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ARTICLE

Linkage Analysis Using Co-Phenotypes in the BRIGHT Study
Reveals Novel Potential Susceptibility Loci for Hypertension
Chris Wallace, Ming-Zhan Xue, Stephen J. Newhouse, Ana Carolina B. Marçano,
Abiodun K. Onipinla, Beverley Burke, Johannie Gungadoo, Richard J. Dobson, Morris Brown,
John M. Connell, Anna Dominiczak, G. Mark Lathrop, John Webster, Martin Farrall, Charles Mein,
Nilesh J. Samani, Mark J. Caulfield, David G. Clayton, and Patricia B. Munroe

Identification of the genetic influences on human essential hypertension and other complex diseases has proved difficult,
partly because of genetic heterogeneity. In many complex-trait resources, additional phenotypic data have been collected,
allowing comorbid intermediary phenotypes to be used to characterize more genetically homogeneous subsets. The
traditional approach to analyzing covariate-defined subsets has typically depended on researchers’ previous expectations
for definition of a comorbid subset and leads to smaller data sets, with a concomitant attrition in power. An alternative
is to test for dependence between genetic sharing and covariates across the entire data set. This approach offers the
advantage of exploiting the full data set and could be widely applied to complex-trait genome scans. However, existing
maximum-likelihood methods can be prohibitively computationally expensive, especially since permutation is often
required to determine significance. We developed a less computationally intensive score test and applied it to biometric
and biochemical covariate data, from 2,044 sibling pairs with severe hypertension, collected by the British Genetics of
Hypertension (BRIGHT) study. We found genomewide-significant evidence for linkage with hypertension and several
related covariates. The strongest signals were with leaner-body-mass measures on chromosome 20q (maximum

) and with parameters of renal function on chromosome 5p (maximum ). After correction forLOD p 4.24 LOD p 3.71
the multiple traits and genetic locations studied, our global genomewide P value was .046. This is the first identity-by-
descent regression analysis of hypertension to our knowledge, and it demonstrates the value of this approach for the
incorporation of additional phenotypic information in genetic studies of complex traits.
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Hypertension (MIM 145500) is a major risk factor for kid-
ney failure, stroke, and cardiovascular disease and is es-
timated to cause 4.5% of the global disease burden.1 A
familial disposition to high levels of systolic and diastolic
blood pressure has been demonstrated,2 which implies
that there is genetic susceptibility to human hypertension.
The British Genetics of Hypertension (BRIGHT) study has
collected a resource of 1,634 families with at least two
affected siblings (i.e., having severe hypertension) drawn
from the upper 5% of the U.K. blood pressure distribution.
A genomewide linkage scan was performed and identified
regions of interest on chromosomes 2, 5, 6, and 9.3 Follow-
up work has focused attention on chromosome 5q13.4 In
common with other complex-trait resources, a variety of
phenotypic covariate data, including biometric and bio-
chemical measurements, were collected from these se-
verely affected siblings (see BRIGHT Web site).

The aim of a primary genome scan in affected sibling
pairs is the detection of regions of excess identical-by-
descent (IBD) genetic sharing, but, in complex traits, the

presence of genetic heterogeneity and phenocopies may
dilute linkage signals. Phenotypic covariate data may carry
information about comorbid characteristics, which offers
the opportunity to reduce genetic heterogeneity and to
identify novel linked loci. Researchers could select a co-
morbid characteristic, such as body mass, and choose to
study leaner individuals with hypertension who might be
expected to possess stronger genetic predisposition. This
method could augment or unmask linkage signals, but it
uses only a portion of the data set and relies upon di-
chotomization of a quantitative variable, on the basis of
an often arbitrary threshold. In addition, application of
more-stringent selection thresholds (which lead to higher
expected proportions of genetic cases) leads to smaller
data subsets, which may, in turn, lead to a corresponding
attrition in power. The optimal threshold for a covariate
is usually unknown, which leads to the temptation to try
multiple thresholds and incur additional penalties due to
multiple testing. An approach known as “ordered-subset
analysis”5 can be used to identify the optimal threshold,
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by ranking families by some covariate and by finding the
subset that maximizes the LOD score. However, it re-
mains unclear how easily this methodology can be ex-
tended to multiple related covariates, such as anthropo-
metric measures.

An interesting alternative strategy to subset analysis is
to include the quantitative covariate directly in the link-
age analysis.6,7 This strategy offers the potential advantage
that the within–sib pair covariate similarity and the mean
covariate levels may be jointly studied. The results of such
maximum-likelihood–based analysis can be conveniently
expressed as a LOD score. However, the level at which this
LOD corresponds to genomewide significance is not es-
tablished, and, in practice, permutations of the covariate
data are required to determine statistical significance.8

This determination requires the repeated maximization of
a likelihood at each of many locations across the genome
and is computationally slow. Indeed, computational bur-
den becomes an increasing problem as more covariates
are considered.

In contrast to maximum likelihood, score tests do not
require estimation of the full model, so they are consid-
erably faster to implement while maintaining the same
local power as likelihood-ratio tests.9 Thus, they present
a particularly attractive method when permutation is a
consideration. In this article, we describe the development
of a score test for the Rice-Holmans model and its appli-
cation to multiple phenotypic covariates and genome-
scan data from the affected sibling pairs in the BRIGHT
study. This application offers the opportunity to fully ex-
ploit the extensive phenotypic characterization of this hy-
pertensive resource while controlling for multiple statis-
tical comparisons.

Methods
The Rice-Holmans Likelihood

The likelihood ratio for observed IBD sharing at any genetic lo-
cation among a sample of affected sib pairs may be written as

ˆz fj ijLR p ,��
i fj j

where and are the prior and posterior IBD probabilities, re-ˆf fj ij

spectively, that sib pair i shares j alleles IBD, and where is thezj

unknown probability that an affected sib pair shares j alleles IBD.
If the IBD sharing of maternal and paternal alleles are assumed
to be independent, then may be expressed as a function of p,zj

the probability that an affected sib pair share the allele they in-
herit from a given parent IBD. Assuming no parent-of-origin ef-
fect, we write , , and .2 2z p (1 � p) z p 2p(1 � p) z p p0 1 2

Covariates may be incorporated in the model by setting

a�bXe
p p ,

a�bX1 � e

where X denotes some vector of covariates and a and b are stan-

dard regression parameters for the intercept and slope, respec-
tively. Holmans6 discusses two statistics,

ˆˆLR(a,b)
T p 2 ln( )LR(a p 0,b p 0)

and

ˆˆLR(a,b)
S p 2 ln , (1)( )ˆLR(a,b p 0)

where T is a test of linkage allowing for the effects of covariates
and S is a test for dependence of IBD sharing on covariates. We
consider it likely that a general test of linkage (without covariates)
would be performed before a covariate analysis, in which case
the latter statistic (a specific test for dependence of IBD sharing
on covariate measures) would more likely be of interest. We shall,
therefore, focus on developing a score test for this approach, al-
though T is, in fact, a special case.

Development of a Score-Test Statistic

The likelihood for the Rice-Holmans model is10

n 2

j (2�j)ˆL ∝ p (1 � p ) f /f�� i i ij j
ip1 jp0

with , where is some vector of covariates mea-a�bXip p logit(e ) Xi i

sured for sib pair i. We wish to test the null hypothesis H :b p0

against an alternative, , where n is the numbern0 H :b � C P �1

of covariates under testing, treating a as a nuisance parameter.
Note that testing the null hypothesis corresponding to Holmans’s
T statistic can be expressed as a special case, with′H :a p b p 00

and .′ ′a p 0 b p (a,b)
Let and . The first and second derivatives′v p (a,b) X p (1,X )i i

of the log likelihood under are, then,H0

a aˆ ˆ ˆ ˆ[ ]e (2f � f )e � f � 2fi2 i1 i1 i0dl ′p S p X� �v,i ia 2a aˆ ˆ ˆdv (1 � e )(f e � f e � f )i2 i1 i0

and

2 ad l e ′ ′Tp AX X ,� i i i2 a 2dv (1 � e )

where

aˆ ˆ ˆ ˆ ˆ ˆA p f (f � 2f ) � 2e f (2f � f )[i i0 i1 i0 i0 i2 i1

2a 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ�e (f f � 2f � 4f f � f f )i1 i0 i1 i2 i0 i1 i2

3a 4aˆ ˆ ˆ ˆ ˆ ˆ�2e f (2f � f ) � e f (f � �2f )]i2 i0 i1 i2 i1 i2

2a a 2ˆ ˆ ˆ[ ]� (e f � e f � f ) .i2 i1 i0

Explicit forms for a generalized score test of against , withH H1 0

allowance for parameter constraints and nuisance parameters,
have been derived.11–13 For the allowance of a nuisance parameter,
the likelihood must be maximized under to find the maxi-H0
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mum-likelihood estimate of a, . The vector is partitioned intoã Sv,i

and , according to the partitioning of . LetS S va,i b,i

21 d l
A p � ,2 Fn dv ˜vp(a,0)

and similarly partition , so thatA

A Aa,a a,bA p .( )A Ab,a b,b

Then, the score statistic is given by

1 T �1W p U V U
n

T1 1
�1�min U � Rb V U � Rb ,( ) ( )[ ]� �n nb�C

where , ,�1 �1 T˜ ˜U p �U p � S (a,0) � A A S (a,0) V p n �U Ui b,i a,b a,a a,i i i

and . Although the minimization may ap-�1R p A � A A Ab,b b,a a,a a,b

pear to negate the attractive properties of the score test stated
above, this is a special case for which fast algorithms exist14 and
can be solved much more quickly than a general minimization
problem. Additionally, the minimum is always 0 when no con-
straints are placed on .b

Determining Genomewide Significance

Rather than assume a distribution for the score statistic (which
might asymptotically be or a mixture of , depending on the2 2x x

constraints15), we estimated it empirically by permuting the rows
of the covariate matrix. Note that at any locus is invariate toã

permutation and, so, needs to be calculated only once. To deter-
mine genomewide significance, we compared the maximum ob-
served score statistic with its empirical distribution.

Significance in the Context of Testing Multiple Covariates

Studies will often collect multiple covariates, many of which will
be correlated. The permutation procedure described above will
generate a genomewide P value only for a single (set of) covari-
ate(s). When multiple tests are being performed, we must take
further action to maintain control of the familywise error rate
(the probability of at least one false-positive result). A commonly
used method is the application of a Bonferroni correction—mul-
tiplying each P value by the number of analyses undertaken—
but this method is very conservative. A disadvantage common
to this method and the more powerful sequential step-down and
step-up procedures that have been suggested16,17 is that each test
is assumed to be independent. In practice, researchers may con-
duct multiple related tests (for example, in the case of a hyper-
tension study, both of the related covariates serum creatinine and
urea may be of interest).

We chose to calculate a global P value for the global null hy-
pothesis—that genetic sharing among affected siblings is inde-
pendent of any covariate—on the basis of the maximum observed
score statistic across all genetic loci and covariates. Its distribution
is easily estimated empirically (if permutations for each covariate
are initiated with the same random seed) by the set of maximum

score statistics across all covariates and genetic positions under
each permuted data set. One attraction of this method is that it
accounts naturally for any correlation structure between the
covariates.

The Direction of Significant Results

If a significant result is found, it is of interest to know whether
the increased IBD sharing is associated with increased or de-
creased levels of a covariate. In the context of score tests, this
can be indicated by for each covariate . may�Z p U / nV X Zk k k k k

be referred to a standard normal distribution, and its sign cor-
responds to the gradient of the likelihood surface at the null, so
that a positive (or negative) indicates IBD-sharing increasesZk

with increasing (or decreasing) covariate k.

Subjects and Covariates in the BRIGHT Study

The 1,634 pedigrees in the BRIGHT study contain 2,044 affected
full sibling pairs (3,376 individuals) from whom additional phe-
notypic covariate data were collected, including biochemical and
biometric measures. Ascertainment and methods used for phe-
notyping and biochemical and urinary analyses are described
elsewhere3 (BRIGHT Web site).

Other measures, including waist/hip ratio and BMI, were de-
rived from these data, with the use of standard formulas. Al-
though total serum calcium is conveniently measured, it is ion-
ized calcium that is physiologically active. We used published
formulas to estimate ionized calcium (“corrected calcium”)18 and
the glomerular filtration rate (GFR),19 which is generally consid-
ered to be a better index of renal function than is serum creatinine
concentration.

Construction of Pairwise Covariates

Since many of the covariates under study vary with age and sex,
each was regressed on age and sex (allowing for an age-sex in-
teraction), and the residuals were used as adjusted covariates in
all subsequent analyses. For each adjusted covariate X measured
on sibs 1 and 2, we defined and

— —
X p (X � X) � (X � X)sum 1 2

as pairwise covariates for the regression model,X p FX � X Fdiff 1 2

where is the mean of X in the entire sample. Thus, we are
—
X

testing for dependence of IBD sharing on mean covariate levels
and/or covariate similarity within a sibling pair. representsXsum

the mean covariate level for the sibling pair, so that b ( 0sum

would indicate dependence of genetic similarity on covariate val-
ues. represents the within–sibling pair covariate difference.Xdiff

If a covariate influences the propensity of a sib pair to exhibit
linkage at a particular locus, genetic sharing would also be ex-
pected to be higher among siblings with more similar covariates
(and would be identified by ). The regression parametersb ! 0diff

were constrained so that and . This means that wea � 0 b � 0diff

did not allow mean genetic sharing to fall below that expected
under the null or allow increasing covariate similarity to relate
to decreased genetic sharing.

A problem common to all quantitative regressions is how to
deal with outlying observations that may have a large influence
on the test statistic. We decided it was inappropriate to drop
outliers, since they may represent individuals with genuine but
rare (in our sample) particular disease phenotypes. However, we
also do not want to follow up results that depend on just a few
families. Therefore, we conducted analyses of raw ( andXdiff
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Table 1. Antihypertensive/Lipid-Lowering Drug
Treatment of Subjects in the BRIGHT Study

Medication Na

Proportion
(%)

b-Blocker 1,417 43.5
Thiazide diuretic 1,099 33.8
ACE inhibitor 1,020 31.3
Dihydropyridine Ca-channel antagonist 794 24.4
Statin 340 10.4
Loop diuretic 303 9.3
Other Ca-channel antagonist 156 4.9
a-Blocker 145 4.5
Centrally acting agent 50 1.5
A2-receptor antagonist 17 .5

a Number of subjects who reported each medication.

, as defined above) and ranked ( and , replaced byX X Xsum diff sum

their ranks) data that were interpreted in parallel.

Accommodating Missing Data

Only a minority of individuals had complete data for all covar-
iates. It has been shown that statistical inference is more efficient
if missing data are replaced by their expectation, given observed
data, than if missing observations are dropped.22 Since intervar-
iable correlations mean that information about the missing data
exists in the complete data set, we imputed values for missing
observations, using best-subset regression. Adjusted covariate
data and age and sex for each sibling pair were used as explanatory
variables, and the sum and difference variables were imputed.
Inference using this mixture of observed and imputed data is
valid, provided that the variance of any statistic is estimated ap-
propriately, as with the robust-variance estimator described
above.

Results

A total of 3,254 individuals (60% female) were included
in this analysis. The mean age at recruitment was 60 (�SD
9.1) years, and 3,037 (93%) individuals were undergoing
some kind of antihypertensive or lipid-lowering treat-
ment, with 1,105 (34%), 398 (12%), and 131 (4%) taking
two, three, or four or more distinct medications, respec-
tively. A breakdown of antihypertensive medications is
given in table 1. Summary statistics for all covariates stud-
ied are shown in table 2. Two covariates, urine albumin
and albumin/creatinine ratio, showed strong positive
skew and were log transformed.

IBD Regression Results

We calculated genomewide significance levels, using score
statistics and 10,000 permutations for each covariate. On
a computer with a 2.6 GHz processor, maximizing the
genomewide likelihood one time for a single covariate
took ∼70 s. In contrast, permuting the data and calculating
score statistics genomewide 10,000 times took only ∼35
min. Several covariates obtained a genomewide significant
result ( ). To aid interpretation for geneticists whoP ! .05
are more familiar with the LOD score in linkage, we also
calculated LOD scores, defined by , where SLOD p log S10

is as defined in equation (1). We present, in table 3, both
P values and LOD scores for those results that were sig-
nificant under both the raw and ranked analyses. More-
complete results—all those that were significant under ei-
ther analysis—are shown in table 4. Global P values
(adjusted for the multiple traits and genetic locations stud-
ied) were .049 and .046 for the raw and ranked analyses,
respectively.

Follow-up work on our primary genome scan revealed
a region of suggestive linkage ( ) on chromo-LOD p 2.5
some 5q13.4 Inclusion of at-phenotyping systolic (but not
diastolic) blood pressure led to an increase in evidence for
linkage in this region, although it did not achieve ge-
nomewide significance.

Analysis of Independent Sib Pairs

The likelihood model is expressed in terms of pairwise
sharing, and a proportion of recruited families included
more than two affected siblings. In this case, the genetic
sharing and covariate data are not independent between
sibling pairs in the same family, and it is difficult to ac-
count for a variety of family sizes in any permutation rou-
tine. This is a long-standing problem in analysis of sibling-
pair data.23 Therefore, to confirm that our results are not
due to any problem introduced by ignoring noninde-
pendence, we reran all analyses, selecting at random a
single sibling pair from each family. The pattern of results
was very similar, with mean correlation between score sta-
tistics from the independent and nonindependent sib pair
analyses of 0.98 and identification of significant linkage
for the same locations (data not shown). This analysis of
independent sib pairs also achieved borderline genome-
wide significance for the raw and ranked analyses (P p

and , respectively)..053 P p .051
There were four regions that achieved genomewide sig-

nificance in both the raw and the ranked analyses. The
weaker signals were from hip circumference on chromo-
some 9q and increased total creatinine excretion on chro-
mosome 13q. However, of particular interest were linkage
signals found with two clusters of related measures. We
found linkage to a 28-Mb region on chromosome 20q11-
20q13 when the body-mass measures weight, BMI, and
hip circumference were included in the analysis (mini-
mum genomewide ). This linkage is associatedP p .002
with leaner body mass: genetic similarity increases as the
mean body mass of the sib pair decreases. We also found
linkage to a 36-Mb region on chromosome 5p13-5q12
when the kidney function–related covariates serum cre-
atinine, serum urea, and GFR were studied (minimum ge-
nomewide ), although GFR showed significantP p .002
linkage only in the ranked analysis. In this case, the link-
age is associated with increasing measures of kidney func-
tion—higher GFR and lower serum creatinine and urea.
For all these covariates, increasing linkage was also asso-
ciated with increasing trait similarity between sibs. The
P values for these traits and chromosomes are shown in
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Table 2. Summary Statistics for Covariates Studied

Covariatea Nb Mean SD Median
Interquartile

Range

Serum biochemistry:
Sodium (mmol/liter) 3,062 138.53 3.06 139.00 137.00–140.00
Chloride (mmol/liter) 3,062 102.03 3.13 102.00 100.00–104.00
Urea (mmol/liter) 3,082 6.07 1.71 5.90 5.00–6.90
Creatinine (mmol/liter) 3,083 89.56 20.47 87.00 77.00–99.00
Calcium (mmol/liter) 3,079 2.43 .13 2.43 2.35–2.51
Corrected calcium (mmol/liter) 3,082 2.34 .13 2.34 2.27–2.41
Albumin (g/liter) 3,071 44.47 2.84 44.00 43.00–46.00
GGT (U/liter) 3,071 34.44 30.75 26.00 19.00–38.00
Urate (mmol/liter) 3,071 .31 .08 .31 .26–.37
Total cholesterol (mmol/liter) 3,138 5.58 1.01 5.52 4.90–6.20
Tryglyceride (mmol/liter) 3,138 2.13 1.34 1.80 1.29–2.57
HDL cholesterol (mmol/liter) 3,138 1.36 .37 1.32 1.11–1.58
GFR (ml/min per 1.73 m2) 3,070 72.29 14.23 72.19 63.19–81.01

Urine biochemistry:
Sodium (24-h excretion) (mmol) 2,453 84.26 36.27 78.00 58.00–105.00
Potassium (24-h excretion) (mmol) 2,453 41.61 16.27 39.00 31.00–49.00
Creatinine (24-h excretion) (mmol) 2,452 6.39 3.03 5.60 4.30–7.80
Sodium concentration (mmol/liter) 2,440 141.33 59.89 132.60 100.30–172.65
Potassium concentration (mmol/liter) 2,439 69.90 26.65 67.60 52.50–83.70
Creatinine concentration (mmol/liter) 2,439 10.39 3.86 9.69 7.80–12.48
Creatinine clearance (ml/min) 2,308 82.33 29.80 79.17 63.33–96.81
Albumin (mg/liter) 2,452 13.73 68.47 5.00 3.00–8.00
Sodium/potassium ratio 2,453 2.16 .96 2.00 1.53–2.61
Urinary albumin/serum creatinine ratio (mg/mmol) 2,450 4.95 20.86 1.56 .90–3.11

Biometric measurements:
Triceps (cm) 2,831 18.84 8.77 18.00 12.00–25.00
Biceps (cm) 2,930 14.65 7.46 13.00 9.00–20.00
Subscapular (cm) 2,827 19.28 6.48 19.00 15.00–23.00
Suprailiac (cm) 2,886 18.91 6.45 18.00 14.00–23.00
Height (m) 3,250 1.66 .09 1.65 1.59–1.72
Weight (kg) 3,244 76.13 13.40 75.08 66.50–85.00
BMI 3,240 27.61 3.93 27.00 25.00–30.00
Mean waist (cm) 3,070 90.60 11.63 91.00 82.00–99.00
Mean hip (cm) 3,069 103.83 8.26 103.70 98.20–109.00
Waist/hip ratio 3,069 .87 .09 .87 .80–.94

Pulse and blood pressure measurements:
Pulse (beats/min) 3,250 68.44 11.93 68.00 60.00–76.00
SBP at phenotyping (mm Hg) 3,254 155.85 21.15 154.00 141.00–169.00
DBP at phenotyping (mm Hg) 3,254 93.56 11.39 93.00 86.00–101.00
SBP at diagnosis (mm Hg) 3,101 172.42 18.36 170.00 160.00–180.00
DBP at diagnosis (mm Hg) 3,101 104.57 8.83 103.00 100.00–110.00

a GGT p g-glutamyl transpeptidase; SBP p systolic blood pressure; DBP p diastolic blood pressure.
b Number of observations.

figure 1. Genomewide score statistics for analysis of all
ranked covariates studied are shown in figure 2.

We chose to focus on the two clusters on chromosomes
5p13-5q12 and 20q11-20q13, for four reasons: the signals
(1) come from analyses using multiple related traits, (2)
are exhibited over several neighboring markers, (3) are
present in both the raw and the ranked analyses, and (4)
coincide with the smallest genomewide P values observed.

Discussion

We have developed a score test to facilitate the compu-
tationally efficient application of IBD regression for the
simultaneous analysis of multiple covariates in sibling
pairs severely affected with hypertension. An attraction of

this approach is that it tests for excess or reduced allele
sharing by capitalizing on all the phenotypic covariate
data.

Our results identify two new loci linked to hypertension
and specific anthropometric features that characterize lea-
ner body habitus and to covariates for normal (or supra-
normal) renal function, which collectively attain ge-
nomewide significance. These regions were not implicated
in the primary genome-scan analysis of hypertension
alone.

We consider two alternative scenarios that would lead
to deviation from our null hypothesis. The first is that the
linkage signals arise from disease genes that were masked
because of genetic heterogeneity or the presence of phe-
nocopies. Since increased body mass and impaired renal
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Table 3. Results for Traits That Displayed Genomewide Significance ( ) for Both Raw and Ranked AnalysesP ! .05

Covariate Location Marker

Raw Data Ranked Data

LOD
Z

(Sum)
Z

(Difference)
Minimum

P LOD
Z

(Sum)
Z

(Difference)
Minimum

P

Anthropometric:
BMI 20q12 D20S107 2.71 �3.09 �2.49 .0202 3.04 �2.88 �2.81 .0232
Hip circumference 9q21 D9S273-D9S175 3.09 �.91 �3.56 .0212 2.91 �.83 �3.50 .0403
Hip circumference 20q11-20q13 D20S195-D20S119 3.26 �2.80 �3.21 .0035 4.25 �1.84 �4.11 .0015
Weight 20q11-20q13 D20S195-D20S178 3.70 �3.33 �3.23 .0023 3.96 �2.95 �3.60 .0026

Serum chemistry:
Creatinine 5p13-5q12 D5S426-D5S427 3.29 �4.60 �3.19 .0015 3.51 �3.77 �2.41 .0070
GFR 5p13-5q12 D5S426-D5S427 3.70 3.80 �1.29 .0032 3.71 3.90 �1.38 .0050
Urea 5p13-5q11 D5S426-D5S1969 3.29 �4.24 �1.68 .0059 3.15 �3.89 �.76 .0149

Urine chemistry:
24-h Creatinine 13q22 D13S156-D13S1812 2.49 1.58 �2.40 .0472 2.83 2.22 �2.53 .0252

NOTE.—Z statistics for the sum and difference covariates may be referred to a standard normal distribution.

Table 4. Results for Traits That Displayed
Genomewide Significance ( )P ! .05
for Either Raw or Ranked Analysis

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

function act as independent risk factors for hypertension,
a subgroup of siblings who are leaner or who have retained
normal renal function may be more homogeneous, in
terms of genetic factors causing essential hypertension.
Therefore, one explanation for our findings is that we have
homed in on hypertensive loci that influence blood pres-
sure through nonobesity or nonrenal dependent mecha-
nisms. The alternative scenario, in which we would also
expect deviation from our null hypothesis, relates to a
locus that directly affects the covariate under study. There-
fore, an alternative explanation for our findings is that we
have identified loci that influence body mass or renal
function directly, either within individuals with hyper-
tension or within the general population. We evaluate our
results in the light of data from experimental models and
other human studies, to consider the biological plausibil-
ity of each explanation, but further work will be required
to choose between these possibilities, since our data alone
do not allow one to be distinguished from the other.

Our first linkage cluster was identified through analysis
with three body-mass–related traits on chromosome
20q11-20q13 (weight, hip circumference, and BMI). Obe-
sity is a phenotype that commonly accompanies hyper-
tension and is an independent cause of high blood pres-
sure, which also increases target organ damage. We first
explore the possibility that we have identified a locus that
directly influences body mass. Several studies of obesity-
related traits have shown coincident linkage to an over-
lapping region on 20q13,24–27 suggesting that our results
may relate to the same locus. However, a search of the
genes in our region revealed no clear candidate genes for
control of weight gain or loss, with the exception of the
lipin 3 (MIM 605520) gene, which may potentially play
a role in metabolic disorders characterized by insulin re-
sistance (another member of the lipin family, lipin 1 [MIM
605518] on chromosome 2, has been associated with lipo-
dystrophy). Additionally, a search of the Rat Genome
Database revealed no reports of weight-related loci in the
syntenic region. Our population differs from those in the
linkage studies of obesity, in that all individuals have se-

vere hypertension but are generally not obese (median
), diabetics were excluded during recruitment,BMI p 27

and linkage increased with decreasing body mass, so that
this signal comes from lean individuals with hyperten-
sion. We, therefore, believe it more likely that this signal
reflects linkage to hypertension among lean individuals
rather than a locus responsible for a general predisposition
to lower weight, body mass, and hip circumference. Fur-
ther support comes from our bioinformatic searches,
which reveal that there are several candidate genes within
this interval that might influence blood pressure. The
strongest candidates include the prostacyclin synthase
gene (PTGIS [MIM 601699]) and the sodium-hydrogen
exchanger 8 (SLC9A8), both located at 20q13.13. PTGIS
encodes the enzyme prostacyclin synthase, which cata-
lyzes the isomerization of prostaglandin H2 to prostacy-
clin, which is a potent vasodilator and inhibitor of platelet
aggregation, whereas sodium/hydrogen exchangers have
a central role in sodium excretion in the kidney.28

The second linkage cluster, on chromosome 5p13-5q12,
was identified through analysis with three indicators of
renal function, which is itself a key determinant of blood
pressure level. This locus is neighboring but distinct from
the chromosome 5q13 locus identified by our primary ge-
nome scan.4 To our knowledge, no other linkage scans for
kidney function among humans with hypertension have
identified this region. This combination of covariate fea-
tures (higher calculated GFR and lower serum creatinine
and urea) is often seen in early nephropathy associated
with metabolic syndrome and diabetes.29 In this patho-
logical process, an initial phase of supranormal renal func-
tion is associated with endothelial damage, leading to
microalbuminuria and, eventually, to nephron loss. We
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Figure 1. P values for body mass and renal function–related traits that achieved genomewide significance on chromosomes 20 and
5, respectively. The results of the analysis of raw residuals and ranked data are shown in the top and bottom panels, respectively. The
dotted line indicates the genomewide 5% significance threshold.

Figure 2. Genomewide score statistics for analysis of all ranked
covariates studied. The legend is available in its entirety in the
online edition of The American Journal of Human Genetics.

know that, in early diabetic nephropathy, deterioration of
renal function can be delayed with very tight blood pres-
sure control.29 These features of high GFR and low urea
and creatinine have not been observed to date in hyper-
tensive nephrosclerosis.

Again, we cannot discount the possibility that we have
identified a locus directly responsible for kidney function.
Of the genes in this region, the prostaglandin E receptor
4 (EP4 [MIM 601586]) on chromosome 5p13.1 has been
shown to be expressed in rat kidneys and has a potential
mechanism to influence kidney function. The effects of
prostaglandin E2, which is involved in the maintenance
of kidney function and renal blood flow during physio-
logical stress, are mediated through EP4.30,31 However, in
support of a hypertension locus, it is notable that the syn-
tenic region on rat chromosome 2 contains several rat
blood pressure–related loci, and comparative genomics
work has suggested that human chromosome 5p13.1 is a
target region for human hypertension.32,33 There are also
a number of candidate genes in this region that may affect
blood pressure through vascular rather than renal path-
ways. These include the gene encoding phosphodiesterase
4D (PDE4D [MIM 600129]), which localizes to chromo-
some 5q12, and, toward the opposite end of our identified
region, the gene that encodes the natriuretic peptide re-
ceptor C, NPR3 (MIM 108962), at 5p14-5p12. Fine-map-
ping of an ischemic stroke–susceptibility locus identified
through linkage34 found significant evidence of associa-

tion to PDE4D, and variants in NPR3 have been shown to
affect blood pressure in mice.35 Further work will be re-
quired to evaluate candidate genes in this region that
might affect blood pressure and/or renal function.

The majority of subjects were being treated for high
blood pressure when they were phenotyped. Such treat-
ment affects not only blood pressure but also pulse and
many biochemical covariates. Various methods have been
proposed to adjust for treatment effects, in an attempt to
reconstruct the blood pressure or covariate that would be
observed were the individual not undergoing treat-
ment.20,21 However, all methods involve simplifying as-
sumptions that may not hold in practice—in particular,
that the distribution of the variable in the treated indi-
viduals would be the same, were they not treated, as its
distribution among untreated individuals. Since these var-
iables are monitored for effects of treatment, and treat-
ment is varied accordingly, this assumption cannot hold.
Further, issues of noncompliance (i.e., individuals report
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taking, but do not take, medication) and nonresponse (i.e.,
drug treatment does not produce the expected effect on
the variable) are ignored. Additional problems are intro-
duced for individuals on more than one treatment, by
complex interactions between different drugs on bio-
chemical variables. For example, it is not clear in what
direction one might adjust high-density lipoprotein (HDL)
cholesterol were an individual on both b-blocker and a-
blocker treatments, since the former acts to decrease and
the latter to increase HDL cholesterol. The alternative to
adjustment—ignoring the effects of drug treatment—in-
troduces additional noise, which can impair our ability to
detect genuine signals but has been shown not to lead to
any increase in type I error rates.20 Therefore, although we
are aware that this may impede our ability to detect gen-
uine signals, we have chosen to use unadjusted blood pres-
sure, pulse, and biochemical covariates in our analyses
rather than to employ adjustments based on assumptions
that may not be justifiable in practice.

Essential hypertension is a multifactorial trait, and the
search for its genetic determinants has been hampered by
the inability of researchers to discriminate between af-
fected individuals who have differing genetic risk factors.
We have developed a computationally efficient method
for incorporating covariate data into affected-sib-pair
linkage analysis. This method has allowed us to identify
regions of the genome where genetic sharing between af-
fected siblings is related to their covariate similarity as well
as to their mean covariate levels—specifically, regions on
chromosome 20q11-20q13 related to body mass and
regions on chromosome 5p13-5q12 related to renal func-
tion. These regions have not been linked elsewhere to hy-
pertension in humans, but the evidence suggests they are
worthy of further research.

IBD regression offers the potential to maximize the
value of comorbid characteristics in family-based–linkage
data sets, without restriction to investigator-defined sub-
sets. This strategy is readily applicable to other complex
traits where multiple covariate phenotypes have been col-
lected. Our results suggest that there may be additional
important findings locked within complex-trait data sets
and that this computationally efficient application may
reveal new areas of research inquiry.
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