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REPORT

Genomewide Scan for Nonsyndromic Cleft Lip and Palate
in Multigenerational Indian Families Reveals Significant Evidence
of Linkage at 13q33.1-34
Uppala Radhakrishna,* Uppala Ratnamala, Mathew Gaines, Soraya Beiraghi, David Hutchings,
Jeffrey Golla, Syed A. Husain, Prakash S. Gambhir, Jayesh J. Sheth, Frenny J. Sheth,
Ghati K. Chetan, Mohammed Naveed, Jitendra V. Solanki, Uday C. Patel, Dilipkumar C. Master,
Rafiq Memon, Gregory S. Antonarakis, Stylianos E. Antonarakis, and Swapan K. Nath*

Nonsyndromic cleft lip with or without cleft palate (CL-P) is a common congenital anomaly with incidence ranging
from 1 in 300 to 1 in 2,500 live births. We analyzed two Indian pedigrees (UR017 and UR019) with isolated, nonsyndromic
CL-P, in which the anomaly segregates as an autosomal dominant trait. The phenotype was variable, ranging from
unilateral to bilateral CL-P. A genomewide linkage scan that used ∼10,000 SNPs was performed. Nonparametric linkage
(NPL) analysis identified 11 genomic regions ( ; ) that could potentially harbor CL-P susceptibility var-NPL 1 3.5 P ! .005
iations. Among those, the most significant evidence was for chromosome 13q33.1-34 at marker rs1830756
( ; ). This was also supported by parametric linkage; MOD score (LOD scores maximized over geneticNPL p 5.57 P p .00024
model parameters) analysis favored an autosomal dominant model. The maximum LOD score was 4.45, and heterogeneity
LOD was 4.45 ( ). Haplotype analysis with informative crossovers enabled the mapping of the CL-P locus to aa p 100%
region of ∼20.17 cM (7.42 Mb) between SNPs rs951095 and rs726455. Thus, we have identified a novel genomic region
on 13q33.1-34 that harbors a high-risk variant for CL-P in these Indian families.
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Nonsyndromic cleft lip with or without cleft palate (CL-
P) is one of the most frequently occurring congenital
malformations among live births. The prevalence varies
widely, depending on the ethnicity and geographic lo-
cation of the population, ranging from 1 in 300 to 1 in
2,500.1,2 In the United States, it affects 1 in 700–1,000
newborns each year and is the fourth most common
birth defect. In India, cleft lip/palate occurs in nearly 1
in 500 live births; the majority of these defects are not
surgically corrected.3 Although Asians have the highest
rate of orofacial clefts (OFCs) at birth, the majority of the
genetic studies have been conducted with whites. There
are two types of CL-P: syndromic and nonsyndromic.
Nonsyndromic CL-P represents almost half of facial
malformations and could be familial. More than 400 rec-
ognized syndromes may include a facial cleft as one of
the manifestations. Some of the common syndromes
and/or anomalies associated with clefting include Apert,4

Meckel,5 Treacher Collins,6 and van der Woude syn-
dromes.7 Dental anomalies such as supernumerary, hy-
poplastic, or congenitally missing teeth and malocclusion
are common in patients affected with CL-P.

The genes responsible for one form of X-linked (CPX
[MIM 303400]) and one form of autosomal dominant (CPI
[MIM 119530]) CL-P have been mapped to chromosomes
Xq13-q21.318–12 and 2q32,13 respectively. Pathogenic mu-
tations were identified in the TBX22 gene on Xq21.1. Ge-
nomic regions with evidence of linkage for nonsyndromic
OFC were identified at 6p24.3 (OFC1 [MIM 119530]),14,15

2p13 (OFC2 [MIM 602966]),16 19q13 (OFC3 [MIM
600757]),17 4q21-q31 (OFC4 [MIM 608371]),18,19 4p16.1
(OFC5 [MIM 608874]),20 and 1q32-q41 (OFC6 [MIM
608864]),21,22 but not all responsible genes are yet iden-
tified. Chromosomal aberrations involving chromosomes
13 and 18 were reported to cause an increased incidence
of clefts.23–25 Genes associated with CL-P include MSX1,
MSX2, PVRL1, IRF6, RARA, TGFA, TGFB3, TGFB2, MTHRF,
GABRB3, FOXE1, GLI2, JAG2, LHX8, PHF8, SATB2, SKI,
SPRY2, and TBX10.20,26–29 However, none of these seem to
play a major role in nonsyndromic CL-P, and they appear
to be responsible for only a fraction of CL-P cases.26

The ascertainment of occasional large multigenerational
families segregating a “complex” trait such as CL-P is im-
portant, since it may reveal the existence of a single gene
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Figure 1. Partial pedigrees of families UR017 and UR019 with
CL-P. Affected individuals are shown with blackened symbols, and
unaffected individuals are shown with unblackened symbols. Data
are not available for deceased individuals shown with a question
mark. Samples included in the analysis are numbered under their
symbols in the pedigree.

that, in these families, contributes significantly to the phe-
notype. There are only a few examples of such families
with the CL-P phenotype used in linkage analysis who
have revealed significant linkage to 4q,18 17p,30 and mul-
tiple loci.31 Here, we present genomewide linkage analysis
of two multigenerational Indian families (UR017 and
UR019) with CL-P, ascertained through a single proband
with nonsyndromic CL-P. This analysis provided signifi-
cant evidence of a susceptibility locus on a 7.42-Mb ge-
nomic region on chromosome 13q33.1-34.

The families studied include family UR017, who were
from Andhra Pradesh, the Southern state of India, and
had an apparent autosomal dominant mode of inheri-
tance (fig. 1). The original five-generation pedigree con-
sists of 96 members with 12 affected individuals (6 fe-
males and 6 males). In the present study, we included five
affected and nine unaffected individuals.

Family UR019 is a six-generation family, also from An-
dhra Pradesh, with CL-P (fig. 1). The original pedigree is
much larger than what is shown in figure 1. The family
includes seven affected members (five males and two fe-
males). The mode of inheritance is apparently autosomal
dominant. We analyzed three affected and two unaffected
individuals from this family.

Each individual was evaluated by an experienced dys-
morphologist and a clinical geneticist. Clinical and x-ray
photographs were taken of selected individuals. All af-
fected individuals had severe CL-P, and no syndromic
anomalies were observed in either pedigree. Some of the
affected individuals had dystrophic or congenitally
missing teeth (due to severe clefting) and speech prob-
lems. The phenotype of a few deceased individuals is un-
known, and they were considered “affected status un-
known” in the linkage analysis. Blood samples were
obtained from all available cooperative family members,
with their informed consent. Apparently, these two fam-
ilies are unrelated, since we could not establish any link
between them. They live in a small village with !15,000
inhabitants.

Blood DNA was purified, and the whole-genome ge-
notyping scan was performed using the GeneChip Map-
ping 10K 2.0 SNP Array, which contains 11,555 SNPs.
These are equally distributed in the genome, with a mean
intermarker distance of 210 kb and an average heterozy-
gosity of 0.38. The assay was performed using 250 ng of
genomic DNA for each sample. For each sample, 199% of
the SNPs were determined unequivocally. Scan images
were processed with Affymetrix Micro Array Suite Soft-
ware. Data were analyzed with GDAS v2 software. Ped-
Check was used for the detection of Mendelian errors.32

In the parametric linkage analysis, the trait model
(mode of inheritance, disease-allele frequency, and pen-
etrance of genotypes) must be specified, which is a dis-
advantage when the true disease-model parameters are un-
known.33 Since the parameters of the disease model were
uncertain, in the initial genome scan, we assessed the evi-
dence of linkage with a nonparametric, penetrance-in-

dependent, affected-only, and allele-sharing model. On
finding significant evidence of linkage by exceeding the
predetermined threshold ( ) with an allele-sharingP ! .005
method, we fitted a range of parametric models to the
data. The linkage package MERLIN, which can efficiently
handle thousands of genotypes,34 was used for nonpara-
metric linkage (NPL) analysis. We calculated multipoint
LOD scores maximized over genetic model parameters
(MOD score analysis). For this analysis, we used the pro-
gram Genehunter-Modscore,35 which calculates MOD
scores by varying the disease-allele frequency and pene-
trance. The genomic positions of SNPs are derived from
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Table 1. Initial Genome-Scan Results, Indicating Suggestive Evidence at
Various Chromosomes Obtained with Parametric and Nonparametric Linkage
( )P ! .005

SNP Marker

Position Nonparametric Parametric

Cytogenetic
Physicala

(bp) NPL P LOD HLOD a

rs1417367 1p32.3 52,010,490 3.74 .0046 1.48 1.48 1.00
rs1402229 3q26.33 181,552,274 4.44 .0013 1.72 1.50 .52
rs1878989 4q28.1 125,204,845 3.93 .0039 1.61 1.61 1.00
rs1372568 6p12.3 46,413,413 4.22 .0027 1.59 1.59 1.00
rs717698 7p21.3 8,167,488 3.55 .0066 .31 .71 .47
rs1343535 9p23 10,004,143 3.84 .0042 .28 .00 .00
rs765651 10q25.1 109,599,290 4.08 .0031 .12 .78 .48
rs2204184 11p11.12 50,418,021 4.08 .0031 .78 1.76 .50
rs1830756 13q33.3 106,878,224 5.57 .0002 4.44 4.44 1.00
rs719252 14q32.32 102,682,945 4.44 .0013 2.89 2.89 1.00
rs959655 18q21.1 48,132,862 3.64 .0066 .98 1.75 .50

a Derived from the NCBI (Build 35.1).

Table 2. Family-Specific Results with
Combined Parametric and Nonparametric
Linkage Scores for the Peak Region at
Chromosome 13q33.1-34

The table is available in its entirety in the online
edition of The American Journal of Human Genetics.

the National Center for Biotechnology Information (NCBI)
(Build 35.1).

A genomewide NPL scan revealed andNPL 1 3.5 P !

for CL-P loci at 11 chromosomal regions: 1p32,.0005
3q26, 4q28, 6p12, 7p21, 9p23, 10q25, 11p11, 13q33,
14q32, and 18q21 (table 1). Among them, the best evi-
dence was found for chromosome 13q33.1-34. A maxi-
mum multipoint NPL was yielded for SNP marker
rs1830756 (106,878,224 bp) on chromosome 13q33.1-34
( and ). These results are also sup-NPL p 5.57 P p .00024
ported by parametric linkage analysis (MOD score anal-
ysis). We used the “modcalc single” option, under which
Genehunter-Modscore performs a separate maximization
for each genetic position assumed for the putative disease
locus. This procedure yields the MOD score in conjunction
with the best-fitting penetrance and disease-allele fre-
quency at each genetic position. Under the best-fitted au-
tosomal dominant model (100% penetrance and disease-
allele frequency 0.00001), the LOD score was 4.45 and
heterogeneity LOD (HLOD) was 4.45 ( ). The fam-a p 1.0
ily-specific results, the combined parametric and non-
parametric multipoint linkage results at the peak SNP
(rs1830756), and adjacent SNPs are shown in table 2.

A second interesting region was identified at 14q32
( ; ). Parametric analysis under aNPL p 4.44 P p .0013
dominant model yielded a LOD score of 2.89 at marker
rs2024863, which is ∼19 cM away from the NPL peak.
Similar MOD score analyses among the other suggested
genomic positions gave nonsignificant results with a range
of 0.12–1.72.

It has been demonstrated that applying linkage analyses
that assume linkage equilibrium to dense markers may
lead to bias,36,37 especially in the analysis of SNP linkage
maps in data sets in which some parental genotypes are
missing. Therefore, we assessed the impact of linkage dis-
equilibrium (LD) on linkage at chromosome 13. We used
MERLIN to accommodate marker-to-marker LD in both
parametric and nonparametric analyses, by organizing
closely located adjacent markers into clusters. Although

many empirical studies have shown that the extent and
distribution of LD are extremely variable throughout the
genome, in most cases, significant LD does not influence
markers separated by 10.1 cM in outbred populations.38–

40 Accordingly, we used markers within 0.2 cM of each
other in a cluster. Several clusters of two to six SNPs dem-
onstrated LD. With the assumption of no LD within the
cluster, MERLIN uses population haplotype frequencies
while calculating linkage. At chromosome 13, the LOD
score and NPL score are reduced to 3.46 and 3.03 (P p

), respectively. However, this reduction in linkage.002
scores might be due to both the effect of LD as well as the
reduction of information content. Because of the cluster-
ing (hence, the reduction of markers), the information
content was reduced from 89% to 74% at the peak region.
Nonetheless, evidence of linkage, especially the paramet-
ric LOD score, at 13q33.1-34 is still very significant.

Haplotype analysis for the 13q-linked region was per-
formed. A total of 45 informative SNP markers on 13q33.1-
34 were used. Haplotype analysis (fig. 2) revealed infor-
mative recombination events in the affected individual
V-7 (7815) of family UR019, with the candidate suscep-
tibility locus confined to a region distal to rs951095 (map
position 104,276,645 bp) and proximal to rs726455 (map
position 111,699,501 bp), with a 20.17-cM genetic interval
that corresponds to 7.42 Mb.

This interval could not be further narrowed because
samples from additional individuals in these families were
not available. The genomic interval between these two
SNP markers contains 18 putative transcripts (Ensembl).
Potential candidate genes in this region might include
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Figure 2. Partial pedigrees of UR017 and UR019, with genotypes
and haplotypes of chromosome 13q. The legend is available in its
entirety in the online edition of The American Journal of Human
Genetics.

transcription factor DP1 (TFDP1 [MIM 189902]), inhibitor
of growth 1 (ING1 [MIM 601566]), and a tumor suppressor,
a-1 chain of collagen IV (COL4A1 [MIM 120130]). Mu-
tation analysis for each transcript is required to first detect
sequence variants and then to determine which of these
are associated with the CL-P phenotype in families UR017
and UR019. In addition, all conserved noncoding ele-
ments need to be included in the mutation analysis.

Various parametric and nonparametric association and
linkage studies of different populations provided evidence
of several loci on various chromosomal regions contrib-
uting to CL-P.15–19,41–48 A number of additional candidate
genes and regions also have been proposed through ob-
servations from chromosomal abnormalities in patients
with CL-P.49,50 A few reports strongly supported the in-
volvement of the IRF6 gene in some families with non-
syndromic CL-P21,22,51; however, in the present study, we
did not observe any positive association. A previous link-
age study conducted with 38 multiplex Indian CL-P fam-
ilies yielded weak evidence at multiple loci52; however,
none of these previous linkage studies gave evidence in-
volving chromosome 13 for the CL-P phenotype.

CL-P is very common in patients associated with tri-
somy involving all or part of chromosome 13.25 Increased
incidence of chromosome 13–related anomalies are re-
ported to be involved with CL-P.53–64 Najafzadeh et al.65

reported a newborn infant with CL-P and a 46,XX,13q�

karyotype derived from a paternal t(4;13)(q25;q32), with
resulting del(13q) and dup(4q). A female with multiple
congenital anomalies, including CL-P, and a karyotype of
46,XX,-13,�t(13q;13q) has been reported.66 A fetus with
various developmental anomalies, including cleft lip,
who had duplication of 13q32rqter due to unbalanced
segregation of t(4;13)(p16;q32) in her father, was also
reported.67

Multigenerational families with an autosomal domi-
nant and an autosomal recessive inheritance of CL-P with
reduced penetrance have been reported.18,31 An autosomal
dominant form of inheritance is likely in the two pedi-
grees reported here. Families UR017 and UR019 live in the
same village of !15,000 inhabitants. It is possible that
there was a common ancestor for these families; however,
for several generations, no marriages were reported be-
tween these two. Therefore, we could not establish any
demonstrable relationship between them. Haplotype an-
alysis from the 13q-linked region of the affected individ-
uals did not find extensive common haplotypes shared

between these two families, although there were some
patches of identical alleles observed. Identification of the
susceptibility variation at 13q33.1-34 for nonsyndromic
CL-P in an Asian population will foster a better under-
standing of the molecular pathophysiology of this devel-
opmental anomaly.
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