
are conserved in higher cells. Some S. cerevisiae proteins
have been shown to have orthologs in one or more metazoa.
These metazoan orthologs include CenH3, CENP-CMif2)
Mis6CH3/CENP-1 - §pc105KNL-1/Kiat570  members of the NDC80
and MIND complexes as well as MT-associated proteins such
as EB1Bimi and CLIP1708ik, Mad-Bub spindle checkpoint pro-
teins and some regulatory kinases [2,17-26]. To date, how-
ever, only CenH3 and CENP-C have been carefully compared
at a sequence level in a wide range of organisms [27]. Here we
report a systematic analysis of sequence relationships among
a set of approximately 50 fungal, plant and metazoan kineto-
chore proteins with the overall aim of exploring their struc-
tural and evolutionary relationships. Our analysis supports
the conclusion that the four linkers at the core of S. cerevisiae
kinetochores, the NDC80 complex, MIND, COMA, and the
SPC105 complex, have been conserved through eukaryotic
evolution. A subset of kinetochore proteins, perhaps 20% of
the total in S. cerevisiae, seems to be specific to point CENS,
all of which are very closely related. A second set of kineto-
chore proteins is found only on regional CENs. It appears,
therefore, that all kinetochores have a single ancestor, proba-

Figure | (see following page)

Point centromeres are derived from regional centromeres and appeared only once during evolution. (a) The 16 CENs from S. cerevisiae were used to train
a HMM. The blue bar indicates the number of predicted point CENs in the genome and the red bar represents the number of known chromosomes. (b)
HMM from (a) was used to search the genome of fungi with known point CENs, known regional CENs and predicted point CENs. Blue and red bars are as
described in (a) except gray bars, which indicate the predicted number of chromosomes, based on synteny within other Saccharomyces species. (c)
Sequence comparison of the CDEI, CDEIl and CDEIll elements from budding yeast with point centromeres. (d) Frequency distribution of the CDEIl length
(measured in bp) in each budding yeast with point centromeres. (e) Evolutionary conservation of CBF3 subunits in fungi with point and regional CENs. (f)
Phylogenetic analysis of 17 different fungi, including the 7 budding yeast with point centromeres and the 3 budding yeast with regional centromeres using 3
highly conserved reference proteins (a-tubulin, the signal recognition protein SRP54 and the DNA replication factor PCNA). Blue branches represent
fungi with point centromeres and black branches those with regional centromeres.
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Table |
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Sequence similarities among selected fungal kinetochore proteins of point CEN

Location Complex Protein Ubiquitous Point CEN specific Similarity* Identity*
DNA-binding Monomer Mif2 + 65% 23%
? Sgtl 74% 28%
CBF3 Cep3 65% 14%
CtfI3 53% 9%
Ndcl0 48% 10%
Linker layer COMA Mcm2| 45% 7%
Ctfl9 47% 7%
Amel + 45% 9%
Okpl 51% 7%
MIND Nnfl + 67% 14%
Nsll + 69% 15%
NDC80 Ndc80 + 73% 20%
Spc24 + 63% 6%
SPC105 Spcl05 + 48% 5%
Ydr532C + 52% 6%
? Chl4 + 52% 1%
? Ctf3 51% 6%
? Nkp It + 55% 6%
? Nkp2t + 63% 6%
? Mcml6é + 52% 7%
? Mcm22 + 53% 4%
? Imli3% + 24% 6%
? Cnnl + 40% 4%
MT-binding DASH Askl + 43% 11%
Daml + 54% 6%
Regulatory ? Bub3 + 65% 18%
? Mad2 + 98% 54%

*As determined from the proteins in S. cerevisiae, C. glabrata, E. gossyppii and K. lactis. TInstead of E. gossypii the sequences were derived from the very
closely related S. kluyveri. #Similarity was determined from proteins of the point CEN containing S. cerevisiae, S. kudriavzevii, K. waltii and S. kluyveri.

bly based on a regional CEN, from which contemporary kine-
tochores diverged rapidly while conserving key structural
features.

Results

Point centromeres have a common origin

As a first step in determining relationships among kineto-
chores in different organisms, we searched fungal genomes
for point CENs similar in structure to those in S. cerevisiae.
Three such examples are already known, C. glabrata, E. gos-
sypii and K. lactis [28], but a significant number of newly
sequenced genomes have not yet been analyzed. Finding new
CENs with a CDEI-CDEII-CDEIII structure is not trivial
because the number of identical bases in CDEI and CDEIII is
relatively small, even among chromosomes in S. cerevisiae.
Moreover, CDEII is not conserved in sequence but, rather, is
characterized by high AT content and alternating runs of
poly-A and poly-T. To capture this information we con-
structed a tri-partite computational model based on profiles

for CDEI and CDEIII, a hidden Markov model (HMM) for
CDEII (Figure 1a), and S. cerevisiae CENs as a training set.
When the model was tested on C. glabrata, E. gossypii and K.
lactis, organisms whose genomes are fully annotated, 6/13
centromeres in C. glabrata, 6/7 centromeres in E. gossypii
and 6/6 in K. lactis were identified correctly (Figure 1b). Con-
versely, no point-CEN sequences were found in S. pombe, C.
albicans or A. nidulans, organisms known to have regional
CENSs (Figure 1b). With a success rate of >70% and a false pos-
itive rate of <5%, we conclude that our computer model is
effective at finding point CENs.

When unannotated genomes were analyzed using the tri-par-
tite computational model, 15 CDEI-II-III sequences were
found in S. bayanus,14 in S. mikatae and 15 in S. paradoxus
(Figure 1b) [29]. S. bayanus, S. mikatae and S. paradoxus
contigs have not yet been fully assembled, but sequence sim-
ilarity and synteny suggest that all 3 have 16 chromosomes,
close to the number of putative CEN sequences identified
computationally in each organism. When these newly identi-

Genome Biology 2006, 7:R23



http://genomebiology.com/2006/7/3/r23

fied point CENs were combined with those in the literature,
85 CDEI-II-III sequences from 7 organisms became availa-
ble. These yielded a clear consensus for CDEI and CDEIII and
revealed that, within a single organism, CDEII can vary in
sequence from one chromosome to the next but that length
distributions are very narrow (+ 3%; Figure 1c, d). Most fungi
have 84 bp CDEII sequences but E. gossypii and K. lactis
have 164 bp CDEIIs, suggesting the presence of two copies of
an underlying approximately 84 bp CDEII module (Figure
1d). To a first approximation, the extent of conservation
among CDEI and CDEIII sequences on different chromo-
somes within a single organism was not much greater than
the extent of conservation among syntenic CENs in different
organisms (Figure 1c). Together, these data strongly imply
that all organisms with CDEI-II-III point CENSs arose from a
relatively recent common ancestor.

Kinetochore proteins specific to organisms with point
centromeres

Does the existence of CENs with similar CDEI-II-III struc-
tures imply the existence of similar DNA-binding kinetochore
proteins? In addressing this question, the CDEI-binding Cbf1
protein is not very useful because it functions not only as a
kinetochore subunit but also as a transcription factor for a set
of highly conserved biosynthetic genes [30], implying conser-
vation of non-kinetochore function. We therefore concen-
trated on components of the CBF3 complex, three of whose
subunits are thought to function only in CDEIII-binding (the
fourth subunit, scSkp1, is also a component of the SCF ubiq-
uitin ligase complex [31] and, like Cbf1, has conserved non-
kinetochore functions). When PSI-BLAST was used to search
predicated open reading frames in 17 fungal genomes for
orthologs of scCtf13, scCep3 and scNdc10, all 3 CBF3 subunits
were found in the organisms with point CENs (7 in total), but
not in organisms with regional CENs (Figure 1€). As a positive
control for the PSI-BLAST search, orthologs of scMis6€t3 and
scSpc105 could be found in all fungi examined (Figure 1e).
Importantly, Mis6Ct3 and Spcio5 have approximately the
same degree of sequence divergence in point-CEN containing
fungi (51% and 48% similarity, respectively) as Ndc1o (48%
similarity; Table 1). We provisionally conclude that CBF3 pro-
teins are present only in fungi with CDEI-II-III CEN DNA
whereas other kinetochore proteins (such as Spc1o5 and Ctf3)
are ubiquitous. Moreover, when organisms with point CENs

Genome Biology 2006, Volume 7, Issue 3, Article R23 Meraldi et al.

and CBF3 subunits are mapped on a phylogenetic tree (con-
structed using the highly conserved reference proteins o-
tubulin, the signal recognition particle subunit SRP54 and
PCNA) they were found to cluster closely together (Figure 1f).
While recognizing the possibility for false-negative findings
in cross-species sequence searching, we conclude that CDEI-
II-III CENs and CBF3 CEN-binding proteins are probably
found only in a subset of closely related budding yeasts and,
thus, may have co-evolved. Intriguingly, the apparent com-
mon ancestor of point-CEN and regional-CEN organisms
appears to be a fungus containing regional CENs, implying
that simple point CENs arose from complex regional CENs
and not the other way round.

To delineate further which kinetochore proteins are specific
to point CENs, and which are more widely distributed, we
analyzed all known S. cerevisiae kinetochore proteins for
sequence conservation. As a starting point we examined
scMis12Mtwiand seNdc8oHecet, kinetochore proteins first iden-
tified in yeast and subsequently shown to have human
orthologs (hsMis12 and hsNdc8oHeet) that localize to kineto-
chores and play a role in chromosome segregation [20,25].
Experimental and sequence data establish that yeast and
higher cell Nde8oHect and Mis12Mtwt proteins represent true
orthologs [20,32-34]. Nonetheless, the overall degree of sim-
ilarity among Ndc8oHect and Mis12MtW1 proteins across
eukaryotes was found to be relatively modest (approximately
15% to 30%) as compared to proteins involved in DNA repli-
cation (PCNA, approximately 75%) or protein translocation
(SRP54, approximately 60%). Multiple protein sequence
alignments of fungal, plant, and metazoan Ndc8oHect and
Mis12Mtwi showed that sequence similarity is confined to 30
to 100 residue blocks interspersed by stretches of non-homol-
ogy, many of which correspond to coiled coils (Figure 2a, b).
This pattern of block-by-block similarity was also observed
with five other kinetochore proteins for which orthology has
been established experimentally, and is consistent with previ-
ous proposals that kinetochore proteins have evolved rapidly
[35] (Figure 2¢). Importantly, for our purposes, data obtained
from known kinetochore orthologs suggests that it is neces-
sary to use conserved blocks, rather than complete sequences,
when searching kinetochore proteins for patterns of sequence
conservation.

Figure 2 (see following page)

Sequence similarity between kinetochore proteins is restricted to short stretches between orthologs. Multiple sequence alignments of the (a) Mis|2Mw!
and (b) Ndc80Hec! families. Schematic drawing above the alignment indicate the length of the S. cerevisiae proteins and the percentages denote the degree
of similarity of successive sequence blocks (black boxes) within fungi (red letters) or fungi, metazoa and plantae (green letters). The schematic drawing
above the Ndc80 multiple sequence alignment also indicates the relative position of the globular and coiled-coil domain of Ndc80, as determined by
electron-microscopy [32,33]. White letters on black denote identical residues, white letters on green, identical residues in > 80% of the organisms and
black letters on green, similar residues in > 80% of the organisms. (c) Schematic drawings indicating the percentage similarity of successive sequence
blocks (black boxes) within fungi (red letters) or fungi, metazoa and plantae (green letters) based on multiple sequence alignments of the Nuf2, Spc25,

Spc24. CENP-CMif2and Mis6Ct3/CENP-I PCNA and SRP54 protein families
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scNdc80 REFRIFAR KNEQSATQEETYDYMKKNKE DIETN HPLS IKFLKOFTOFC I MK WKJLR LoFCHGE TKs-1 ENFT Yo ILENERFFLE S 1N KPOTsA V[gE - SNIHK FL RTN IKLD
caNdc80 MR KKYOELIQKEIIRY@IDYKFEIKT NIALTENILKsEToENGNA My« Filgno Lognfivr 1kssT BQETvT LUy T 1T Rgs F sa v[g6 - MnfgeT FLET@YELVELN LsLS
drNdc80 kGEIRaMH KAFvQQC TKQLYEF@VDR-- --GFP GSITVKALQsEs EE G« Bl FIGNF LEFsEoy PTAKV EEFT PRULEDRCR PLALGAQIJIMDAVKLF G
Metazoa | NSNAc80 kGRISEIAN KAFIQOC IROLCEE -GYA ENVSMKSLOARSVEIDFLKE TEEGF L SEEL[’DTKF EEEV R T PEIVAARVELIDCIKIHT
mmNdc80 kRIVIAN KAETQQC IRQLYEF -Gyv YsVSMKsL0aRs e g« Ela FEdcr LeEsfiEL peTkC EEEY PR TR@ARCIRAE 1L 5K - -fsMyr vEarHTP: IVAARVELIDCIKID T
Plant XINdc80 kFFIVSNY KAFIQOC TROLCER -GYS QALTVKSL OGRS TDFLK MAF NEEN PESKF BEET PR TEEER GEFAL SK- -JsMyT vEAPHTPO IVAARVEILI DCVKLC C
antae | atNdcso ~ GASDDRSSM IRFINAFi --N FPES IRGN PvJSVEIDL SE TLKERLS ALD- -flpc DSTKW DEDLVF FLESQ KCEFKI TK- -FJSLKA PNT PENJPT VEAVVHJUAELARFHQ
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Figure 2 (see legend on previous page)
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When 55 S. cerevisiae kinetochore proteins (including the
CBF3 subunits discussed above) were used in PSI-BLAST
queries to search 14 fully annotated fungal genomes (Addi-
tional data file 1), 41 were found to have orthologs in organ-
isms with both point and regional CENs (Figure 3). These
proteins included kinetochore regulators such as the Mad1-3,
Bub1, BubR1/Mad3 and Mps1 checkpoint proteins and the
Ipli-AuroraB kinase, as well as many structural components.
In addition to the 41 proteins mentioned above, conservation
was observed for proteins such as Skp1 [31], Cbf1[30,36] and
some MAPs [37] that function at kinetochores as well as at
other locations in the cell. As noted above, these proteins are
likely to have been conserved for reasons other than their
presence at kinetochores, and they cannot be used to infer
overall similarity in kinetochore structure. In this respect,
kinesin motor proteins are also difficult to analyze. Eukaryo-
tic cells contain multiple kinesins, which are known to fall
into 14 highly conserved protein families based on sequence,
structure and function [38]. Typically, each kinesin has more
than one cellular function and kinetochores in different
organisms recruit different kinesin family members, making
it difficult to determine (in the absence of experimentation)
which kinesins should be considered kinetochore associated.

Leaving these complications aside, among 55 fungal kineto-
chore components analyzed, 11 were found in the 7 organisms
with point CENs and nowhere else, implying that they are
specific to a CDEI-II-III CEN architecture (Figure 3). These 11
proteins include the CBF3 subunits scCtfi3, scCep3 and
scNdc10 described above, the non-essential CNN1 gene prod-
uct, 1 subunit of the SPC105 complex (Ydr532c), two subunits
of the COMA linker complex (scAme1 and scOkp1) and 4 pro-
teins that require COMA for CEN-association (scMcm22,
scMcmi16, scNkp1 and scNkp2). Among organisms in which
they are found, the 11 point CEN-specific proteins are as well
or better conserved than ubiquitous kinetochore proteins,
implying that failure to identify orthologs in more distant
fungi is a consequence of their actual absence. We therefore
propose that approximately 20% of the overall kinetochore in
fungi containing CDEI-II-III CENS is specialized to their sim-
ple CENs. As expected, these specialized kinetochore subunits
include proteins in direct contact with CEN DNA (Figure 3).

Identification of novel human kinetochore proteins
Based on success in identifying fungal orthologs of S. cerevi-
siae kinetochore proteins, we expanded our set of target
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organisms to higher eukaryotes (see Figure 4 for a schematic
of the approach). Alignments were created for 41 ubiquitous
fungal proteins and conserved blocks determined. The non-
redundant NCBI protein database was then searched for
these conserved blocks using PSI- BLAST or Prosite pattern
searching algorithms (see Materials and methods for details).
Potential orthologs differing greatly in size from the fungal
proteins and candidates with well-established non-kineto-
chore functions were eliminated from further consideration.
The remaining proteins were then aligned to confirm the
presence of conserved blocks. This search led to the identifi-
cation, in a wide variety of organisms, of previously unre-
ported orthologs of many S. cerevisiae kinetochore proteins
(Additional data file 1), among which were four new human
kinetochore proteins (Figure 4). Recent analysis of S. pombe
kinetochore complexes by mass spectrometry revealed the
presence of a set of proteins for which orthologs could not be
found in S. cerevisiae [39,40]. When conserved sequence
blocks from these S. pombe proteins were used to search the
genomes of higher eukaryotes, two additional human pro-
teins were flagged as likely kinetochore subunits (Figure 4).
Regardless of which fungi contributed to the sequence blocks,
the most highly conserved kinetochore subunits were invari-
ably regulatory proteins such as the Mad and Bub checkpoint
proteins and the Aurora B kinase. Structural proteins such as
Ndc8oHecr, Nufe, CENP-CMif2 and Mis12MtwWt were considera-
bly more diverged.

The four human proteins representing hitherto unrecognized
orthologs of S. cerevisiae kinetochore subunits were provi-
sionally named hsNnfi-Related (hsNnfiR; also known as
PMFa1 [41]; Figures 4 and 5), hsNsl1R (also known as DC8 or
DC31), hsMcm21R and hsChlg-R. hsNnfiR shares with its
fungal counterpart 2 conserved blocks of 30 to 35 residues
with 47% and 67% similarity, hsNsliR shares 1 conserved
block of 35 residues with 43% similarity, hsMcm21R shares 3
conserved blocks of 15 to 30 residues with 46%, 87% and 33%
similarity and hsChl4R shares 2 conserved blocks of 20 and
50 amino acids with 45% and 40% similarity (Figure 5). The
potential human orthologs of S. pombe Fta1 and Sim4 were
provisionally named hsFtaiR and hsSim4R (also known as
Solt [42]). hsFta1R shares with its fungal counterpart three
conserved sequence blocks of 40, 25 and 30 residues with
48%, 49% and 58% similarity and hsSim4R one block of 27
residues with 65% similarity (Figure 6). Elsewhere we will
describe experimental data showing that hsChl4R, hsNsl1R,

Figure 3 (see following page)

Fungal kinetochores contain a set of point centromere specific components. Schematic model of kinetochore subunitorganization based on the
architecture of the S. cerevisiae kinetochore. Kinetochore proteins can be roughly divided into DNA-binding (pink), linker (blue), MT-binding (green) and
regulatory layers (yellow). Within each layer many proteins are organized into multi-protein complexes, for example, the linker layer is composed of at
least four complexes (gray boxes (a) to (d)): COMA, NDC80, MIND and SPC105. Protein names are given for S. cervisiae first and S. pombe second, while
essential genes (italic letters) and non-essential (normal letters) is indicated. Protein names followed by an asterisk indicate that this specific ortholog is
known not to localize to kinetochores. The kinesins present at kinetochores in S. cerevisiae are Kip3 (Kinesin-8), Cin8 (Kinesin-5), Kip| (Kinesin-5) and
Kar3 (Kinesin-14), while in S. pombe they are Klp5 (Kinesin-8), KIpé (Kinesin-8) and Klp2 (Kinesin-14) (for nomenclature see [38].
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hsMcma21R, hsNnfiR, hsFtaiR and hSim4R localize to kineto-
chores in human cells and are required for accurate chromo-
some segregation (AD McAinsh et al., submitted).
Importantly, for the purposes of the current analysis, the
identification of new human kinetochore proteins means that
one or more subunits are present in metazoans for each of the
four multi-protein linker complexes forming the core of the S.
cerevisiae kinetochore. Thus, it appears that simple point
CENs in budding yeast and complex regional CENs in human
cells probably share fundamental architectural similarities.

S. cerevisiae DASH is a 10-protein MT-binding complex that
has attracted considerable recent interest because it forms
rings encircling MTs [43,44]. DASH subunits are conserved
among fungi but we have found few if any potential orthologs
in higher eukaryotes. The closest match to a DASH protein in
humans, NYD-SP28 [45], has an amino-terminal domain of
about 30 amino acids 40% similar to S. cerevisiae Spc34
(Additional data file 2). The Chlamydomonas rheinhardtii
ortholog of NYD-SP28 localizes to the flagellum [46], imply-
ing that NYD-SP28 might be involved in interactions with
MTs. Our preliminary conclusion is that higher eukaryotes do
not contain a protein complex closely related to fungal DASH,
although further investigation of NYD-SP28 is warranted.

Correspondence between human kinetochore proteins
and their yeast counterparts

Several kinetochore proteins first identified in human cells
have previously been shown to have fungal orthologs, includ-
ing CENP-C (orthologous to scMif2p [47]) and CenH3CENP-A
(orthologous to scCse4 [48]). We therefore wondered
whether additional orthologs might be found in fungi for
kinetochore proteins hitherto characterized only in higher
eukaryotes, such as CENP-E, CENP-H, Rod, Zwint and
Zwilch [49-53]. We found that, among fungal proteins,
hsCENP-H is most similar to S. pombe spFta3 (Figure 7a),
which was shown recently to be a fission yeast kinetochore
protein [39]. It has been suggested previously that S. cerevi-
siae scNnf1 is the budding yeast CENP-H ortholog [54] (Fig-
ure 7b) but we find that scNnf1 is actually much more similar
to hsNnfiRPmft and spNnf1 than to CENP-H (Figure 7¢). We
therefore propose that CENP-H is orthologous to the fungal
Ftag family of proteins. Searches using PSI-BLAST revealed
that the Fta3 protein, like the Sim4 and Fta1 proteins with
which it interacts in S. pombe [39], has apparent orthologs
only in organisms with regional CENs (Additional data file 1).
The presence of Sim4 and Fta1 in the budding yeast Yarrowia
lipolytica, which has regional CENs, but not in yeasts with
point CENS, is striking, since Y. lipolytica is significantly
closer in overall sequence to S. cerevisiae than to S. pombe.
We therefore conclude that Fta3, Sim4 and Fta1 are members
of a class of kinetochore proteins found specifically in fungi
and metazoa with regional CENs and not in fungi with point
CENS.
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Figure 4

Schematic describing the sequence-search based approach used to identify
fungal, metazoan, and plant orthologs of the kinetochore proteins scNnfl,
scNsll, scChl4, scMcm?21, spSim4 and spFtal. Since such sequence-based
searches can yield a significant number of false positives, strict exclusion
criteria were applied to ensure the identification of orthologs.

In contrast to CenH3CENP-A) CENP-C and CENP-H, potential
orthologs of the human CENP-E, Rod, Zwint and Zwilch pro-
teins were not found in any of the fungi examined. The appar-
ent absence of a fungal Rod or Zwilch is particularly
interesting, since their binding partner at human kineto-
chores, Zw10, has a potential ortholog in S. cerevisiae, Dsl1
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(a) 50aa
0% 47% 18% 67% 17%
scNnf1 C— —
hsNNfIR e —
(PMF1) ’
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neNnfl BaTrooL FS TRRETLDKTS -RONGAAR Y NKEFNSILHTROVVPKEANHES TLVGEANKEK
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hsPmft RvkI@DTMVDTHROKLVAAGS - YOREATHS Y REJ21SDIKER GNLEAVIINZAR®S KIVEEGKVRR K
Metazoa |mmNnfiR BvkHIDATVDTHROKLVADRS - YERGTTE Y REEISEIKEEGNLEAVENGE KT IEEGREEG
trNnfIR RrkiEEKVMOKAEKFIELAS - FHRESSVE OO 1 CKLVER GLLEAKIN RS KLERAAKTES P
XINnf1R ML IENTLVDKEADGLVQAGS - YOREBARE Y ROE1QETROEGNLEAT D% KMEKEAGDE P
Plantae | atNnfiR BERTHEIKKSFKSTRRHLLTACS-KQDEVDIF EH:FDEQCHE TQVGP IBD T BLVEEQSI P
(b) 50aa
10% 43% 6%
scNsl1
hsNsl1R -
(DC31)
; Block 1
anNsl1 [ PFDGKLA-ARVA-SLYAQLESLTTTVRQLERDAR
. ncNsl1 [E PFDPRKR - SRLE-TLAREEEDLLRS IRLLERRVE
Fungi | spMis14 EpFDLALR-TRVQ-Q FNEVEDAHGLVERVEKSWY
caNslt EKIDSEIT-IQLR-KIFQEFEQETIDVTKIERDIE
scNsl1 - [ pPFDLDLN-EQVR -KMYQEWEDETWKVEOLE 0T
hsDC31 [BASDNCFMDSDIK-VLEDQFDET IDIRTKEKQYE
mmNsHR EAKEHGLMDSDIK-VLEDEFDEL IFDVRTKEROYE
Metazoa xtNsl{R EAPETONE-PDIK-1, EDKLDDAINDTRLAENRYE
drNsI1R ETSEEYCE- - DYESTVNNILDEKINETRSKESS YR
goNsITR  ETSADSEPNSANIKILEDQLDELIETATKEKOWS
(c) 50aa
4% 46% 87%  33% 3%
scMcm21
hsMcm21R e ——— -

" Block 1 . Block2 ... «.._ Block3.,,
ncMem21  ELRIEVFAR- -GREMRPYYVLM “VHRETVEHEEE 1SGL ARSLRREBVRYHH]
nMcm21 EVRIDICVRN-GRETKPYYILL HRETI] 3 VERL [VREVRROBVAWH]

Fungi caMcm21 §LRFDLYSNFTKCFQQPHYCIL VYKETL 3VDEY AESIQLTRTKTQY]
scMcm21  §IRLEVFSERTSQFEKPHYVLL LFKETIESED VOGT AKRVFLOBVEVQ!
spMal2 [EMDEELEGG--NREDVPYYIIF LYKNT ISR I0EW LWKVDKLBTAYIC
hsMcm21R gVCVCISTAFEGNLLDSYFVDL IHH LEET LFSLCEY@NAYSG]
mmMcm21R  EVCMCISTAFEGNLLDSYFVDL 1] :LEKT LESLWAYBNAYAG]
Metazoa |["imcm21R EvcveISsaFEGAYLDSFHLDI ISK] FEEe: LEOT LSVLFEHENAYAG]
tnhMcm21R ~ §VCISLATAYNDVEMETYNLEL 1GREDI s LKRL LDALSQHENAYVC]
Plantae 1 atMcm2iR [EIQFETSTA--GETYEVYHCVL VLBETIZHE%; LSDL IDNVGDLEOAY VD]
(d) 50aa
4% 45% 4% 40% 10%
scChl4
hsChl4R
(BM039)
Block 1 ., ™e..  Block2z e
anChl4 LVKQLGKLPRQSLLDLVFQQ 0- - FRKGGKRE-VI - DRILDGDWRHGI TRRQTAMIFLRYLDDHPASLR - JTALELTR
) ncChi4 VFKILNRLSRASLLTLALDQ #0- - SRKGSKRE-VI - DRIMEGDWRHGLTHYQLAMAERIQYLYDHPTSQK-JAAYRIMP
Fungi spMis15  TQKLLNRFPRDFLVKLCVEQ FYKNVPKSMLKRSII -HRMLVYDWPNGFYBGOTAQLEILALAHGFVSMR-TASKVHH
caChl4 LYNILDRLSKNSILQFIILJ FRKLINRTPKRK-LI -DKIIFEYWTQGLNALOTSOIFCOLIVDKSNSAQSHIYSTVKD
scChi4  VFKQLMKLBVTVLYDLTLSY #DLLIEKGVRRNVIV-NRILYVYWPDGLNVFQLAEINCHLMI SKPEKFK-QLPSKALR
drChl4R  1.NRVIRRIPNKNIKNLLSKY #OALDYTKPKRM-IV-EHIIDCCESSSLN#KHITNLEMI YHLDNPDQGT-JYACQLTD
hsChl4R TKRTILKIPMNELTTILKAJ HOTVNFROR-KESVV-QHLIHLCEEKRAS ISDAALLEI I YMOFHQHQ - KVJDVFOMSK
Metazoa | mmChi4R LRRTILKIPLSEMKSILEAQ FOTINLKQR-KD-YLAQEVILLCEDKRASEDDVVLLYTVY TQFHRHQ- KLNVFOMSK
XIChl4R IKRTILKLPFSETATILKTY BOTFTLRYP-KE-VTATEVVRFCEARNATIDHAAALTLVFNHAY SNK-KTJTVYQMSK
ggChl4R  IRRTVLKIPRDEIMAVLOTY [FOTINFRQT-KEG ISHSVAQLCEESSADBKQAALLETIYNHIYPNK -RTSVYHMNK

Figure 5 (see legend on next page)
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Identification of potential orthologs of scNnfl, scNsll, scMcm21 and scChl4 in humans. S. cerevisiae (a) Nnfl, (b) Nsll, (c) Mcm21 and (d) Chl4 were
aligned with five fungal, four metazoan and one plant sequence. White letters on black denote identical residues, white letters on green, identical residues
in < 80% of the organisms and black letters on green, similar residues in < 80% of the organisms. Schematic drawings above the alignments indicate the
length of the S. cerevisiae proteins and the percentages denote the degree of similarity of successive sequence blocks (black boxes).

[55]. Both hsZw1o and scDsl1 play a role in membrane traf-
ficking during interphase [56], but scDsl1 is not known to
localize to kinetochores. Thus, whereas human hsZw1o func-
tions in vesicle-MT and chromosome-MT interaction, scDsl1
appears to have only the former function, presumably
because Rod and Zwilch are not present. The absence of Zw1o
from fungal kinetochores is also sufficient to explain the
absence of Dynein: the Rod/Zw10/Zwilch (RZZ) complex is
needed for the association of Dynein with human and Dro-
sophila kinetochores [57]. Considering these data together,
we conclude that animal cell kinetochores contain proteins,
currently comprising perhaps 25% of the total (and likely to
increase), that are absent in fungi with either regional or
point CENSs.

Evolutionary relationships among kinetochores

Thus far, we have distinguished only between point and
regional CENs but a more nuanced view can be obtained from
phylogenetic analysis of kinetochore structural proteins. As a
reference for these comparisons, a tree was constructed by
combining data on three well-conserved eukaryotic proteins:
a-tubulin, PCNA and SRP54 (Figure 8a; this reference tree
closely matches reference trees constructed by others
[58,59]). The reference tree exhibited prototypical clustering
of fungi in one branch and metazoa in another so that Dro-
sophila and C. elegans were much closer to humans than S.
pombe or S. cerevisiae. However, the phylogenetic trees for
Ndc8oHeet and Nufz2 were remarkably different: overall
sequence divergence was much greater and Drosophila and
C. elegans Ndc8o!ect (or Nuf2) proteins were not signifi-
cantly more similar to their human than their fungal counter-
parts (Figure 8b, c¢). Drosophila Ndc80o and Nuf2 were
particularly striking in occupying a branch of the phyloge-
netic tree distant from all other animals. This great diver-
gence in Drosophila kinetochore protein sequence is also
illustrated by the fact that, apart from regulatory compo-
nents, such as the Mad-Bub proteins and a few MAPs, only a
limited number of structural kinetochore proteins have been
identified in flies (for example, CENP-C [60], CenH3CID [61],
the RZZ complex [62], Ndc8oHect, Nuf2, and Mis12Mtwt ;Fig-
ure 9).

Organization of the simplest kinetochore

Encephalitozoon cuniculi is a microsporidium and intracellu-
lar parasite that has been subjected to considerable evolu-
tionary pressure to reduce its genome to the smallest possible
size. As a consequence, E. cuniculi and related microsporidia
have the smallest known eukaryotic proteome (1,997
potential open reading frames) and many cellular structures

in E. cuniculi lack redundant and non-essential genes [63].
Using our HMM for CDEI-II-III, no sequences similar to
point CENs were found on any of the 11 E. cuniculi chromo-
somes, nor were CBF3 proteins found by PSI-BLAST (Figure
10a). We therefore speculate that E. cuniculi contains a
regional CEN of some sort. Orthologs of CenH3 and CENP-
CMif2 are present in E. cuniculi, as are all four components of
the NDC80 linker complex, three components of MIND and
SPC105 (Figure 10b, Additional data file 3). No subunits of
COMA, the fourth S. cerevisiae linker, were found. Among
regulatory proteins, E. cuniculi Ipl1/Aurora B and SurvivinBirt
orthologs were present as were Mps1 and Bub3, but not other
proteins required for the spindle assembly checkpoint in
yeast or human cells (Figure 10b). When Cdc20, an essential
activator of the anaphase promoting complex (APC/C) was
examined for sequence motifs, further evidence was obtained
that E. cuniculi lacks a spindle checkpoint. APC/C is an E3
ligase required for the ubiquitination of proteins whose
destruction is necessary at the metaphase-anaphase transi-
tion [64]. In all eukaryotes examined to date, an activated
form of the Mad2 checkpoint protein binds to Cdc20 via a
short conserved peptide so as to block Cdc20 from activating
APC/C, thereby arresting cells at the metaphase-to-anaphase
transition [65,66] (Figure 10c). E. cuniculi Cdc20 contains
the WD-domain implicated in APC/C interaction but lacks
any sequence similar to a Mad2 binding domain (Figure 10c),
implying that it is not subject to checkpoint control. From
these data we conclude that E. cuniculi probably contains a
very simple kinetochore, based on a regional CEN that con-
tains about one-half the proteins found in S. cerevisiae. In
contrast, other large multi-protein structures in E. cuniculi
are only slightly less complex than their higher eukaryotic
counterparts. For example, E. cuniculi ribosomes are com-
posed of 77 subunits as compared to 84 subunits in S. cerevi-
siae. Symptomatic of the simplicity of the E. cuniculi
kinetochore is the absence of the vast majority of potential
MAPs. Nonetheless, it is significant that the E. cuniculi kine-
tochore contains three of the four linker complexes that
appear to form the core of budding yeast and human
kinetochores.

Discussion

Extensive genetic and biochemical experimentation has made
S. cerevisiae kinetochores the best characterized structures
involved in chromosome-MT attachment [5]. S. cerevisiae
kinetochores contain upwards of 70 protein subunits assem-
bled into 14 or more multi-protein complexes. In this study
we used similarity-based sequence searching to ascertain
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Figure 6

Identification of potential orthologs of spFtal and spSim4 in humans. S. pombe (a) Ftal and (b) Sim4 were aligned with five fungal, and three to five
metazoan sequences. White letters on black denote identical residues, white letters on green, identical residues in > 80% of the organisms and black
letters on green, similar residues in > 80% of the organisms. Schematic drawings above the alignments indicate the length of the S. cerevisiae proteins and
the percentages denote the degree of similarity of successive sequence blocks (black boxes).

which S. cerevisiae kinetochore proteins have orthologs in 15
fungi, 11 metazoa and 2 plants (Additional data file 1) with the
overall aim of determining which structural features of S. cer-
evisiae kinetochores have been conserved throughout evolu-
tion. The analysis is not as straightforward as might be
assumed, because kinetochore proteins are among the most
rapidly evolving proteins in the genome [67]. In addition, the
structure and sequence of CEN DNA has diverged widely
from organism to organism. Whereas fungi closely related to
S. cerevisiae contain 125 to 225 bp CENs with a CDEI-CDEII-
CDEIII structure, most other organisms contain much longer
regional CENs with few if any conserved sequence elements.

Guided by experimental data on established orthologies in
yeast, humans and other organisms, we base most of the con-
clusions in this paper on the characterization of proteins that
share blocks of homologous sequence. In several cases, we
also draw inferences from a failure to identify homologous

has orthologs in se

proteins similar in

result with many potential causes. However, in cases in which
a kinetochore protein is conserved among organisms A, B and
C whereas a second kinetochore protein is well-conserved
only in species A and B and undetectable in C (and multiple
related species), a tentative conclusion can be drawn that the
second protein is actually absent from C. For example, we find
that CBF3, an essential CEN-binding protein in S. cerevisiae,

ven budding yeasts containing CEN DNA

conforming to a CDEI-CDEII-CDEIII organization but not in
organisms with regional CENs. In contrast, other kinetochore

their degree of sequence conservation to

CBF3 subunits among point CEN-containing yeast (approxi-

mately 45% to 50% similarity) are found throughout fungi.

Thus, we provision

proteins. We recognize that this failure represents a negative
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ally conclude that CBF3 is present in only

fungi with CDEI-CDEII-CDEIII centromeres. Despite the
potential for occasional error, our use of both positive and
negative findings makes it possible to draw broad conclusions
about the organization and possible origins of simple and
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Figure 7

The human kinetochore protein CENP-H is more closely related to a novel family of fungal proteins than the Nnfl family. Multiple sequence alignments of
metazoan CENP-H proteins and either (a) fungal Fta3 family proteins or (b) fungal Nnfl family of proteins. Sequences were annotated as in Figure 5. (c)
Comparison of sequence similarity between human conserved domains of CENP-H and C. albicans Nnfl and C. albicans Fta3.
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(a) Reference proteins (b) Ndc80 family

(C) Nuf2 family

Chordata
Arthropoda
Nematoda
Embryophyta
Ascomycota

Microspora

Apicomplexa

0.1

Figure 8

Phylogenetic analysis of kinetochore protein conserved domains. Radial phylogenetic trees were assembled for (a) reference proteins (o-tubulin, the signal
recognition protein SRP54 and the DNA replication factor PCNA), (b) the Ndc80 family and (c) the Nuf2 family. For bootstrap analysis, sample size
equals 100. Nodes with support less than 50% were collapsed. The accession number for each protein is described in Additional data file I.
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Figure 9

Identification and annotation of (a) Nuf2, (b) Ndc80 and (c) Mis|2 orthologs in D. melanogaster. Schematic drawing above the alignment indicate the

length of the S. cerevisiae proteins and the percentages denote the degree of similarity of successive sequence blocks (black boxes). White letters on black
denote identical residues, white letters on green, identical residues in > 80% of the organisms and black letters on green, similar residues in > 80% of the
organisms. Accession numbers are described in Additional data file 1.
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Figure 10
Identification of a minimal kinetochore in E. cuniculi. (a) HMM described in
Figure la, b failed to find a CDEI-II-ll structure in the genome of E. cuniculi.

The Green bar indicates point CENs identified and black bars the number
of chromosomes. (b) Speculative model of E. cuniculi kinetochore subunit
organization. Proteins colored in pink, blue, green or yellow represent
components of the DNA binding, linker, regulatory or microtubule-
binding layers, respectively, based on kinetochore organization in S.
cerevisiae. Potential multi-protein complexes are highlighted with a grey
box. (c) Sequence alignment of fungal, metazoan and plantae Cdc20
showing the conserved Mad2 binding site. Note: E. cuniculi lacks both the
conserved Mad2 binding site and an ortholog of the Mad2 protein.
Schematic drawings indicate the length of the S. cerevisiae and E. cuniculi
proteins, the position of the WD-domain (black box) and the position
where Mad2 binds.

complex kinetochores that would not be possible based on a
more conservative approach.

Origins of point centromeres

Based on the simple structure of their CENS, it is widely
assumed that S. cerevisiae kinetochores represent an ances-
tral structure from which complex regional kinetochores

http://genomebiology.com/2006/7/3/r23

evolved. Several findings in the current work suggest, how-
ever, that CDEI-II-III CENs arose in combination with a set
of 11 proteins as a specialization of a regional CEN. First, all
annotated organisms containing point CENs (S. cerevisiae, C.
glabrata, K. lactis, and E. gossypii) have a common origin in
one relatively shallow branch of the fungal phylogenetic tree.
Were CDEI-II-III sequences an ancestral CEN, the current
distribution of regional CENs would require loss of point
CEN s from multiple independent evolutionary branches. Sec-
ond, we could obtain no evidence for CDEI-II-III CEN DNA
or CBF3 proteins in the microsporidium E. cuniculi, which is
thought to have arisen through an ancient divergence in the
fungal kingdom [68].

If the speculation that CDEI-II-III point-CENs evolved from
regional CENS is correct, we must consider the possible exist-
ence of other short CENs that are also based on sequence-spe-
cific DNA binding interactions just not CBF3. By way of
precedent, the emergence of CDEI-II-III CENS is coincident
with large-scale chromosomal changes that gave rise to the
HMR, HML and MAT loci, thereby changing the sexual
potential of S. cerevisiae and related yeasts [29]. S. pombe
and its close relatives undergo mating type switching analo-
gous to thatin S. cerevisiae, but the molecular mechanisms of
switching are completely different [69]. Functional analysis
of fungi with short uncharacterized CENs will be needed to
test the speculation that just as different forms of mating-type
switching have developed based on distinct biochemistry,
point CENs with structures other than CDEI-II-III might
exist.

Evolution of kinetochore proteins

Sequence comparison reveals that conservation among
orthologous kinetochore proteins is invariably restricted to
relatively short sequence blocks embedded in longer regions
of low sequence similarity. The restriction of sequence simi-
larity to small blocks explains the relative difficulty in finding
orthologs and the widespread assumption that yeast and
human kinetochores are very different. Henikoff and
colleagues [67] have studied the evolutionary divergence of
CenH3 and CENP-CMif2 in some detail and propose that kine-
tochore proteins are under positive selection in plants and
animals as a consequence of meiotic drive by CEN DNA
during female meiosis. Rapid evolution in protein sequence is
most apparent in worms and flies, and in this study we have
added only dmNdc8o, dmNuf2 and dmMis12 to the list of
likely structural Drosophila kinetochore proteins. Why the
rate of kinetochore protein evolution is so much greater in
flies and worms as compared to mammals, plants and fungi
remains a mystery but it is reminiscent of data on other key
regulators of chromosome segregation. Securin and its pro-
tease separase are also highly diverged in D. melanogaster:
Drosophila securin, unlike the human and yeast proteins,
consists of two separate gene products, called three rows and
pimples, that interact with an unusually short separase [70].
Moreover, unlike the majority of eukaryotes that utilize an

Genome Biology 2006, 7:R23
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For the majority of kinetochore proteins we have little knowl-
edge of their biochemical functions or their structure. It is
tempting to speculate that conserved sequence blocks repre-
sent protein-protein interaction domains or interaction sur-
faces under tight evolutionary pressure. However, with very I j
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tional units [72]. The most abundant structural elements in Muli-protein complexes
kinetochore proteins are coiled coils, which are known to
function in protein-protein association [73] and act as springs (b)
and levers [74]. Coiled coils in the budding yeast spindle pole H. saplens
body protein scSpc42 also create a crystalline core involved in |
S. pombe

spindle pole body duplication [75]. Biochemical and electron | |
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A key conclusion in this paper is that four multi-protein link-
ers that form the core of the S. cerevisiae kinetochore, MIND,
the SPC105 complex, the NDC80 complex and COMA are also ~ Figure 11
likely to be present in a wide variety of species (Figure 11) Evolutionary development of kinetochores from yeast to mammals. (a)

y . b p 8 : Model of the kinetochore using protein subunit positions derived from the
Along with CenH3 and CENP-C, SPC105, MIND and NDC80 organization of the S. cerevisiae kinetochore. Proteins present in all fungal

complexes are ubiquitous. In budding yeast, linker complexes and mammalian CENs are outlined in black while proteins present only in
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are thought to form a bridge between proteins in direct con- fungi and mammals with regional CENs are outlined in red. Red dotted
tact with DNA and those that bind MTs [5,14,15], and it will outlines indicate proteins that are only present in fungi. Black dotted

. L. DT TOD X outlines indicate that either this protein only exists in metazoans or that
be important to show that this is also true in other organisms. only the metazoan ortholog is present at kinetochore. Proteins colored in

Prior to the current work, biochemical experiments had ledto  pink, blue, green or yellow represent components of the DNA binding,
the identification of SPC105, MIND and NDC80 complexes in linker, regulatory or microtubule-binding layers, respectively, based on
kinetochore organization in S. cerevisiae. Potential multi-protein complexes
S. pomb,e’ C. elegans anfl human cells [18,19] ,but our are highlighted %vith a light gray box and the conserved Pkinetochorepcore,
systematic sequence analysis extends these observations to a or COMA/Sim4 adaptor with a dark gray box. Protein names are given for
greater variety of organisms, including E. cuniculi, a micro-  H, sapiens first and then S. cerevisiae when different. Italic lettering indicates
sporidium with a I‘emarkably small proteome. The presence that the protein has additional functions in the cell. The kinesins present at
of the structural kinetochore proteins listed above appears to kinetochores in H. sapiens are CENP-E (Kinesin-7) and MCAK (Kinesin-

. 13), and in S. cerevisiae Kip3 (Kinesin-8), Cin8 (Kinesin-5), Kip| (Kinesin-5)
be more fundamental for chromosome segregation than a and Kar3 (Kinesin-14) (for nomenclature see [38]). (b) Quantification of

Mad2-dependent spindle assembly checkpoint, which does the number of kinetochore proteins, and their respective evolutionary
not seem to exist in E. cuniculi. Thus, ascertaining the precise  class, in S. cerevisiae, S. pombe, E. cuniculi and H. sapiens.

molecular functions of the MIND complex, NDC80 complex,
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Spcio5, CenH3 and CENP-C and of the macromolecular
assemblies in which they participate is a key task in the study
of kinetochore biology.

Diverged kinetochore components

Budding yeast with CDEI-II-III point CENSs contain a set of 11
proteins that are not present in fungi such as S. pombe or C.
albicans (Figure 11). Three of the eleven point-CEN specific
proteins are involved in sequence-specific binding to CDEIII
while six are part of the COMA complex or of a COMA-
dependent assembly pathway. Only three of the eleven com-
ponents of the COMA pathway in S. cerevisiae (Mcm21Mal2,
ChlgMisi5 and CtfgMis6/CENPI) are conserved among fungi and
mammalian kinetochores (Figure 11). In S. pombe, an alter-
native set of eight proteins, including spSim4 and spFta1-7,
are bound to the COMA components spMcm21Mal2)
spChlgMisis and spMis6Ctf3. At least three of these proteins
(CENP-HFt3, Fta1 and Sim4) are members of a class of pro-
teins found in fungal and metazoan organisms with regional
CENs whereas the other four proteins have no obvious
orthologs (Figure 11a). Overall, these data point to COMA and
COMA-associated proteins as kinetochore components with a
particularly high degree of sequence divergence through evo-
lution. It seems reasonable to speculate that COMA helps to
accommodate kinetochore subunits that are highly conserved
among regional and point CENs, such as the NDC80 complex,
to diverged components, such as CBF3. By analogy, it seems
likely that specialized proteins have evolved to meet the
special structural demands of holocentric CENs; ceKNL-3, a
kinetochore protein bound to the C. elegans MIND and
NDC80 complexes [18] but absent from other kinetochores,
may be an early example of a holocentric adaptor.

The logic of kinetochore assembly

The MT binding components of kinetochores are unlike kine-
tochore structural components in that almost all are involved
in multiple MT-based processes (Figure 11). In humans for
example, EB1Bimt and APCKar9 are found not only at kineto-
chores, but also at sites of MT association with the cell cortex;
CLIP-170B8ikt and Dynein play important roles in vesicle traf-
ficking and ch-Tog15t2is required for spindle assembly. From
yeast to humans, only one or two of the six to ten kinetochore
MAPs and motors are specific to kinetochores. CENP-A func-
tions in most organisms to determine CEN location without
recognizing CEN-specific sequences; similarly, the NDC8o-
MIND-SPC105-COMA complexes must determine the
specialized biochemistry of MT-kinetochore linkages without
resort to many kinetochore-specific MAPs.

Conclusion

We conclude that critical structural features of kinetochores
are conserved from yeast to man, despite highly divergent
CEN sequences. It appears that both short S. cerevisiae point
centromeres and complex metazoan regional centromeres
arose from a common ancestor that probably had regional
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centromeres. Both simple and complex kinetochores contain
conserved SPC105, MIND and NDC80 complexes along with
more variable COMA complexes. This core assembly is sup-
plemented by adaptor proteins specific to organisms with
point, regional or holocentric CENs. The key to understand-
ing kinetochore biology is now to determine how specialized
adaptors and conserved core complexes interact with inner
centromere components such as CenH3 and CENP-C to
assemble structures capable of binding to and regulating
microtubules through the recruitment of MAPs and motors.

Materials and methods

Sequence-similarity searches

Database searches were performed on NCBI non-redundant
and EST databases using PSI-BLAST and BLAST (protein-
protein BLAST (blastp) and genomic BLAST (tblastn)) [76].
Pattern searches were performed using ScanProsite [77].
Multiple sequence alignments were built with ClustalW,
MUSCLE and T-Coffee and edited by hand [78-80]. Coiled
coil predictions were based on the COILS program using a
window size of 28 [81]. Human NnfiR and FtaiR were identi-
fied in PSI-BLAST searches using the full-length S. pombe
Fta1 or S. cerevisiae Nnf1 protein sequences as the queries. To
identify human Mcm21R, the S. cerevisiae Mcm21 protein
sequence was first used as a query in PSI-BLAST searches
that yielded fungal Mcm21 related proteins. These proteins
were assembled in a multiple sequence alignment from which
the motif [HYF]- [KRHDENQ]- [VLI]-x- [HYF]- [ST]- [IVL]-
[P]-x-x- [IL]-x- [ILV] was derived, and then used in a pattern
search to identify metazoan orthologs. To identify orthologs
of S. cerevisiae Nsl1 and Chlg, S. pombe Sim4 or H. sapiens
CENP-H conserved blocks were first identified. PSI-BLAST
searches were carried out using S. pombe Simg4, S. cerevisiae
Nsli, S. cerevisiae Chlg or H. sapiens CENP-H as query
sequences. This approach identified a set of fungal Sim4, Nsl1
or Chlg related proteins and a set of metazoan CENP-H
related proteins. Each set of proteins was then assembled into
multiple sequence alignments and conserved blocks identi-
fied (amino acids 1 to 143 for U. maydis Nsli, 1 to 114 for S.
cerevisiae Chlg, 341 to 373 for S. pombe Sim4 and 224 to 269
for H. sapiens CENP-H). The sequences present in these con-
served blocks were then used in PSI-BLAST searches to iden-
tify new fungal (for CENP-H) or metazoan (for Simg4, Chl4 or
Nsl1) proteins.

Phylogenetic analysis

Phylogenetic alignments were generated with MUSCLE using
GBlocks to identify conserved blocks [82]. Conserved blocks
were selected only if single positions were conserved in at
least 50% of the sequences, with higher stringency at flanking
positions (80%). A maximum of eight contiguous non-con-
served positions were allowed. The minimum block length
was five amino acids. Positions with gaps were allowed only if
their number did not exceed 50%. Conserved blocks and the
number of positions used for each protein family are
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described in Additional data file 5. To calculate the distances
between sequences we took a maximum likelihood approach
using TREE-PUZZLE [83] with the 'Pairwise distance calcu-
lation only' option, the Jones-Taylor-Thornton substitution
matrix [84] and gamma-distributed rates (eight categories) to
account for rate heterogeneity (parameters were estimated
from the dataset). A neighbor-joining tree was constructed
from the distance matrix with the NEIGHBOR program from
the PHYLIP package [85]. Reliability of the dataset was
assessed by bootstrap. We generated 100 permutation data-
sets using the SEQBOOT program from the PHYLIP package.
From these 100 datasets we calculated distance matrices and
constructed neighbor-joining trees using the parameters
described above. TREE-PUZZLE was then used with the
'Consensus of user defined trees' option to generate a consen-
sus tree from all neighbor-joining trees (nodes with support
less than 50% were collapsed) [86]. Trees were visualized
using the SPLITS TREE tool [87]. Amino acid similarity
percentages used in multiple sequence alignments are given
in Additional data file 4.

Hidden Markov model based-modeling

The point CEN model was constructed from three different
sub-models based on the known structure of point CENs. The
first sub-model searched for CDEI-like regions in the query
sequence using the [T|G]CA[C|G|T][A|C|G]TG motif. The
second sub-model then searched for adjacent CDEII-like AT
rich regions. The CDEII region was modeled with a HMM
using CDEII from S. cerevisiae [88]. For the negative model,
S. cerevisiae genomic DNA was used (the effect of including
CENs in the genomic DNA was disregarded). For both data-
sets, base transition frequencies were determined and the
transition matrix for the HMM was calculated. The quality of
the HMM was evaluated by screening annotated budding
yeast genomes and assessment with a bit score:

S(x) = ‘og P(x | model+)

P(x | model-)

Given the identification of CDEI and CDEII sequence ele-
ments, a third sub-model searched for an adjacent CDEIII
motif using an expression based on the highly conserved
CCGGAA motif. Positive hits were evaluated with the bit score
calculated from the CDEII HMM, length distribution, AT
length, AT runs and synteny.

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 contains accession
numbers of all proteins that are used in this study. Additional
data file 2 shows the multiple sequence alignment of S. cere-
visiae Spc34, a subunit of the multi-protein DASH complex,
with a set of fungal orthologs and a set of related metazoan
proteins (NYD-Sp28 family). Additional data file 3 contains
multiple sequence alignments of the E. cuniculi kinetochore

Genome Biology 2006, Volume 7, Issue 3, Article R23 Meraldi et al.

proteins Ndc80, Nuf2R, Mis12/Mtwi1, Nnfi, Spcio5 and
CENP-C amongst five fungi. Additional data files 4 and 5 list
amino acid similarities used in all multiple sequence
alignments and homology blocks used in phylogenetic analy-
sis, respectively.
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